JPH08109687A - Sound-insulating triple wall body structure - Google Patents

Sound-insulating triple wall body structure

Info

Publication number
JPH08109687A
JPH08109687A JP6245100A JP24510094A JPH08109687A JP H08109687 A JPH08109687 A JP H08109687A JP 6245100 A JP6245100 A JP 6245100A JP 24510094 A JP24510094 A JP 24510094A JP H08109687 A JPH08109687 A JP H08109687A
Authority
JP
Japan
Prior art keywords
sound
hollow layer
hollow
thickness
receiving side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6245100A
Other languages
Japanese (ja)
Inventor
Hitomi Goto
仁美 後藤
Shingo Nishimura
新吾 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP6245100A priority Critical patent/JPH08109687A/en
Publication of JPH08109687A publication Critical patent/JPH08109687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PURPOSE: To insulate a power flow to a sound producing room and a sound receiving room efficiently in a wall structure partitioning the sound producing room and the sound receiving room. CONSTITUTION: In a hollow wall structure partitioning a sound producing side 1 as a noise source and a sound receiving side 2, from which a sound leaks, a hollow wall body 3 is formed of three face materials 4, 5, 6, and the thickness of a hollow layer 7 on the sound producing side 1 is made thicker than that of a hollow layer 8 on the sound receiving side. Accordingly, directional properties to the loss of a power flow are produced, and the hollow layer 7 on the sound generating side is made thicker than the hollow layer 8 on the sound receiving side, thus improving sound-insulating performance to the sound receiving side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、遮音性能に優れた壁
体の構造に係り、特に壁体を三重壁で構成した遮音三重
壁体構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wall structure having excellent sound insulation performance, and more particularly, to a sound insulation triple wall structure having a triple wall structure.

【0002】[0002]

【従来の技術】従来から、複数の面材を使用する壁体に
関し、その遮音性能を高めることを目的とした遮音壁体
構造の技術が多数出願されている。
2. Description of the Related Art Conventionally, regarding a wall body using a plurality of face materials, a number of techniques for a sound insulating wall body structure have been filed for the purpose of improving the sound insulation performance.

【0003】この遮音壁体構造の技術として実開昭60
−102311号公報に示されるように、既存の中空
壁、すなわち平行板で中空に形成した中空壁に、制振遮
音板を貼り付けて、中空による消音効果に加えて制振遮
音板による制振遮音効果を加えて遮音性能を高めた遮音
壁構造としたり、特公平4−25139号公報に示され
るように、コンクリートスラブ壁の前後に、中空層を設
けて接着剤にて面密度の異なる石膏ボードなどの表面材
を貼り付けて遮音性能を高めた遮音構造体などが提案さ
れている。
As a technology for this sound insulation wall structure, the actual construction sho 60
As disclosed in Japanese Patent No. 102311, a vibration damping / insulating plate is attached to an existing hollow wall, that is, a hollow wall formed by a parallel plate so as to be hollow. A sound-insulating wall structure with improved sound-insulating performance by adding a sound-insulating effect, or as disclosed in Japanese Patent Publication No. 4-25139, a gypsum board with different surface densities provided with hollow layers before and after a concrete slab wall with an adhesive. A sound insulation structure having improved sound insulation performance by adhering a surface material such as is proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
従来技術は、本来の壁構造体に入射する音源を振動体と
してとらえ、その壁構造体に入射する音を中間層である
空気層でのエネルギーを少なくする技術であり、壁自体
の構造で遮音性能を高める技術は示されていない。
However, in these prior arts, the sound source incident on the original wall structure is regarded as a vibrating body, and the sound incident on the wall structure is converted into energy in the air layer as an intermediate layer. It is a technology to reduce the noise, and no technology to improve the sound insulation performance by the structure of the wall itself is shown.

【0005】これに対して、中空二重構造壁の騒音など
に対する透過損失を予測することが研究されている(文
献名:「各種幾何学断面構造を持つ中空二重壁の改良型
S.E.A法に基づく透過損失の理論と実験」,日本音
響学会誌,36巻,9号、1980,PP447〜458)。
On the other hand, research has been conducted on predicting the transmission loss of a hollow double-structured wall against noises and the like (literature name: "Improved SE of hollow double-wall having various geometric sectional structures. Theory and Experiment of Transmission Loss Based on Method A ”, Journal of Acoustical Society of Japan, Vol. 36, No. 9, 1980, PP 447-458).

