JP3130583U - Interior panel material, interior structure and rib material - Google Patents

Interior panel material, interior structure and rib material Download PDF

Info

Publication number
JP3130583U
JP3130583U JP2007000246U JP2007000246U JP3130583U JP 3130583 U JP3130583 U JP 3130583U JP 2007000246 U JP2007000246 U JP 2007000246U JP 2007000246 U JP2007000246 U JP 2007000246U JP 3130583 U JP3130583 U JP 3130583U
Authority
JP
Japan
Prior art keywords
interior
sound
rib
board
interior panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007000246U
Other languages
Japanese (ja)
Inventor
浩 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2007000246U priority Critical patent/JP3130583U/en
Application granted granted Critical
Publication of JP3130583U publication Critical patent/JP3130583U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

【課題】低音域から高音域に至る広い周波数帯域の固体音についてその放射音を抑制することができ、安価で施工性に優れ、かつ内装ボードと躯体との十分な接合強度を得ることのできる内装パネル材を提供する。
【解決手段】構造物の躯体内面を覆う内装ボード12と、内装ボード12の躯体対向面17に所定間隔の列状に設けられたリブ材14とからなる内装パネル材10であって、リブ材14が、見掛け密度が0.022〜0.060g/cmのポリエチレン系樹脂発泡粒子成形体からなる発泡プラスチック15の両面にシート状の紙材16が積層されるとともに、幅が30〜150mm、全厚みが10〜50mm、動的弾性率が2〜20MPaの板状の長尺物であることを特徴とする内装パネル材10。
【選択図】図1
[PROBLEMS] To suppress the radiated sound of a solid sound in a wide frequency band from a low sound range to a high sound range, to be inexpensive and excellent in workability, and to obtain a sufficient bonding strength between an interior board and a casing. Provide interior panel materials.
An interior panel material (10) comprising an interior board (12) covering an inner surface of a housing of a structure and rib members (14) provided in rows at predetermined intervals on a housing facing surface (17) of the interior board (12). 14, the sheet-like paper material 16 is laminated on both surfaces of the foamed plastic 15 made of a polyethylene-based resin foam particle molded body having an apparent density of 0.022 to 0.060 g / cm 3 , and the width is 30 to 150 mm. An interior panel material 10, which is a plate-like long object having a total thickness of 10 to 50 mm and a dynamic elastic modulus of 2 to 20 MPa.
[Selection] Figure 1

Description

本考案は、遮音性の高い内装パネル材およびこれを備える内装構造に関し、とくに建築音響分野において構造物の躯体から内部空間に放射される音を抑制することのできる低騒音の内装パネル材、該パネル材に取付けられるリブ材および内装構造に関する。   The present invention relates to a highly sound-insulating interior panel material and an interior structure including the interior panel material, and in particular, in the field of architectural acoustics, a low-noise interior panel material capable of suppressing sound radiated from an enclosure to the internal space, The present invention relates to a rib member attached to a panel member and an interior structure.

近年、都市の過密化や設備機器の大型化、大出力化などに伴い、集合住宅やホテル、オフィスビル、劇場などの構造物では、固体音の放射による騒音が大きな問題となっている。固体音とは、地盤や構造物の躯体などの固体中を振動が伝播して、床、壁または天井などの躯体表面から構造物の内部空間に放射される騒音である。固体音を生じる振動源としては、鉄道や車輌などの外部騒音と、階上の足音や隣室の生活音などの内部騒音とがある。また固体音を伝播経路の違いによって大別すると、壁などの構造物を遮音壁直接透過音と、床や側壁等を伝わった上で内部空間に放射される側路伝搬音とがあり、本考案においては両者を対象とする。   In recent years, noise due to solid sound radiation has become a major problem in structures such as apartment buildings, hotels, office buildings, and theaters due to overcrowding of cities, increasing size of equipment, and increasing output. Solid sound is noise that is radiated from the surface of a frame such as a floor, wall, or ceiling to the internal space of the structure as vibration propagates through the solid such as the ground or the frame of the structure. As vibration sources that generate solid sounds, there are external noises such as railways and vehicles, and internal noises such as footsteps on the floor and living sounds in adjacent rooms. Solid sound can be broadly classified according to the propagation path. There are sound transmitted directly through the sound-insulating wall through structures such as walls, and side-propagation sound radiated into the internal space after passing through the floor and side walls. Covers both.

マンションやオフィスビルなどの大型構造物では、施工の容易性、工期の短縮、施工コスト、スペースの有効利用などの観点から、コンクリートまたは軽量気泡コンクリート(ALC)製の躯体と、石膏ボードなどの内装ボードとを以下の手段のいずれかによって接合することが一般的となっている。   For large structures such as condominiums and office buildings, concrete or lightweight aerated concrete (ALC) enclosures and interior such as plasterboard are used from the viewpoints of ease of construction, shortening the construction period, construction costs, and effective use of space. It is common to join a board by any of the following means.

(1)躯体内面に石膏系接着剤(所謂GLボンド)を団子状にまるめたものを点在させて塗り付け、内装ボードを強固に連結するGL工法(直貼り工法)。
(2)コンクリート躯体に直接支持された木レンガおよび木下地を用いて内装ボードを張り付ける木軸工法(コンクリート系下地胴縁工法)。
(3)上記で、木下地に替えて軽量鉄骨下地(LGS)を用いて内装仕上げ板を施工するLGS工法。
(1) A GL method (direct pasting method) in which a gypsum adhesive (so-called GL bond) is scattered and applied on the inner surface of the housing in a dotted manner to firmly connect the interior boards.
(2) A wooden shaft construction method (concrete-based foundation trunk construction method) in which interior boards are attached using wooden bricks and wood foundations directly supported by a concrete frame.
(3) In the above, the LGS construction method which constructs an interior finishing board using a lightweight steel foundation (LGS) instead of a wooden foundation.

しかし上記各工法によって施工された内装構造は、躯体と内装ボードとが強固に接合されていることから、固体音を十分に低減できないという問題がある。例えば木軸工法やLGS工法では、躯体の室内側に設置した内装ボードが低周波数域(63〜125Hz帯域:以下、低音域ということがある。)の放射音を増幅し、居室内の音響性能を低下させる問題が指摘されている。GL工法では内装ボードの遮音性能が得られないばかりか、250〜500Hz帯域(以下、中音域ということがある。)および1〜2kHz帯域(以下、高音域ということがある。)において著しい遮音欠損が生じることが指摘されている。   However, the interior structure constructed by the above methods has a problem in that solid sound cannot be sufficiently reduced because the housing and the interior board are firmly joined. For example, in the wooden shaft method and the LGS method, the interior board installed on the indoor side of the housing amplifies the radiated sound in the low frequency range (63 to 125 Hz band: hereinafter sometimes referred to as the low frequency range), and the acoustic performance in the room It has been pointed out that the problem is reduced. Not only does the GL method not provide the sound insulation performance of the interior board, but there is a significant sound insulation loss in the 250 to 500 Hz band (hereinafter sometimes referred to as the mid range) and the 1 to 2 kHz band (hereinafter also referred to as the high range). Has been pointed out.