【0006】通常、S.E.A法(Statistical Energy
Analysis)の考え方は、本来ランダム入射の拡散音場
に基づいてある周波数バンド内の数多くのモードが互い
にエネルギー交換され、結局、一種の平均化されたエネ
ルギー密度の形で、音源側から受音側へのパワーフロー
となり、このパワーフローを、残響室−残響音のもとバ
ンドパスフィルターを使用して透過損失として測定した
場合に、理論値と実験値とをそのまま整合できることに
あるが、実際には二重壁の低周波数共振作用があり、低
周波域での予測値が、実際値とかなり大きく異なる。
Normally, S. E. FIG. Method A (Statistical Energy
The principle of analysis is that many modes within a certain frequency band are originally energy-exchanged with each other based on the diffuse sound field of random incidence, and eventually, in the form of a kind of averaged energy density, from the sound source side to the sound receiving side. When the power flow is measured as transmission loss using a bandpass filter under the reverberation room-reverberation sound, the theoretical value and the experimental value can be matched as they are. Has a double-walled low-frequency resonance effect, and the predicted value in the low-frequency range differs considerably from the actual value.

【0007】上記研究では、S.E.A法(Statistica
l Energy Analysis)の問題であった低周波数共振を改
良して、モデルを導入したS.E.A法による中空二重
壁の透過損失を十分に予測できることが確認されてい
る。
In the above research, S. E. FIG. Method A (Statistica
S. Introducing a model by improving low frequency resonance, which was a problem of Energy Analysis). E. FIG. It has been confirmed that the transmission loss of the hollow double wall by method A can be sufficiently predicted.

【0008】本発明者は、上記研究で、二重壁低周波共
振、すなわちパネル質量と中空層内の空気スティフネス
の両者による共振作用に起因した透過損失が比較的大き
く、しかも中空層の厚さによってその透過損失が変わる
ことに着目し、これを三重壁に適用した場合に効率よく
パワーフローを低下させることのできる遮音三重壁体を
見出し本発明を完成するに至ったものである。
In the above research, the present inventor has found that the double wall low frequency resonance, that is, the transmission loss due to the resonance effect due to both the panel mass and the air stiffness in the hollow layer, is relatively large, and the thickness of the hollow layer is large. Focusing on the fact that the transmission loss changes due to the above, the present invention has completed the present invention by finding a sound-insulating triple wall body that can efficiently reduce the power flow when applied to the triple wall.

【0009】この発明は上記問題点を解決すべくなされ
たもので、音源室と受音室と区画する壁構造において、
音源室と受音室へのパワーフローを効率よく遮音するこ
とができる遮音三重壁体構造を提供することを目的とす
る。
The present invention has been made to solve the above problems, and in a wall structure that divides a sound source chamber and a sound receiving chamber,
An object of the present invention is to provide a sound insulation triple wall structure capable of efficiently insulating the power flow to the sound source room and the sound receiving room.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明は、騒音源となる音源側と音が洩
れてくる受音側とを仕切る中空壁構造において、中空壁
を3つの面材で形成し、その音源側の中空層の厚さを、
受音側中空層の厚さより厚く構成したことを特徴とす
る。
In order to achieve the above object, the invention according to claim 1 is a hollow wall structure for partitioning a sound source side which is a noise source and a sound receiving side through which a sound leaks, in which a hollow wall is provided. Formed with three face materials, the thickness of the hollow layer on the sound source side is
It is characterized in that it is thicker than the thickness of the sound receiving side hollow layer.

【0011】請求項2記載の発明は、請求項1記載の発
明を前提とし、音源側の中空層の厚さと受音側中空層の
厚さとが略5対1〜略3対1となるようにしたことを特
徴とする。
The invention according to claim 2 is based on the invention according to claim 1, and the thickness of the hollow layer on the sound source side and the thickness of the hollow layer on the sound receiving side are about 5: 1 to about 3: 1. It is characterized by having done.