これに対し、施工の容易性を維持したまま遮音性能を改善することのできる内装構造の発明が提案されている。
例えば下記特許文献1には、GL工法を改良し、GLボンドをZ字型に塗り付けることで躯体と内装ボードの共振点をずらし、遮音欠損を回避することのできる内装ボードの直貼り構造(NC工法)の発明が記載されている。
また下記特許文献2には、GL工法における固体音の音響対策として、内装ボードと躯体の施工面との間にダンボールを介在させ、施工面に塗布した接着剤にダンボールを押しつけて取り付ける内装ボードの取付方法の発明が記載されている。
さらに下記特許文献3には、石膏ボードの裏側に紙や樹脂等からなる格子体を取り付け、これを躯体の施工面に塗布した接着剤に押しつけて取り付ける内装ボードの取付方法の発明が記載されている。
On the other hand, the invention of the interior structure that can improve the sound insulation performance while maintaining the ease of construction has been proposed.
For example, in the following Patent Document 1, the GL construction method is improved, and the internal board direct attachment structure (NC) that can shift the resonance point of the housing and the interior board by applying a GL bond in a Z-shape to avoid sound insulation defects (NC) Invention) is described.
Further, in Patent Document 2 below, as an acoustic measure for solid sound in the GL method, a cardboard is installed between the interior board and the construction surface of the housing, and the cardboard is pressed against the adhesive applied to the construction surface. The invention of the attachment method is described.
Furthermore, the following Patent Document 3 describes an invention of an interior board mounting method in which a lattice body made of paper, resin, or the like is attached to the back side of a gypsum board, and this is pressed against an adhesive applied to a construction surface of a housing. Yes.

また下記特許文献4には、構造物の躯体と内装板とを発泡プラスチック製のリブを介在して互いに接合するとともに該リブの弾性率を調整することで、躯体のコインシデンス周波数以下の放射音の増幅と、該周波数以上の中・高音域の放射音の増幅とを共に抑えることのできる内装構造の発明が記載されている。なおコインシデンス周波数とは、部材に音波が入射したことによって生じる屈曲波の波長と、入射した音波の波長とが一致または近接した場合に、該音波がその部材を透過し易くなる現象(コインシデンス効果)の生じる音波の周波数を意味する。   Further, in Patent Document 4 below, the casing of the structure and the interior plate are joined to each other with a rib made of foamed plastic, and the elastic modulus of the rib is adjusted, so that the radiated sound below the coincidence frequency of the casing is generated. An invention of an interior structure that can suppress both amplification and amplification of radiated sound in the middle / high range above the frequency is described. The coincidence frequency is a phenomenon that the sound wave easily passes through the member when the wavelength of the bending wave generated by the sound wave incident on the member matches or approaches the wavelength of the incident sound wave (coincidence effect). Means the frequency of sound waves.

特開2001−27028号公報JP 2001-27028 A 特開2002−194832号公報JP 2002-194432 A 特開2001−295448号公報JP 2001-295448 A 特開2004−293065号公報JP 2004-293065 A

上記特許文献1に記載の発明は弾性接着剤により内装ボードを躯体に支持する構造に関するものであるが、かかる構造は高音域の遮音欠損の改善にはある程度有効であるものの、共振モードが変わるため中音域の放射音の増幅が発生し、中音域の音響性能が劣化する場合がある。
また上記特許文献2,3に記載の発明は、ダンボールや格子体の曲げ剛性を付与することによって内装ボードの曲げ剛性を向上し、その共振や共鳴を抑制するという技術に基づくものであるが、このように内装ボード自体の曲げ剛性を向上した場合、中音域の音響性能が従来の内装ボードよりも劣化する場合がある。
また上記特許文献4に記載の発明によれば遮音欠損を良好に改善することはできるものの、該発明にかかる内装構造は石膏ボードなどの内装板と石膏系などの接着剤との間に、発泡プラスチックなどからなるリブを介在させて両者を接合するものであることから、施工された内装構造の強度を十分に得る上で改善の余地がある。これは発泡プラスチックの表面が、石膏ボードや石膏系接着剤との接合性に劣る場合があることに起因する。
The invention described in Patent Document 1 relates to a structure in which an interior board is supported on a casing by an elastic adhesive, but such a structure is effective to some extent for improving a sound insulation defect in a high sound range, but a resonance mode changes. Amplification of the radiated sound in the middle range may occur, and the acoustic performance in the middle range may deteriorate.
The inventions described in Patent Documents 2 and 3 are based on the technology of improving the bending rigidity of the interior board by imparting the bending rigidity of the cardboard and the lattice body, and suppressing the resonance and resonance. In this way, when the bending rigidity of the interior board itself is improved, the sound performance in the middle range may be deteriorated as compared with the conventional interior board.
Further, according to the invention described in Patent Document 4, although the sound insulation defect can be improved satisfactorily, the interior structure according to the invention is foamed between an interior plate such as a gypsum board and an adhesive such as a gypsum system. Since both of them are joined by interposing a rib made of plastic or the like, there is room for improvement in obtaining sufficient strength of the installed interior structure. This is due to the fact that the surface of the foamed plastic may be inferior in bondability with a gypsum board or a gypsum adhesive.

本考案は、上記従来技術の有する課題を解決するためになされたものであり、低音域から高音域に至る広い周波数帯域の固体音についてその放射音を抑制することができ、安価で施工性に優れ、かつ内装ボードと躯体との十分な接合強度を得ることのできる内装パネル材、該パネル材に取付けられるリブ材および該内装パネルを備える内装構造を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and can suppress the radiated sound of a solid sound in a wide frequency band from a low frequency range to a high frequency range, and is inexpensive and easy to work. An object of the present invention is to provide an interior panel material that is excellent and can obtain a sufficient bonding strength between the interior board and the casing, a rib material attached to the panel material, and an interior structure including the interior panel.

構造物の躯体から放射される固体音は、構造物の躯体(質量)、躯体内面と内装ボードとの間に存在する空気層(バネ)の弾性、および内装ボード(質量)で構成されるバネ−質量系の共振(mass−air−mass resonance:MA共振)によって増幅される。かかる増幅の条件は、加振源の中心周波数、MA共振周波数、および躯体厚さに依存するコインシデンス周波数に支配される。
加振源の中心周波数は、加振源の種別によって左右されるが、上記のように低音域から高音域までの63Hz〜2kHz程度が一般的である。
ここで、MA共振周波数を加振源の中心周波数から乖離させることができれば、MA共振系の応答倍率を下げることができる。しかし、例えばMA共振周波数を63Hz以下とするには内装ボードを厚くするなどしてその重量を大幅に増大するか、空気層の厚さを拡大する必要があり、室内空間が圧迫されるため実用的ではない。逆に例えば中音域にあたる250Hzを超えるMA共振周波数を得るためには、内装ボードをきわめて軽量化する必要があるなど実現性に乏しいほか、高音域の音響性能が低下する虞があるなど他の問題を生じることとなる。
The solid sound radiated from the housing of the structure is a spring composed of the housing (mass) of the structure, the elasticity of the air layer (spring) existing between the inner surface of the housing and the interior board, and the interior board (mass). -Amplified by mass-air-mass resonance (MA resonance). Such amplification conditions are governed by the center frequency of the excitation source, the MA resonance frequency, and the coincidence frequency depending on the thickness of the housing.
The center frequency of the excitation source depends on the type of the excitation source, but is generally about 63 Hz to 2 kHz from the low range to the high range as described above.
Here, if the MA resonance frequency can be deviated from the center frequency of the excitation source, the response magnification of the MA resonance system can be lowered. However, for example, to reduce the MA resonance frequency to 63 Hz or less, it is necessary to increase the weight by increasing the thickness of the interior board, or to increase the thickness of the air layer. Not right. On the other hand, for example, in order to obtain an MA resonance frequency exceeding 250 Hz corresponding to the middle sound range, it is not feasible, for example, it is necessary to extremely reduce the weight of the interior board, and there is a possibility that the acoustic performance in the high sound range may be deteriorated. Will result.