【0012】[0012]

【作用】請求項1記載の発明によれば、3つの面材で形
成される中空層の厚さ変えることで、パワーフローの損
失に対して方向性が生じ、音源側の中空層を、受音側の
中空層より厚くすることで受音側への遮音性能の向上が
図れる。
According to the first aspect of the present invention, by changing the thickness of the hollow layer formed of the three face materials, the directivity is generated with respect to the loss of the power flow, and the hollow layer on the sound source side is received. By making it thicker than the hollow layer on the sound side, the sound insulation performance to the sound receiving side can be improved.

【0013】請求項2記載の発明によれば、中空層の厚
さを略5対1〜略3対1とすることで、1〜2kHz帯
で、おおよそ2〜4dB程度の遮音性能の向上が図れ
る。
According to the second aspect of the present invention, the thickness of the hollow layer is set to about 5: 1 to about 3: 1 so that the sound insulation performance is improved by about 2 to 4 dB in the 1 to 2 kHz band. Can be achieved.

【0014】[0014]

【実施例】以下に、この発明の実施例を添付図面に基い
て詳述する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0015】図1において、1は騒音源(ステレオを聴
いたり、楽器を演奏するなど)となる音源側で、2はそ
の音が洩れる受音側であり、その間に本発明の三重壁体
3が設けられて、両側1,2を区画するようになってい
る。
In FIG. 1, reference numeral 1 is a sound source side which is a noise source (listening to a stereo, playing an instrument, etc.), and 2 is a sound receiving side through which the sound leaks, while the triple wall 3 of the present invention is provided therebetween. Is provided to divide the both sides 1 and 2.

【0016】この三重壁体3は、音源側1から受音側2
にかけて、3枚の単層の面材4,5,6(異素材など貼
り合わのない単一単層素材からなる面材)からなり、適
宜スペーサ材9にて適宜間隔に保持される。
This triple wall body 3 includes a sound source side 1 to a sound receiving side 2
To the end, it is composed of three single-layer face materials 4, 5, 6 (face materials made of a single single-layer material that is not bonded to other materials, etc.), and is appropriately held by a spacer material 9 at appropriate intervals.

【0017】この音源側面材4と中央面材5との間には
音源側中空層(空気層)7が形成され、中央面材5と受
音側面材6間には受音側中空層(空気層)8が形成さ
れ、両中空層7,8は、音源側中空層7の厚さd7が、
受音側中空層8の厚さd8より大きくなるよう、d7対d
8が、略5対1〜略3対1、望ましくは4対1となるよ
うに形成される。
A sound source side hollow layer (air layer) 7 is formed between the sound source side surface material 4 and the center surface material 5, and a sound receiving side hollow layer (air layer) is formed between the center surface material 5 and the sound receiving side material 6. (Air layer) 8 is formed, and both hollow layers 7 and 8 have a thickness d7 of the sound source side hollow layer 7,
D7 vs. d such that the thickness is larger than the thickness d8 of the sound receiving side hollow layer 8.
8 is formed to be approximately 5: 1 to approximately 3: 1 and preferably 4: 1.

【0018】以上において、音源側1での騒音は、三重
壁体3を通してから受音側2にかけてパワーフローとし
て伝わる。この場合、音源側中空層7の厚さd7が受音
側中空層8の厚さd8より十分に大きくなるように形成
されるため、遮音性能を向上することができる。すなわ
ち、音源側1から音源側面材4に入射する入射音は、受
音側面材6から受音側2に伝わる間に、各面材4,5,
6の振動と音源側中空層7,8の空気バネ作用で減衰
し、これが透過損失となるが、音源側受音側中空層7と
受音側中間層8の面材4,5と5,6は、上述のように
二重壁低周波共振を起こしている。この際、中央面材5
の振動は同一であり、また入射側(音源側1)のエネル
ギが出射側(受音側)より高いので、音源側中空層7の
厚さd7をd8より厚くすることでエネルギに見合って二
重壁低周波共振による透過損失を大きくとることがで
き、結果として遮音性能を向上することが可能となる。
In the above, the noise on the sound source side 1 is transmitted as a power flow from the triple wall 3 to the sound receiving side 2. In this case, since the thickness d7 of the sound source side hollow layer 7 is formed to be sufficiently larger than the thickness d8 of the sound receiving side hollow layer 8, the sound insulation performance can be improved. That is, the incident sound that enters the sound source side surface material 4 from the sound source side 1 is transmitted to the sound receiving side material 2 from the sound receiving side material 6 while the respective surface materials 4, 5 and 5.
6 and the sound source side hollow layers 7 and 8 are damped by the air spring action, and this becomes a transmission loss, but the face materials 4, 5 and 5 of the sound source side sound receiving side hollow layer 7 and the sound receiving side intermediate layer 8 No. 6 causes double wall low frequency resonance as described above. At this time, the central surface material 5
Vibrations are the same and the energy on the incident side (sound source side 1) is higher than that on the emission side (sound receiving side). Therefore, by making the thickness d7 of the sound source side hollow layer 7 thicker than d8 A large transmission loss due to the heavy wall low frequency resonance can be obtained, and as a result, the sound insulation performance can be improved.

【0019】図2は、図1の比較例を示したもので、図
1との相違は、音源側中空層7の厚さd7が、受音側中
空層8の厚さd8に対してd7対d8が、1対4にしたも
のである。
FIG. 2 shows a comparative example of FIG. 1. The difference from FIG. 1 is that the thickness d7 of the sound source side hollow layer 7 is d7 with respect to the thickness d8 of the sound receiving side hollow layer 8. Pair d8 is a one to four.

【0020】[実施例1]図1に示す本発明の三重壁体
3と、図2に示した比較例としての三重壁体3とを同一
の条件で試験を行った結果を図3と図4に示す。
Example 1 The triple wall body 3 of the present invention shown in FIG. 1 and the triple wall body 3 as a comparative example shown in FIG. 2 were tested under the same conditions, and the results are shown in FIGS. 4 shows.

【0021】先ず図3は、三重壁体3の総厚を100m
m,単層面材で三重壁体にしたもので、図4は総厚を2
00mm,同じく単層面材で三重壁体にしたものであ
る。
First, in FIG. 3, the total thickness of the triple wall body 3 is 100 m.
m, a single-layer surface material with a triple wall structure, and the total thickness is 2 in Fig. 4.
00 mm, which is also a single-layer face material and has a triple wall structure.

【0022】図3,4において、aは図1の実施例の周
波数における透過損失のグラフを示し、bは図2の比較
例のグラフを示したものである。
3 and 4, a shows a graph of transmission loss at the frequency of the embodiment of FIG. 1, and b shows a graph of the comparative example of FIG.

【0023】図3,4より、図1の音源側中空層7の厚
さd7が、受音側中空層8の厚さd8に対して4対1にし
た実施例aにおいては、比較例bの1対4に比べて高音
部(1〜2kHz帯)にて、図2の比較例bの場合より
2〜4dB程度、遮音性能が向上することが分かる。
From FIGS. 3 and 4, in Example a in which the thickness d7 of the sound source side hollow layer 7 of FIG. 1 is 4 to 1 with respect to the thickness d8 of the sound receiving side hollow layer 8, Comparative Example b It can be seen that the sound insulation performance is improved by about 2 to 4 dB in the high-pitched sound portion (1 to 2 kHz band) as compared with the case of 1: 4, compared with the case of the comparative example b in FIG.

【0024】[実施例2]図5に示すように音源側1の
面材4を単層面材でなく、複層面材4a,4bで形成
し、音源側中空層7の厚さd7が、受音側中空層8の厚
さd8に対して4対1にしたものである。
[Embodiment 2] As shown in FIG. 5, the face material 4 on the sound source side 1 is not a single-layer face material but a multi-layer face material 4a, 4b, and the thickness d7 of the sound source side hollow layer 7 is The thickness d8 of the sound side hollow layer 8 is 4: 1.

【0025】同様に比較例として音源側1の面材4を単
層面材でなく、複層面材4a,4bで形成し、音源側中
空層7の厚さd7が、受音側中空層8の厚さd8に対して
1対4にした総厚200mmの三重壁体3を準備し、図
5の実施例と遮音性能を測定した結果を図7に示した。
Similarly, as a comparative example, the face material 4 on the sound source side 1 is not a single-layer face material but is formed of multi-layer face materials 4a and 4b, and the thickness d7 of the sound source side hollow layer 7 is the same as that of the sound receiving side hollow layer 8. A triple wall body 3 having a total thickness of 200 mm with a thickness of d8 of 1: 4 was prepared, and the results of measuring the sound insulation performance of the embodiment of FIG. 5 are shown in FIG.