このため、内装ボードから放射される固体音の低減量(放射低減量 Radiation Reduction:RR)を、内装ボード単体の音響放射パワーに対するMA共振系による音響放射パワーの比と定義したうえで、これを向上する方法を検討する。
まず、内装ボードと躯体とを減衰材等を介在させることなく直接接合した場合(以下、リブ無し二重板構造という。)、躯体のコインシデンス周波数のピーク特性と、MA共振周波数のピーク特性との重なり合いによって、室内に放射される音響放射パワーの空間プロファイルが決定され、とくに躯体のコインシデンス周波数とMA共振周波数のピーク特性が重なり合う点において音響放射パワーが非常に大きくなることが分かった(上記特許文献4参照)。すなわち、躯体のコインシデンス周波数によって強められたMA共振の一次固有振動の発生が、放射低減量RRが低下させる要因となっている。
For this reason, after defining the reduction amount of solid sound radiated from the interior board (radiation reduction amount: RR) as the ratio of the acoustic radiation power by the MA resonance system to the acoustic radiation power of the interior board alone, Consider ways to improve.
First, when the interior board and the casing are directly joined without any damping material (hereinafter referred to as a ribless double plate structure), the peak characteristics of the coincidence frequency of the casing and the peak characteristics of the MA resonance frequency The spatial profile of the acoustic radiation power radiated into the room is determined by the overlap, and it has been found that the acoustic radiation power becomes very large particularly at the point where the peak characteristics of the coincidence frequency and the MA resonance frequency of the enclosure overlap (refer to the above patent document). 4). That is, the occurrence of the primary natural vibration of the MA resonance enhanced by the coincidence frequency of the housing is a factor that reduces the radiation reduction amount RR.

これに対しMA共振系を、内装ボードと躯体とを弾性体のリブで連結して構成した場合(以下、リブ有り二重板構造という。)、中・高音域においては内装ボードから放射される音響放射パワーを躯体単体の場合に近づけることができる。これは、中・高音域では空気層を介しての音響伝達よりも、主として内装ボードと躯体とを機械的に接合する弾性体のリブを介して音響振動が伝達されるためである。他方、低音域における音響放射パワー特性については、躯体のコインシデンス周波数(一般に125Hz程度である)以下の帯域ではMA共振による固体音の増幅は生じないものの、該周波数以上の帯域ではリブ無し二重板構造と同様の増幅が発生する。   On the other hand, when the MA resonance system is configured by connecting the interior board and the housing with elastic ribs (hereinafter referred to as a double plate structure with ribs), it is radiated from the interior board in the middle and high sound ranges. The acoustic radiation power can be made close to that of a single case. This is because, in the middle and high sound ranges, acoustic vibrations are transmitted mainly through elastic ribs that mechanically join the interior board and the housing, rather than acoustic transmission through the air layer. On the other hand, as for the sound radiation power characteristics in the low frequency range, solid sound amplification due to MA resonance does not occur in the band below the coincidence frequency of the enclosure (generally about 125 Hz), but in the band above this frequency, the ribless double plate Amplification similar to the structure occurs.

そこで、リブ有り二重板構造のMA共振周波数を支配する空気層の弾性率、弾性リブの弾性率、および内装ボードの弾性率を合成した合成弾性率(以下これをリブの弾性率とする。)を変えた場合のリブ有り二重板構造の音響放射パワーと放射低減量RRとを算出し、リブの防振による放射音の低減の可能性について検討したところ、躯体のコインシデンス周波数以上の中・高音域については、リブの弾性率を小さくすることが放射音の低減に有効であるものの、コインシデンス周波数以下の帯域では、リブの弾性率を小さくしすぎると逆に放射音が増大することが分かった。   Therefore, a composite elastic modulus (hereinafter referred to as an elastic modulus of the rib) obtained by synthesizing the elastic modulus of the air layer, the elastic modulus of the elastic rib, and the elastic modulus of the interior board that governs the MA resonance frequency of the ribbed double plate structure. ), The acoustic radiation power and radiation reduction amount RR of the ribbed double plate structure were calculated, and the possibility of radiation noise reduction by vibration isolation of the ribs was examined.・ In the high sound range, reducing the elastic modulus of the ribs is effective in reducing the radiated sound, but in the band below the coincidence frequency, if the elastic modulus of the ribs is too small, the radiated sound may increase. I understood.

以上の知見に基づき、本考案にかかる内装パネル材は、
(1)構造物の躯体内面を覆う内装ボードと、内装ボードの躯体対向面に所定間隔の列状に設けられたリブ材とからなる内装パネル材であって、
前記リブ材が、発泡プラスチックの両面にシート状の紙材が積層されるとともに、幅が30〜150mm、全厚みが10〜50mm、動的弾性率が2〜20MPaの板状の長尺物であることを特徴とする内装パネル材、
(2)発泡プラスチックの基材樹脂が、ポリエチレン系樹脂、ポリプロピレン系樹脂またはポリスチレン系樹脂のいずれかから選択される1種または2種以上の組成物であることを特徴とする前記(1)に記載の内装パネル材、
(3)発泡プラスチックが、見掛け密度が0.022〜0.060g/cmのポリエチレン系樹脂発泡粒子成形体であることを特徴とする前記(1)に記載の内装パネル材、
を要旨とする。
Based on the above knowledge, the interior panel material according to the present invention is
(1) An interior panel material composed of an interior board that covers the inner surface of the housing of the structure, and rib members that are provided in rows at predetermined intervals on the housing facing surface of the interior board,
The rib material is a plate-like long object having a sheet-like paper material laminated on both sides of a foamed plastic, a width of 30 to 150 mm, a total thickness of 10 to 50 mm, and a dynamic elastic modulus of 2 to 20 MPa. Interior panel material, characterized by
(2) In the above (1), the base resin of the foamed plastic is one or two or more compositions selected from polyethylene resins, polypropylene resins, and polystyrene resins. The interior panel material described,
(3) The interior panel material according to (1), wherein the foamed plastic is a polyethylene resin foamed particle molded body having an apparent density of 0.022 to 0.060 g / cm 3 .
Is the gist.

また本考案にかかる内装構造は、
(4)前記(1)から(3)のいずれかに記載の内装パネル材を、前記構造物の躯体内面に散点状に塗布された接着剤に対し、前記リブ材を介して固定してなる内装構造、
を要旨とする。
また本考案にかかるリブ材は、
(5)発泡プラスチックの両面にシート状の紙材が積層されるとともに、幅が30〜150mm、全厚みが10〜50mm、動的弾性率が2〜20MPaの板状の長尺物であることを特徴とする内装パネル材に取付けられるリブ材、
を要旨とする。
The interior structure according to the present invention is
(4) The interior panel material according to any one of (1) to (3) is fixed to the adhesive applied in a scattered manner on the inner surface of the casing of the structure via the rib material. Interior structure,
Is the gist.
The rib material according to the present invention is
(5) A sheet-like paper material is laminated on both surfaces of the foamed plastic, and is a plate-like long product having a width of 30 to 150 mm, a total thickness of 10 to 50 mm, and a dynamic elastic modulus of 2 to 20 MPa. Rib material attached to interior panel material characterized by
Is the gist.