【0026】図7から分かるように図5の実施例aは、
図6の比較例bに対して、高音部にて2〜4dB遮音性
能に優れている。
As can be seen from FIG. 7, the embodiment a of FIG.
Compared with the comparative example b of FIG. 6, it is excellent in sound insulation performance of 2 to 4 dB in the treble part.

【0027】以上のように、中央面材5の位置を音源側
1より受音側2にして、音源側中空層7の厚さを受音側
中空層8の厚さより大きく形成することで、共鳴透過を
避ける距離を保ちつつ近付けることで、高音部の遮音性
能を向上を図ることができる。
As described above, by making the position of the central surface member 5 from the sound source side 1 to the sound receiving side 2 and making the thickness of the sound source side hollow layer 7 larger than the thickness of the sound receiving side hollow layer 8, It is possible to improve the sound insulation performance of the high-pitched sound portion by keeping the distance close to each other while avoiding the resonance transmission.

【0028】以上、この発明の実施例を図面により詳述
してきたが、具体的な構成はこの実施例に限られるもの
ではなく、この発明の要旨を逸脱しない範囲の設計の変
更等があってもこの発明に含まれる。例えば、上記実施
例の面材4〜6、特に音源側面材4に制振板を取り付け
るようにしてもよい。
The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific structure is not limited to this embodiment, and there are design changes and the like within the scope not departing from the gist of the present invention. Also included in the present invention. For example, a damping plate may be attached to the face members 4 to 6 of the above embodiment, particularly the sound source side member 4.

【0029】[0029]

【発明の効果】以上要するにこの発明によれば、次のよ
うな優れた効果が得られる。
In summary, according to the present invention, the following excellent effects can be obtained.

【0030】(1)請求項1記載の発明によれば、3つ
の面材で形成される中空層の厚さ変えることで、パワー
フローの損失に対して方向性が生じ、音源側の中空層
を、受音側の中空層より厚くすることで受音側への遮音
性能の向上が図れる。
(1) According to the first aspect of the present invention, by changing the thickness of the hollow layer formed of the three face materials, the directionality with respect to the loss of the power flow is generated, and the hollow layer on the sound source side is generated. Is thicker than the hollow layer on the sound receiving side, the sound insulation performance to the sound receiving side can be improved.

【0031】(2)請求項2記載の発明によれば、中空
層の厚さを略4対1とすることで、1〜2kHz帯で、
おおよそ2〜4dB程度の遮音性能の向上が図れる。
(2) According to the invention described in claim 2, by setting the thickness of the hollow layer to be approximately 4 to 1, in the 1 to 2 kHz band,
The sound insulation performance can be improved by about 2 to 4 dB.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1の比較例を示す断面図である。FIG. 2 is a cross-sectional view showing a comparative example of FIG.

【図3】図1の実施例と図2の比較例の総厚さ100m
mの三重壁体の音源の周波数における透過損失を示す図
である。
3 is a total thickness of the embodiment of FIG. 1 and the comparative example of FIG.
It is a figure which shows the transmission loss in the frequency of the sound source of the triple wall body of m.

【図4】図1の実施例と図2の比較例の総厚さ200m
mの三重壁体の音源の周波数における透過損失を示す図
である。
4 is a total thickness of 200 m of the example of FIG. 1 and the comparative example of FIG.
It is a figure which shows the transmission loss in the frequency of the sound source of the triple wall body of m.

【図5】この発明の他の実施例を示す断面図である。FIG. 5 is a sectional view showing another embodiment of the present invention.

【図6】図5の比較例を示す断面図である。6 is a cross-sectional view showing a comparative example of FIG.

【図7】図5の実施例と図6の比較例の総厚さ200m
mの三重壁体の音源の周波数における透過損失を示す図
である。
7 is a total thickness of 200 m of the example of FIG. 5 and the comparative example of FIG.
It is a figure which shows the transmission loss in the frequency of the sound source of the triple wall body of m.