本考案にかかる内装パネル材およびこれを備える内装構造によれば、内装ボードとリブの形状と動的弾性率を上記所定の範囲に設定したことにより、一般に125Hz程度となる構造物の躯体のコインシデンス周波数以下の低音域において固体音の放射がリブ無し二重板構造よりも増大することがなく、かつ、中・高音域の固体音についても放射音を低減することができる。
また本考案によれば、発泡プラスチックの両面にシート状の紙材を積層してリブを構成することにより、中・高音域の音響性能を低下させてしまうことがなく、かつ接着性の十分でない多孔質の柔軟材料である発泡プラスチックと、躯体内面に塗布された石膏系などの接着剤とを強固に結着することができる。
これにより、散点状に塗布した接着剤に内装パネル材を押しつけるだけでこれを取り付けることができるという従来のGL工法と同様のコスト性と施工性を維持しつつ、低音域から高音域までの放射音の増幅を低減する内装構造を得ることができる。
According to the interior panel material and the interior structure provided with the interior panel material according to the present invention, by setting the shape and dynamic elastic modulus of the interior board and the rib within the predetermined range, the coincidence of the structural body that is generally about 125 Hz is achieved. In the low frequency range below the frequency, the emission of solid sound does not increase as compared with the double plate structure without ribs, and the emitted sound can also be reduced for the medium / high sound range solid sound.
In addition, according to the present invention, by forming a rib by laminating sheet-like paper materials on both sides of foamed plastic, the acoustic performance in the middle / high range is not deteriorated and the adhesiveness is not sufficient. A foamed plastic which is a porous flexible material and a gypsum-based adhesive applied to the inner surface of the housing can be firmly bound.
As a result, while maintaining the same cost performance and workability as the conventional GL method of being able to attach the interior panel material simply by pressing the interior panel material against the adhesive applied in the form of dots, from the low range to the high range. An interior structure that reduces the amplification of radiated sound can be obtained.

以下、本考案を実施するための最良の形態について、図面を用いて具体的に説明する。図1は本考案の実施の形態にかかる内装パネル材10の三面図であり、(a)は平面図、(b)は正面図、(c)は右側面図である。内装パネル材10は、構造物の躯体内面を覆う内装ボード12と、その一方の面に所定間隔の列状に設けられたリブ材14とからなる。なお、内装パネル材10を躯体に取り付ける場合は、リブ材14が設けられた面を躯体対向面17として躯体と対向させる。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings. FIG. 1 is a three-side view of an interior panel material 10 according to an embodiment of the present invention, in which (a) is a plan view, (b) is a front view, and (c) is a right side view. The interior panel member 10 includes an interior board 12 that covers the inner surface of the casing of the structure, and a rib member 14 that is provided on one surface of the interior member 12 in rows at predetermined intervals. In addition, when attaching the interior panel material 10 to a housing, the surface in which the rib material 14 was provided is made to oppose the housing as the housing opposing surface 17.

内装ボード12には石膏ボード(プラスターボード)を用いることが代表的であるが、この他、プラスチック製、木材製、金属製、ガラス製等の板材を用いることができる。内装ボード12の表面は、リブ材14との接合性を阻害しないかぎり、例えば石膏ボードに対する石膏ボード用原紙のように、他の被覆材によりコーティングされていてもよい。
内装ボード12の形状は、一般的には図1(b)に示すように幅900〜1500mm程度、長さ1800〜2500mm程度の矩形であるがこれに限定されるものではなく、円形や三角形等とすることもできる。また内装ボード12の厚さとしては、例えば石膏ボードを用いる場合、9〜15mm程度とすることが一般的である。
A typical example of the interior board 12 is a plaster board (plaster board), but other materials such as plastic, wood, metal, and glass can also be used. The surface of the interior board 12 may be coated with another coating material, for example, a base paper for gypsum board with respect to the gypsum board, as long as the bonding property with the rib member 14 is not hindered.
The shape of the interior board 12 is generally a rectangle having a width of about 900 to 1500 mm and a length of about 1800 to 2500 mm as shown in FIG. 1 (b), but is not limited to this. It can also be. Moreover, as thickness of the interior board 12, when using a gypsum board, for example, it is common to set it as about 9-15 mm.

内装ボード12の一方の面に設けられるリブ材14は、発泡プラスチックの両面にシート状の紙材を積層したものである。その形状については幅が30〜150mm、発泡プラスチックと紙材とを合計した全厚みが10〜50mmの板状の長尺物とし、かつ、かかる積層状態における動的弾性率を2〜20MPaとすることにより、躯体のコインシデンス周波数よりも低い帯域の放射音の増幅を好適に抑制するとともに、中・高音域の遮音性能についても従来のボード直貼り工法よりも大幅に改善することができる。また上記幅および厚み寸法とすることにより、躯体との接着面積は十分に確保され、従来のボード直貼り工法によって施工される内装構造に対して機械特性や施工性を大きく低下させることがない。   The rib material 14 provided on one surface of the interior board 12 is obtained by laminating sheet-like paper materials on both surfaces of foamed plastic. About the shape, it is set as a plate-shaped elongate whose width | variety is 30-150 mm, the total thickness of foamed plastic and paper material is 10-50 mm, and the dynamic elastic modulus in this lamination | stacking state shall be 2-20 MPa. As a result, it is possible to suitably suppress the amplification of the radiated sound in a band lower than the coincidence frequency of the casing, and it is possible to significantly improve the sound insulation performance in the middle / high sound range as compared with the conventional board direct pasting method. Moreover, by setting it as the said width | variety and thickness dimension, the adhesion area with a housing is fully ensured, and a mechanical characteristic and workability are not significantly reduced with respect to the interior structure constructed by the conventional board direct pasting method.

上記寸法のリブ材14を列状に設けるに際し、その最適な間隔LOPTは下式(1)より求めることができる。ただし、間隔Lは図1(b)に示すように長尺のリブ材14を並列に並べた場合のリブ材14同士の中心間距離を意味する。また、Kribはリブ材14の動的弾性率、ρp1は内装ボード12の密度、hは内装ボード12の厚さ、KPLは内装ボード12の弾性率、fは躯体のコインシデンス周波数である。f(0)はリブ有り二重板構造のMA一次共振周波数のピーク軌跡のうち、加振点の正面位置に受音点を設けた場合に計測されるMA一次共振周波数であり、下式(2)で求められる。ρp2は躯体の密度、hは躯体の厚さ、ρは空気の密度、cは音速、zは躯体と内装ボード12との間の空気層の厚さである。 When the rib members 14 having the above dimensions are provided in a row, the optimum distance L OPT can be obtained from the following equation (1). However, the space | interval L means the distance between centers of the rib materials 14 at the time of arranging the long rib materials 14 in parallel as shown in FIG.1 (b). Further, K, rib dynamic elastic modulus of the rib member 14, [rho p1 is the density of the interior board 12, h 1 is the thickness of the interior board 12, K PL elastic modulus of the interior board 12, f c the coincidence frequency of the skeleton It is. f r (0) is the MA primary resonance frequency measured when a sound receiving point is provided in front of the excitation point in the peak locus of the MA primary resonance frequency of the ribbed double plate structure. Calculated in (2). ρ p2 is the density of the housing, h 2 is the thickness of the housing, ρ 0 is the density of air, c 0 is the speed of sound, and z 1 is the thickness of the air layer between the housing and the interior board 12.

Figure 0003130583
Figure 0003130583

本考案においては、リブ材14の動的弾性率Kribを2乃至20MPaの範囲から適宜選択することにより、これを幅900mm程度の石膏ボードに代表される一般的な内装ボード12に対して、図1の如く長手方向を一致させて3本並設した場合、または同様に5本並設した場合の間隔Lを、上式(1)にて求まるリブ材14の最適な間隔LOPTと近接させることが可能であり、低音域から高音域に至る幅広い帯域の固体音に対して遮音性能を向上することができる。すなわち後述のように発泡プラスチックの動的弾性率を調整してリブ材14の動的弾性率を2乃至20MPaの範囲から選択可能とすることにより、一般的な内装ボード12について、これを二等分または四等分した幅寸法が上式(1)にて求まるLOPTと近接する。
なお、内装ボード12に並設するリブ材14の本数を奇数本とすることにより、内装ボード12の幅方向の中央にリブ材14が設けられることになる。これにより、一般的に躯体のコインシデンス周波数よりも低い振動数である内装ボード12の一次固有振動を抑制し、また速やかにこれを減衰させることができる。
In the present invention, by appropriately selecting the dynamic elastic modulus K rib of the rib member 14 from the range of 2 to 20 MPa, this is compared with a general interior board 12 represented by a gypsum board having a width of about 900 mm, As shown in FIG. 1, when the three are arranged side by side in the longitudinal direction, or in the same manner, the interval L when the five are arranged in parallel is close to the optimum interval L OPT of the rib member 14 obtained by the above equation (1). Therefore, the sound insulation performance can be improved for a wide range of solid sounds ranging from a low sound range to a high sound range. That is, as described later, by adjusting the dynamic elastic modulus of the foamed plastic so that the dynamic elastic modulus of the rib member 14 can be selected from the range of 2 to 20 MPa, this is the second order for the general interior board 12. The width dimension divided into four or four equal parts is close to the L OPT obtained by the above equation (1).
In addition, the rib material 14 is provided in the center of the width direction of the interior board 12 by making the number of the rib materials 14 provided in parallel with the interior board 12 into an odd number. As a result, it is possible to suppress the primary natural vibration of the interior board 12 that is generally lower in frequency than the coincidence frequency of the casing, and to quickly attenuate this.

図2は、発泡プラスチック15の両面にシート状の紙材16を積層したリブ材14の部分切欠斜視図である。なお同図に示すリブ材14は、紙材16の一部を切り欠いて図示している。紙材16は発泡プラスチック15の表裏面の全面にコーティングされていることが好ましいが、表側(躯体接合側)については、躯体内面に塗布された石膏系などの接着剤とリブ材14とが実質的に紙材16を介して接合されている限り、発泡プラスチック15の表面に一部が露出する部分があってもよい。リブ材14の裏面(内装ボード接合側)についても同様であり、内装ボード12とリブ材14との接合が実質的に紙材16を介して行われている限り、必ずしも発泡プラスチック15の裏面の全面が紙材16によって被覆されていることは要しない。   FIG. 2 is a partially cutaway perspective view of the rib member 14 in which sheet-like paper material 16 is laminated on both surfaces of the foamed plastic 15. It should be noted that the rib member 14 shown in FIG. The paper material 16 is preferably coated on the entire front and back surfaces of the foamed plastic 15, but on the front side (the housing joint side), the adhesive such as a plaster system applied to the inner surface of the housing and the rib material 14 are substantially formed. In particular, as long as it is joined via the paper material 16, there may be a portion where a part of the surface of the foamed plastic 15 is exposed. The same applies to the back surface of the rib material 14 (inner board joining side). As long as the inner board 12 and the rib material 14 are substantially joined via the paper material 16, the back surface of the foam plastic 15 is not necessarily provided. It is not necessary that the entire surface is covered with the paper material 16.

また図3は、本実施の形態にかかる内装構造20の二面図であり、(a)は平面図、(b)は正面図である。内装構造20は、コンクリートなどからなる構造物の躯体22と内装パネル材10とを、石膏系接着剤24にて接合してなる。同図(b)に示すように、石膏系接着剤24は、団子状にまるめられて躯体22の内面、すなわち躯体22のうち内装パネル材10と対向する内側表面に点付けされている。石膏系接着剤24が躯体22に散点状に塗布された状態から、それぞれの石膏系接着剤24の上にリブ材14を押圧することで内装パネル材10と躯体22とを接合固定することができる。
したがって石膏系接着剤24を設ける位置としては、内装ボード12に並設された長尺のリブ材14の位置に対応して、複数本の列状に分散配置するとよい。
Moreover, FIG. 3 is a two-view figure of the interior structure 20 concerning this Embodiment, (a) is a top view, (b) is a front view. The interior structure 20 is formed by joining a structural body 22 made of concrete or the like and the interior panel material 10 with a gypsum adhesive 24. As shown in FIG. 2B, the gypsum adhesive 24 is rounded in a dumpling shape and is dotted on the inner surface of the casing 22, that is, the inner surface of the casing 22 facing the interior panel member 10. From the state in which the gypsum-based adhesive 24 is applied to the housing 22 in the form of dots, the interior panel material 10 and the housing 22 are bonded and fixed by pressing the rib material 14 on each gypsum-based adhesive 24. Can do.
Therefore, the position where the gypsum adhesive 24 is provided may be distributed in a plurality of rows corresponding to the positions of the long rib members 14 provided side by side on the interior board 12.

このように石膏系接着剤24を躯体22に散点状に塗布して内装パネル材10を接合する方式を採ることにより、従来のGL工法と同等の良好な施工性と十分な接合強度を確保しつつ、本考案による幅広い帯域にわたる遮音性能の改善の効果を享受することができる。   In this way, by applying the gypsum adhesive 24 to the housing 22 in the form of dots and joining the interior panel material 10, good workability equivalent to the conventional GL method and sufficient joint strength are ensured. However, it is possible to enjoy the effect of improving the sound insulation performance over a wide band according to the present invention.