【符号の説明】[Explanation of symbols]

1 音源側 2 受音側 4,5,6 面材 7 音源側中空層 8 受音側中空層 1 sound source side 2 sound receiving side 4, 5, 6 face material 7 sound source side hollow layer 8 sound receiving side hollow layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】騒音源となる音源側と音が洩れてくる受音
側とを仕切る中空壁構造において、中空壁を3つの面材
で形成し、その音源側の中空層の厚さを、受音側中空層
の厚さより厚く構成したことを特徴とする遮音三重壁体
構造。
1. In a hollow wall structure for partitioning a sound source side which is a noise source and a sound receiving side from which sound is leaked, the hollow wall is formed by three face materials, and the thickness of the hollow layer on the sound source side is A sound-insulating triple wall structure characterized in that it is thicker than the sound-receiving side hollow layer.
【請求項2】音源側の中空層の厚さと受音側中空層の厚
さとが略5対1〜略3対1となるようにした請求項1記
載の遮音三重壁体構造。
2. The sound insulating triple wall structure according to claim 1, wherein the thickness of the hollow layer on the sound source side and the thickness of the hollow layer on the sound receiving side are approximately 5: 1 to approximately 3: 1.
JP6245100A 1994-10-11 1994-10-11 Sound-insulating triple wall body structure Pending JPH08109687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245100A JPH08109687A (en) 1994-10-11 1994-10-11 Sound-insulating triple wall body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245100A JPH08109687A (en) 1994-10-11 1994-10-11 Sound-insulating triple wall body structure

Publications (1)

Publication Number Publication Date
JPH08109687A true JPH08109687A (en) 1996-04-30

Family

ID=17128618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245100A Pending JPH08109687A (en) 1994-10-11 1994-10-11 Sound-insulating triple wall body structure

Country Status (1)

Country Link
JP (1) JPH08109687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189886A (en) * 2012-06-20 2015-12-23 皇家飞利浦有限公司 Acoustic panel having lighting properties
JP2016094698A (en) * 2014-11-12 2016-05-26 大和ハウス工業株式会社 Bearing wall
JP2017115436A (en) * 2015-12-24 2017-06-29 リンテック株式会社 Sound insulation sheet and sound insulation structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189886A (en) * 2012-06-20 2015-12-23 皇家飞利浦有限公司 Acoustic panel having lighting properties
CN105189886B (en) * 2012-06-20 2017-03-15 皇家飞利浦有限公司 There are the acoustic panels of illumination properties
JP2016094698A (en) * 2014-11-12 2016-05-26 大和ハウス工業株式会社 Bearing wall
JP2017115436A (en) * 2015-12-24 2017-06-29 リンテック株式会社 Sound insulation sheet and sound insulation structure

Similar Documents

Publication Publication Date Title
JP5008277B2 (en) Sound absorbing structure and sound absorbing material using fine perforated plates
JP5252699B2 (en) Broadband sound absorbing structure and sound absorbing material
JPH0750960B2 (en) Improvement of loudspeaker enclosure
CN213126444U (en) Distributed mode speaker for installation in a structure
Toyoda et al. Reduction of acoustic radiation by perforated board and honeycomb layer systems
JP5065176B2 (en) Living room structure considering acoustics
JPH08109687A (en) Sound-insulating triple wall body structure
JP2769448B2 (en) Standing wave or specific wave reduction device
JP2606534B2 (en) Low sound absorption member and acoustic room structure
Powell et al. SEA modeling and testing for airborne transmission through vehicle sound package
JP4311960B2 (en) Low acoustic radiation type interior structure and interior panel material
JP2009293251A (en) Sound absorption structure, sound absorption structure group, acoustic room, and noise reducing method
JP2011058188A (en) Sound room
Bader et al. Metamaterial labyrinth wall for very low and broad-band sound absorption
JP2003122371A (en) Sound absorbing and vibration damping material
JP4027069B2 (en) Sound absorbing material
BOLTON et al. Random incidence transmission loss of lined, finite double panel systems
Hall et al. Mass-Air-Mass resonance cavity suppression using Helmholtz Resonators
JPH01156797A (en) Sound absorber
JPS624094Y2 (en)
JP3130583U (en) Interior panel material, interior structure and rib material
JPH0351448A (en) Sound insulating wall structure
JP2003150170A (en) Sound absorbing and vibration damping material
JPH0447837B2 (en)
Martir Acoustical Damping for Poly Canyon Village's Music Room