発泡プラスチック15の基材樹脂としては、例えばポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂またはポリスチレン系樹脂を用いることができる。上記樹脂は、1種または2種以上を選択して基材樹脂の組成物とすることができる。さらに好ましい発泡プラスチック15の例としては、見掛け密度が0.022〜0.060g/cmのポリエチレン系樹脂発泡粒子成形体を挙げることができる。該発泡粒子成形体は、架橋型、無架橋型のいずれも使用することができるが、架橋型のものが特に好ましい。
ここで、発泡プラスチック15の見掛け密度を上記範囲とすることにより、紙材16を両面に積層した状態において上記2乃至20MPaの好適な動的弾性率を実現することができる。なお本考案でいう見かけ密度とは、JIS K7222(1999年)に規定する見掛け全体密度を意味するものである。
例えばポリエチレン系樹脂発泡粒子成形体において、その見掛け密度を上記数値範囲内で調整するには、例えば発泡剤の種類を適宜選択するか、樹脂粒子に含浸させる発泡剤の量を増減してその発泡倍率を制御するとよい。また上記見掛け密度範囲の発泡プラスチック材料は市販されている。
As the base resin of the foamed plastic 15, for example, a polyolefin resin such as a polyethylene resin or a polypropylene resin, or a polystyrene resin can be used. The said resin can select 1 type (s) or 2 or more types to make the composition of base resin. As a more preferable example of the foamed plastic 15, a polyethylene-based resin foam particle molded body having an apparent density of 0.022 to 0.060 g / cm 3 can be given. As the foamed particle molded body, either a crosslinked type or a non-crosslinked type can be used, but a crosslinked type is particularly preferred.
Here, by setting the apparent density of the foamed plastic 15 in the above range, a suitable dynamic elastic modulus of 2 to 20 MPa can be realized in a state where the paper material 16 is laminated on both surfaces. The apparent density referred to in the present invention means the apparent overall density defined in JIS K7222 (1999).
For example, to adjust the apparent density of a polyethylene resin foamed particle molded product within the above numerical range, for example, select the type of foaming agent as appropriate, or increase or decrease the amount of foaming agent impregnated into the resin particles. It is good to control the magnification. In addition, foamed plastic materials having the apparent density range are commercially available.

紙材16の材質としては、内装ボード12および発泡プラスチック15との接着性が高く、また石膏系接着剤24などの接着剤によって躯体22と内装パネル材10とを所定の強度をもって接合できるものであれば特に限定されない。このうち、接着性および紙材16自身の強度の観点から、石膏ボード用原紙が好適に用いられる。この場合、単位面積当たりの重さ(坪量)は、リブ材14の強度と該リブ材を取付けられた内装パネルの音響性能の観点から、150〜350g/m、特に180〜250g/mとすることが好ましい。 As the material of the paper material 16, the adhesiveness between the interior board 12 and the foamed plastic 15 is high, and the casing 22 and the interior panel material 10 can be joined with a predetermined strength by an adhesive such as a gypsum adhesive 24. If there is no particular limitation. Of these, gypsum board base paper is preferably used from the viewpoint of adhesiveness and strength of the paper 16 itself. In this case, the weight (basis weight) per unit area is 150 to 350 g / m 2 , particularly 180 to 250 g / m, from the viewpoint of the strength of the rib member 14 and the acoustic performance of the interior panel to which the rib member is attached. 2 is preferable.

石膏ボード用原紙は、例えば表層、中層、裏層を漉き合わせた3層構造としてもよく、各層をさらに2層以上で構成し、合計で4〜9層抄としてもよい。紙材16として好ましい材質としては、耐水性接着剤を介して紙を複数層に圧着積層して板状に形成された硬質板紙を挙げることができる。また発泡プラスチック15の両面に積層される紙材16は、表裏面それぞれを同一材料を用いても、互いに相違させてもよい。例えば発泡プラスチック15の表面側に積層する紙材については石膏系接着剤24との接着性を考慮し、裏面側に積層する紙材については内装ボード12との接着性を考慮して材質や抄紙構成を選択してもよい。   The base paper for gypsum board may have, for example, a three-layer structure in which a surface layer, an intermediate layer, and a back layer are combined, and each layer may be further composed of two or more layers, for a total of 4 to 9 layers. Examples of a preferable material for the paper material 16 include a hard paperboard formed into a plate shape by pressing and laminating a plurality of paper layers through a water-resistant adhesive. Moreover, the paper material 16 laminated | stacked on both surfaces of the foamed plastic 15 may use the same material for each front and back, or may mutually differ. For example, the paper material laminated on the front surface side of the foamed plastic 15 considers the adhesiveness with the gypsum adhesive 24, and the paper material laminated on the back surface side considers the adhesiveness with the interior board 12 and the material and papermaking. A configuration may be selected.

発泡プラスチック15と紙材16との接合は、主として発泡プラスチック15との親和性の良好なものを選択して用いることができる。発泡プラスチック15の基材樹脂がポリオレフィン系樹脂の場合、例えば酢酸ビニル樹脂、エチレン−酢酸ビニル共重合体やアクリル系樹脂などの合成樹脂ポリマーを水中に分散させた水性エマルジョン型接着剤や、これらを有機溶剤に溶解した樹脂系溶剤型接着剤を用いるとよい。これらの中でも、酢酸ビニル樹脂エマルジョン接着剤が特に好ましい。   For joining the foamed plastic 15 and the paper material 16, a material having a good affinity with the foamed plastic 15 can be selected and used. When the base resin of the foamed plastic 15 is a polyolefin resin, for example, an aqueous emulsion adhesive in which a synthetic resin polymer such as vinyl acetate resin, ethylene-vinyl acetate copolymer or acrylic resin is dispersed in water, or A resin-based solvent-type adhesive dissolved in an organic solvent may be used. Among these, a vinyl acetate resin emulsion adhesive is particularly preferable.

リブ材14と内装ボード12との接合についても接着剤を介して行うことができ、水性エマルジョン型接着剤、樹脂系溶剤型接着剤、ホットメルト接着剤などを用いることができる。これらの中でも、酢酸ビニル樹脂エマルジョン接着剤が特に好ましい。   The rib member 14 and the interior board 12 can also be joined via an adhesive, and an aqueous emulsion adhesive, a resin solvent adhesive, a hot melt adhesive, or the like can be used. Among these, a vinyl acetate resin emulsion adhesive is particularly preferable.

図3において、内装ボード12と躯体22との間の空隙部に吸音材(図示せず)を充填することで、本考案にかかる内装構造20の遮音性能をさらに高めることができる。具体的には、内装ボード12の躯体対向面17のうち、リブ材14の列間に、リブ材14と石膏系接着剤24の合計厚さまたはそれをわずかに超える厚さを有する吸音材を装着しておく。これにより、リブ材14を石膏系接着剤24に押圧して内装パネル材10を躯体22に取り付けた際に、吸音材もまた躯体22に押圧されて機械的に接触することとなり、内装ボード12の共振の発生を吸音材全体の粘弾性変形によって抑制することができる。ただし、吸音材の厚さをリブ材14と石膏系接着剤24の合計厚さ以下として、内装パネル材10と躯体22とを組み合わせた際に吸音材が躯体22から浮いた状態に設けてもよく、この場合、吸音材の局所的な粘弾性変形によって躯体22から伝播される固体音を吸収する効果が期待できる。   In FIG. 3, the sound insulation performance of the interior structure 20 according to the present invention can be further enhanced by filling the space between the interior board 12 and the housing 22 with a sound absorbing material (not shown). Specifically, a sound-absorbing material having a total thickness of the rib material 14 and the gypsum adhesive 24 or a thickness slightly larger than that between the rows of the rib materials 14 in the housing facing surface 17 of the interior board 12. Wear it. As a result, when the rib member 14 is pressed against the gypsum adhesive 24 and the interior panel member 10 is attached to the housing 22, the sound absorbing material is also pressed against the housing 22 and mechanically comes into contact with the interior board 12. Can be suppressed by the viscoelastic deformation of the entire sound absorbing material. However, even if the thickness of the sound absorbing material is set to be equal to or less than the total thickness of the rib material 14 and the gypsum adhesive 24 and the interior panel material 10 and the housing 22 are combined, the sound absorbing material is provided in a state of floating from the housing 22. In this case, the effect of absorbing solid sound propagated from the housing 22 by local viscoelastic deformation of the sound absorbing material can be expected.

吸音材としては、グラスウール、ロックウールもしくはウレタンフォームなどの多孔質吸音材、または発泡プラスチックなどを用いることができる。吸音材の損失係数を0.4以上とすると、上記吸音効果が十分に発揮される。また吸音材の動的弾性率を空気のヤング率(=1.4×10[N/m])と同等またはその5〜6倍程度の範囲、すなわち2×10〜9×10[N/m]とすることにより、内装構造20のMA共振周波数が高域側にシフトして中・高音域の音響特性が低下する虞がなく、本考案による遮音性能の向上の効果を十分に享受することができる。
なお、吸音材は、格子点状に散点配置された石膏系接着剤24の中央(面心)ごとに分散配置してもよく、または吸音材を長尺状に形成して列状に並設されたリブ材14の間に設けてもよい。
As the sound absorbing material, a porous sound absorbing material such as glass wool, rock wool or urethane foam, or foamed plastic can be used. When the loss coefficient of the sound absorbing material is 0.4 or more, the sound absorbing effect is sufficiently exhibited. Further, the dynamic elastic modulus of the sound absorbing material is equivalent to the Young's modulus of air (= 1.4 × 10 5 [N / m 2 ]) or a range of about 5 to 6 times that, that is, 2 × 10 5 to 9 × 10 5. By setting [N / m 2 ], the MA resonance frequency of the interior structure 20 is not shifted to the high frequency side, and there is no possibility that the acoustic characteristics of the middle / high frequency range will be lowered. You can fully enjoy it.
The sound-absorbing material may be distributed at the center (face center) of the gypsum-based adhesive 24 arranged in the form of lattice points, or the sound-absorbing material is formed in a long shape and arranged in a line. You may provide between the rib materials 14 provided.

発泡プラスチック15の両面にシート状の紙材16を積層したリブ材14の動的弾性率は、図4の原理図に示す測定装置によって求めることができる。すなわち、まずリブ材14のサンプル40を加振側プレート41に載置し、さらにサンプル40の上面に受振側プレート42を載置して、上記サンプル40を加振側プレート41と受振側プレート42とで挟んだ状態にしておく。つぎに、受振側プレート42に所定の荷重を負荷した状態で加振側プレート41に5〜100Hzの振動数の振動を印加し、加振側プレート41の振動と受振側プレート42の振動をそれぞれの加速度センサーで検出する。検出された加速度データをチャージアンプ43,44で増幅し、増幅されたデータを高速フーリエ変換(FFT)方式の分析器45によって、下式(3)により動的弾性率に変換することができる。変換された動的弾性率の算出結果はプリンター46などの出力手段によって出力する。   The dynamic elastic modulus of the rib member 14 in which the sheet-like paper material 16 is laminated on both surfaces of the foamed plastic 15 can be obtained by a measuring device shown in the principle diagram of FIG. That is, the sample 40 of the rib member 14 is first placed on the excitation side plate 41, and the vibration receiving side plate 42 is further placed on the upper surface of the sample 40, and the sample 40 is placed on the vibration side plate 41 and the vibration receiving side plate 42. Leave it sandwiched between. Next, a vibration having a frequency of 5 to 100 Hz is applied to the vibration-side plate 41 in a state where a predetermined load is applied to the vibration-receiving side plate 42, and vibrations of the vibration-side plate 41 and vibrations of the vibration-receiving side plate 42 are respectively detected. Detect with the acceleration sensor. The detected acceleration data is amplified by the charge amplifiers 43 and 44, and the amplified data can be converted into a dynamic elastic modulus by the following equation (3) by the analyzer 45 of the fast Fourier transform (FFT) method. The converted dynamic elastic modulus calculation result is output by output means such as the printer 46.

(数2)
動的弾性率(N/m)=f ・W・t/25A (3)
(Equation 2)
Dynamic elastic modulus (N / m 2 ) = f 0 2 · W · t / 25A (3)

ただし上式(3)で、fは分析器45で求まるサンプル40の固有振動数(Hz)、Wはサンプル40の質量(kg)、tはサンプル40の厚さ(m)、Aはサンプル40の振動歪が加えられる面の面積(m)を表す。
なお本実施の形態においては、サンプル40の厚さはリブ材14と同一とし、縦横の寸法は300mm四方とした。また受振側プレート42に負荷する荷重は0.09kgf/cmとした。なお、動的弾性率のかかる測定装置としては、市販の多軸切換型の動電型振動試験装置を用いることができる。
Where f 0 is the natural frequency (Hz) of the sample 40 obtained by the analyzer 45, W is the mass (kg) of the sample 40, t is the thickness (m) of the sample 40, and A is the sample. This represents the area (m 2 ) of the surface to which 40 vibration strain is applied.
In the present embodiment, the thickness of the sample 40 is the same as that of the rib member 14, and the vertical and horizontal dimensions are 300 mm square. The load applied to the vibration receiving side plate 42 was 0.09 kgf / cm 2 . In addition, as a measuring apparatus with such a dynamic elastic modulus, a commercially available multi-axis switching type electrodynamic vibration testing apparatus can be used.

図3に示す本考案にかかる内装構造20について音響試験を行った。
内装ボード12としては厚さ12.5mmの石膏ボード;発泡プラスチック15としては厚さ25mm、幅50mmの長尺状に成形した動的弾性率2.7MPaのポリエチレン系樹脂発泡粒子成形体(株式会社JSP製、ミラブロック架橋タイプ26S、見掛け密度0.035g/cm);紙材16としては坪量200g/mの耐水性接着剤を介して紙を複数層に圧着積層して板状に形成された硬質板紙を用いた。
発泡プラスチック15の両面に上記紙材16を酢酸ビニル樹脂エマルジョン接着剤で積層接着したリブ材14を3本成形し、これらを45mm間隔で平行に配置し、上記接着剤により内装ボード12に接合して内装パネル材10を得た。
一方、躯体22としてコインシデンス周波数が約125Hzのコンクリート板を用意し、GLボンドにてリブ材14を一本あたり5箇所ずつ接着して内装パネル材10と躯体22とを一体化し、内装構造20を得た。
An acoustic test was performed on the interior structure 20 according to the present invention shown in FIG.
A gypsum board having a thickness of 12.5 mm as the interior board 12; a foamed polyethylene resin foamed particle having a dynamic elastic modulus of 2.7 MPa formed into a long shape having a thickness of 25 mm and a width of 50 mm as the foamed plastic 15 (Co., Ltd.) Made by JSP, Mirablock cross-linking type 26S, apparent density 0.035 g / cm 3 ); As the paper material 16, paper is pressed and laminated in a plurality of layers through a water-resistant adhesive having a basis weight of 200 g / m 2 to form a plate shape The formed hard paperboard was used.
Three rib members 14 are formed by laminating and bonding the paper material 16 on both sides of the foamed plastic 15 with a vinyl acetate resin emulsion adhesive. These rib materials 14 are arranged in parallel at intervals of 45 mm, and bonded to the interior board 12 with the adhesive. The interior panel material 10 was obtained.
On the other hand, a concrete plate having a coincidence frequency of about 125 Hz is prepared as the housing 22, and the rib material 14 is bonded to each of the five locations by GL bonding to integrate the interior panel material 10 and the housing 22. Obtained.

かかる内装構造20について、躯体22を残響室の開口部に設置し、内装パネル材10側の受音室内で音響放射パワーレベルPWLを測定した。
また比較のため、残響室の開口部の躯体22に従来のGL工法に従ってGLボンドにより直接内装ボード12を接着した試験体を成形し、上記と同様に受音室内で音響放射パワーPWLを測定した。
両者の測定結果を比較したところ、特に200Hzを超える中・高音域において本考案にかかる内装構造20では放射音が顕著に低減し、本考案の効果が確認された。
With respect to the interior structure 20, the housing 22 was installed at the opening of the reverberation chamber, and the sound radiation power level PWL was measured in the sound receiving chamber on the interior panel material 10 side.
For comparison, a test body in which the interior board 12 was directly bonded to the housing 22 at the opening of the reverberation chamber by a GL bond was formed according to a conventional GL method, and the acoustic radiation power PWL was measured in the sound receiving chamber in the same manner as described above. .
When the measurement results of the two were compared, the radiated sound was remarkably reduced in the interior structure 20 according to the present invention particularly in the middle and high sound ranges exceeding 200 Hz, and the effect of the present invention was confirmed.

本考案の実施の形態にかかる内装パネル材の三面図であり、(a)は平面図、(b)は正面図、(c)は右側面図である。It is a three-view figure of the interior panel material concerning embodiment of this invention, (a) is a top view, (b) is a front view, (c) is a right view. 発泡プラスチックの両面にシート状の紙材を積層したリブ材の部分切欠斜視図である。It is a partial notch perspective view of the rib material which laminated | stacked the sheet-like paper material on both surfaces of the foamed plastic. 本考案の実施の形態にかかる内装構造の二面図であり、(a)は平面図、(b)は正面図である。It is a two-view figure of the interior structure concerning embodiment of this invention, (a) is a top view, (b) is a front view. リブ材の動的弾性率を測定する測定装置の原理図である。It is a principle figure of the measuring apparatus which measures the dynamic elastic modulus of a rib material.

符号の説明Explanation of symbols

10 内装パネル材
12 内装ボード
14 リブ材
15 発泡プラスチック
16 紙材
17 躯体対向面
20 内装構造
22 躯体
24 石膏系接着剤
41 加振側プレート
42 受振側プレート
43,44 チャージアンプ
45 分析器
46 プリンター
DESCRIPTION OF SYMBOLS 10 Interior panel material 12 Interior board 14 Rib material 15 Foamed plastic 16 Paper material 17 Housing | casing opposing surface 20 Interior structure 22 Housing 24 Gypsum adhesive 41 Excitation side plate 42 Vibration receiving side plate 43, 44 Charge amplifier 45 Analyzer 46 Printer

Claims (5)

構造物の躯体内面を覆う内装ボードと、内装ボードの躯体対向面に所定間隔の列状に設けられたリブ材とからなる内装パネル材であって、
前記リブ材が、発泡プラスチックの両面にシート状の紙材が積層されるとともに、幅が30〜150mm、全厚みが10〜50mm、動的弾性率が2〜20MPaの板状の長尺物であることを特徴とする内装パネル材。
An interior panel material composed of an interior board that covers the inner surface of the housing of the structure, and rib members that are provided in rows at predetermined intervals on the housing facing surface of the interior board,
The rib material is a plate-like long object having a sheet-like paper material laminated on both sides of a foamed plastic, a width of 30 to 150 mm, a total thickness of 10 to 50 mm, and a dynamic elastic modulus of 2 to 20 MPa. Interior panel material characterized by being.
発泡プラスチックの基材樹脂が、ポリエチレン系樹脂、ポリプロピレン系樹脂またはポリスチレン系樹脂のいずれかから選択される1種または2種以上の組成物であることを特徴とする請求項1に記載の内装パネル材。 2. The interior panel according to claim 1, wherein the base resin of the foamed plastic is one or two or more compositions selected from polyethylene resins, polypropylene resins, and polystyrene resins. Wood. 発泡プラスチックが、見掛け密度が0.022〜0.060g/cmのポリエチレン系樹脂発泡粒子成形体であることを特徴とする請求項1に記載の内装パネル材。 2. The interior panel material according to claim 1, wherein the foamed plastic is a polyethylene-based resin foam particle molded body having an apparent density of 0.022 to 0.060 g / cm 3 . 請求項1から3のいずれかに記載の内装パネル材を、前記構造物の躯体内面に散点状に塗布された接着剤に対し、前記リブ材を介して固定してなる内装構造。 An interior structure in which the interior panel material according to any one of claims 1 to 3 is fixed to the adhesive applied in a scattered manner on the inner surface of the casing of the structure via the rib material. 発泡プラスチックの両面にシート状の紙材が積層されるとともに、幅が30〜150mm、全厚みが10〜50mm、動的弾性率が2〜20MPaの板状の長尺物であることを特徴とする内装パネル材に取付けられるリブ材。 A sheet-like paper material is laminated on both sides of the foamed plastic, and is a plate-like long product having a width of 30 to 150 mm, a total thickness of 10 to 50 mm, and a dynamic elastic modulus of 2 to 20 MPa. Rib material attached to interior panel material.
JP2007000246U 2007-01-19 2007-01-19 Interior panel material, interior structure and rib material Expired - Fee Related JP3130583U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000246U JP3130583U (en) 2007-01-19 2007-01-19 Interior panel material, interior structure and rib material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000246U JP3130583U (en) 2007-01-19 2007-01-19 Interior panel material, interior structure and rib material

Publications (1)

Publication Number Publication Date
JP3130583U true JP3130583U (en) 2007-03-29

Family

ID=43281433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000246U Expired - Fee Related JP3130583U (en) 2007-01-19 2007-01-19 Interior panel material, interior structure and rib material

Country Status (1)

Country Link
JP (1) JP3130583U (en)

Similar Documents

Publication Publication Date Title
US5975238A (en) Plate resonator
US20080086957A1 (en) Noise-attenuating laminate composite wallboard panel and methods for manufacturing same
TW201938888A (en) Structure of partition wall and method for construction partition wall
CN105144284A (en) Sound-absorbing material and wire harness equipped with sound-absorbing material
CN104968870A (en) Soundproofing panel
JP2009520135A (en) Structural member including sound insulation layer
Iannace et al. Egg cartons used as sound absorbing systems
JP5065176B2 (en) Living room structure considering acoustics
JP3130583U (en) Interior panel material, interior structure and rib material
JP3072023B2 (en) Sound insulation device
JP2011017236A (en) Sound insulation panel and sound insulation room using the same
JP2001081878A (en) Sound absorbing panel and acoustic panel
JP4311960B2 (en) Low acoustic radiation type interior structure and interior panel material
JP3819891B2 (en) Sound insulation structure, sound insulation device, and sound insulation method
US20050066618A1 (en) Panel and related wall structure
JP3909938B2 (en) Floor impact sound reduction structure
JP2007009690A (en) Wooden floor structure of apartment block
JP2778713B2 (en) Floor structure
JPH08109687A (en) Sound-insulating triple wall body structure
KR200192075Y1 (en) Noise Reduction Pannel For Piano
JP2004232354A (en) Solid sound reduction type interior trimming structure and interior trimming panel device
JP3123028U (en) Sound absorbing material
JP4287874B2 (en) Sound insulation structure of building floor
JP6511249B2 (en) Construction method of sound absorber
Alexeev et al. Acoustic foam rubber application

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees