JPH0447837B2 - - Google Patents

Info

Publication number
JPH0447837B2
JPH0447837B2 JP58115191A JP11519183A JPH0447837B2 JP H0447837 B2 JPH0447837 B2 JP H0447837B2 JP 58115191 A JP58115191 A JP 58115191A JP 11519183 A JP11519183 A JP 11519183A JP H0447837 B2 JPH0447837 B2 JP H0447837B2
Authority
JP
Japan
Prior art keywords
sound insulation
sound
value
board
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58115191A
Other languages
Japanese (ja)
Other versions
JPS607490A (en
Inventor
Koji Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP58115191A priority Critical patent/JPS607490A/en
Publication of JPS607490A publication Critical patent/JPS607490A/en
Publication of JPH0447837B2 publication Critical patent/JPH0447837B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【発明の詳細な説明】 本発明は、遮音性の改善された遮音板に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sound insulating plate with improved sound insulating properties.

近年、住宅騒音等の問題に対処するため多くの
遮音技術、材料の研究、開発がなされており、建
材においては建材性能の高性能化が求められてい
る。即ち、省資源、省エネルギー、安全性の向上
の観点から、断熱化、軽量化、不燃性が要求され
空間の拡大、施工性の改善等の観点から、薄型化
が求められている。このため、遮音材料及び遮音
構造も、これらの要求に合致するものが求められ
ている。しかし、建材あるいは建築物等の遮音性
能の向上と上記要求性能は、しばしば背反し、こ
れを両立させることは困難であつた。
In recent years, many sound insulation technologies and materials have been researched and developed in order to deal with problems such as residential noise, and building materials are required to have higher performance. That is, from the viewpoint of saving resources, saving energy, and improving safety, insulation, weight reduction, and nonflammability are required, and from the viewpoint of expanding space and improving workability, thinning is required. Therefore, sound insulating materials and sound insulating structures that meet these requirements are also required. However, improving the sound insulation performance of building materials or buildings and the above-mentioned required performance are often in conflict with each other, and it has been difficult to achieve both.

一般に遮音材料においては、遮音性能は音響透
過における質量則に基ずき大略決定され、その面
密度を増加させたときに、その遮音性能を示す音
響透過損失(Transmission Loss.以下、T.L.と
称す)も向上する。また質量則以上にT.L.を増
加させるために、遮音材料を平行に配置した二重
壁または多重壁構造とし、さらに内部に吸音材等
を挿入して遮音効果を向上させることが一般に行
なわれる。しかし、このような方法では必然的に
重量及び厚みの増加を招来する。また特に問題点
として、このような方法を用いてもなお、コイン
シデンス効果および低音域の共鳴透過等によつ
て、特定の音域で著しいT.L.の低下、つまり遮
音欠損が生ずる場合が多い。この遮音欠損を改善
する一般的な方法は、遮音欠損を生ずる周波数域
を可聴域外に移行させるため、遮音材及び構造に
起因する固有振動数を変更することであり、これ
も又、従来の方法では重量や厚みの増加を招くか
遮音材料の剛性の低下と言つた問題を生じ易い。
又、当該面材を制振処理することによつて改善で
きる場合もあるが、一般には高コストで効果も不
充分である。
In general, the sound insulation performance of sound insulation materials is roughly determined based on the mass law for sound transmission, and when the areal density is increased, the sound insulation performance is determined by the sound transmission loss (hereinafter referred to as TL). It also improves. Furthermore, in order to increase TL beyond the mass law, it is common to use a double wall or multi-wall structure in which sound insulating materials are arranged in parallel, and to further improve the sound insulating effect by inserting a sound absorbing material or the like inside. However, such a method inevitably results in an increase in weight and thickness. In addition, a particular problem is that even when such a method is used, a significant decrease in TL, that is, a sound insulation defect, often occurs in a specific sound range due to the coincidence effect, resonance transmission in the low range, and the like. A common method to improve this sound insulation deficit is to change the natural frequencies due to the sound insulation material and structure in order to move the frequency range that causes the sound insulation deficit out of the audible range, which is also a conventional method. This tends to cause problems such as an increase in weight and thickness or a decrease in the rigidity of the sound insulating material.
In some cases, the problem can be improved by subjecting the surface material to vibration damping treatment, but generally the cost is high and the effect is insufficient.

以上のように高い遮音性を実現するためには、
如何に質量則以上の遮音性を獲得し、さらに遮音
欠損による低下を防ぐかが最大課題となる。現状
は、比較的面密度の大きな面材(板材等、構造壁
も含む)で二重壁または多重壁を構成し、内部に
グラスウールやロツクウール等の吸音材を挿入し
遮音欠損への手当は不充分にしたまま、全般的に
T.L.を大きくしたものを採用するか、又は始め
から遮音欠損を可聴周波数域内(例えば125Hz〜
4000Hz)に生じさせないように、厚みや重量の大
幅な増加を顧みずに設計・施工している。
In order to achieve high sound insulation as described above,
The biggest challenge is how to achieve sound insulation that exceeds the mass law, and how to prevent deterioration due to sound insulation defects. Currently, double walls or multiple walls are constructed using surface materials with a relatively high surface density (including structural walls such as board materials), and sound absorbing materials such as glass wool and rock wool are inserted inside, making it impossible to address sound insulation defects. In general, with sufficient
Either adopt one with a larger TL, or reduce the sound insulation loss from the beginning within the audible frequency range (e.g. 125Hz~
4000Hz), the design and construction was done without considering the significant increase in thickness and weight.

本発明は、厚みや重量の増加を来たすことなく
遮音性能の低下を極力抑える方法を実現したもの
であつて、本発明に係る遮音板にあつては質量則
によつて獲得し得る最大限の遮音性を、ほぼ再現
するものであり、本遮音板を用いた構造体にあつ
ては、例えば二重壁化によるT.L.の増加を最大
限に引き出すものである。
The present invention realizes a method of suppressing the deterioration of sound insulation performance as much as possible without increasing the thickness or weight. It almost reproduces the sound insulation properties, and in the case of structures using this sound insulation board, it maximizes the increase in TL due to double walls, for example.

本発明者は、板状構造において、面密度m、曲
げ剛性Bの影響について、特に面に沿つてm/B
の不均質な領域からなる平板状体のT.L.につい
て研究し、このような遮音板においては透過音全
体の成分のバランスが調整されること、特にコイ
ンシデンス限界周波数c付近で生ずるコインシデ
ンス効果によるT.L.の落ち込みが分散ないし平
準化されること、および二重壁等の遮音構造体に
おいても同様の分散ないし平準化が行なわれるこ
とを見出し、本発明を完成した。
The present inventor has investigated the influence of surface density m and bending stiffness B in a plate-like structure, especially along the surface m/B.
We study the TL of a flat plate-like body consisting of a non-uniform region of The inventors have completed the present invention by discovering that the sound can be dispersed or leveled, and that similar dispersion or leveling can be achieved in sound insulating structures such as double walls.

上記現象は、板の全面に、均等にまたは全くラ
ンダムに音が入射したとき、一様な空気加振を受
けるにも拘らず、板の不均質な領域各部がそれぞ
れ他と異なつた音響的挙動をし、これに伴つて前
記各部からの透過音の成分が適度に異なるため、
透過後の合成音が調整されて、有害な透過音即ち
遮音欠損による特定周波数域の音が減少するもの
と考えられる。
The above phenomenon is caused by the fact that when sound is incident on the entire surface of a board evenly or completely randomly, each part of the non-uniform area of the board exhibits different acoustic behavior, even though it receives uniform air excitation. As a result, the transmitted sound components from each part differ moderately, so
It is believed that the synthesized sound after transmission is adjusted to reduce harmful transmitted sound, that is, sound in a specific frequency range due to sound insulation defects.

本発明の要旨は、面密度mと曲げ剛性Bの比k
=m/Bを異にする複数領域の境界を接した集合
からなる板状構造であつて、前記複数領域のkの
最大値(k max.)とkの最小値(k min.)
の比が1.2以上であり、前記板状の全面積におけ
るkの加重平均値()より大なる値(k+)を
有する領域および小なる値(k-)を有する領域
の面積のそれぞれの和が前記板状の全面積の少な
くとも25%をそれぞれ有し、かつ前記k+値を有
する各領域に内包される最大円の直径の平均が
(π/850)×(B/m)1/2以上とした遮音板の構成
に在る。
The gist of the present invention is that the ratio k of areal density m to bending stiffness B
It is a plate-like structure consisting of a set of bordered areas of a plurality of regions having different = m/B, and the maximum value of k (k max.) and the minimum value of k (k min.) of the plurality of regions.
the ratio of 1.2 or more, and the sum of the areas of regions having a larger value (k + ) and smaller value ( k - ) than the weighted average value ( ) of k in the total area of the plate-like area. each has at least 25% of the total area of the plate, and the average diameter of the maximum circle included in each region having the k + value is (π/850)×(B/m) 1/2 The structure of the sound insulation board is as described above.

即ち、本発明は、板の各領域が他と異なつた音
響的挙動を行なうよう各領域のm/Bを異ならせ
遮音欠損による透過音のレベルを抑えるため前記
各領域の遮音欠損周波数を適度に離し、かつその
透過エネルギーもその各部の面積に応じたレベル
に低下せしめることにより、遮音欠損を分散化し
平準化せさて全般的な遮音レベル、例えば遮音等
級D−値を向上せしめるものである。
That is, in the present invention, the m/B of each region is varied so that each region of the board exhibits different acoustic behavior, and the sound insulation defect frequency of each region is adjusted to an appropriate level in order to suppress the level of transmitted sound due to the sound insulation defect. By separating the parts and reducing the transmitted energy to a level corresponding to the area of each part, sound insulation defects are dispersed and leveled, and the overall sound insulation level, for example, the sound insulation grade D-value, is improved.

本発明においては、それぞれの領域のk=m/
Bの最大値(k max.)と最小値(k min.)
の比が1.2以上であることが必要である。即ち各
領域のコインシデンス限界周波数c=(c2/2π)×
(m/B)1/2(cは音速、mは領域の面密度、Bは
領域の曲げ剛性を表わす)で示されるcを10%以
上離すこと従つてk=m/Bとしたとき、k
max.とk min.の比が1.2以上であることが必要
である。この比が1.2以下ではコインシデンス限
界周波数領域における分散化、平準化効果が乏し
くなるためであり好ましくは1.5以上さらに好ま
しくは2.0以上である。なお、上記領域のm,B
の値はそれぞれその部分が理想的なモデルとし
て、無限平板の一部であるとして計算された値と
する。
In the present invention, k=m/ of each region
Maximum value (k max.) and minimum value (k min.) of B
It is necessary that the ratio is 1.2 or more. In other words, the coincidence limit frequency c = (c 2 /2π) ×
(m/B) 1/2 (c is the speed of sound, m is the areal density of the area, and B is the bending rigidity of the area) is separated by 10% or more. Therefore, when k = m/B, k
It is necessary that the ratio between max. and k min. be 1.2 or more. If this ratio is less than 1.2, the dispersion and leveling effect in the coincidence limit frequency region will be poor, so it is preferably 1.5 or more, and more preferably 2.0 or more. In addition, m, B in the above area
Each value is calculated assuming that the part is an ideal model and is part of an infinite flat plate.

本発明は、境界を接した不均質化領域のそれぞ
れの他と異なつた音響的挙動の合成効果によるも
のであり、そのためには板状の全面積にわたるk
の加重平均よりも大きな値(k+)を有する領
域およびより小さな値(k-)を有する領域が
それぞれ板状体の一定面積以上を占めないと効果
が乏しく、実験の結果k+およびk-を有する領域
がそれぞれ全面積の25%以上、特により10%以
上大きなk+およびより10%以上小さなk-の領
域が、それぞれ板状体の全面積に対し25%以上を
占めることが、コインシデンス限界周波数領域に
おける分散化効果を得るために好ましい。
The invention relies on the composite effect of the different acoustic behavior of each of the bounded heterogeneous regions, for which k
The effect is poor unless the region with a larger value (k + ) and the region with a smaller value (k - ) each occupy a certain area or more of the plate-like body, and the experimental results show that k + and k - It is a coincidence that the areas with k + and k- that are 10% or more smaller each occupy 25% or more of the total area of the plate-like body, respectively. This is preferable in order to obtain a dispersion effect in the critical frequency region.

またk+およびk-を有する領域の音響的挙動は、
面積のみならず、その形状によつても影響を受け
る。特に等方性の材料においては、面積が大であ
つても、例えば額縁状であつたり櫛刃状の形状で
は効果がなく、例えば円形や角形等の形状を有す
ることが好ましい。このように形状を特定し、か
つ面積を一定以上の値とする必要がある。この必
要な最小面積を臨界面積と呼ぶこととする。この
臨界面積を前記特定すべき形状を加味した場合、
その形状に内包される最大円、即ち直線や曲線で
形成された輪郭に2点以上で接し、その円の面積
が上記領域に包含される円のうち最大のもので表
わすとよいことが判つた。
And the acoustic behavior of the region with k + and k - is
It is affected not only by area but also by its shape. Particularly in the case of isotropic materials, even if the area is large, a frame-like or comb-like shape, for example, will not be effective, so it is preferable to have a circular or square shape. In this way, it is necessary to specify the shape and set the area to a value greater than a certain value. This required minimum area will be referred to as the critical area. When this critical area is taken into account the shape to be specified,
It has been found that it is best to represent the largest circle included in the shape, that is, the area of the circle that touches the contour formed by a straight line or curved line at two or more points, and the area of the circle that is the largest of the circles included in the above area. .

このように内包される最大円の直径をdmとす
ると、種々の形状について実験した結果、前記
k+又はk-を有する領域のdmはコインシデンス限
界周波数c=(c2/2π)×(m/B)1/2における曲

波の波長と関係があり、dm≧(π/850)×(B/
m)1/2であることが必要であることが示された。
この値以下では前記遮音欠損の平準化、分散効果
が乏しく、好ましくは(π/200)×(B/m)1/2
上である。従つてk+またはk-を持つ各領域の最
大円のそれぞれの算術平均値は(π/850)×
(B/m)1/2以上でなければ効果は小さい。
Assuming that the diameter of the maximum circle included in this way is dm, as a result of experimenting with various shapes, the above-mentioned
The dm in the region with k + or k - is related to the wavelength of the bending wave at the coincidence limit frequency c = (c 2 / 2π) × (m/B) 1/2 , and dm ≥ (π / 850) × ( B/
m) It was shown that it is necessary to be 1/2 .
Below this value, the effect of leveling and dispersing the sound insulation defects is poor, and the value is preferably (π/200)×(B/m) 1/2 or more. Therefore, the arithmetic mean value of each maximum circle of each region with k + or k - is (π/850) ×
(B/m) The effect is small unless it is 1/2 or more.

なお各領域の形状は、音響的に無意味な細い切
れ込みや、狭い間隔を隔てて平行した領域は、切
れ込みや間隔を無視して同一の領域と見なすこと
ができる。
Note that the shape of each area may be such that acoustically meaningless thin notches or areas that are parallel to each other with a narrow interval are considered to be the same area, ignoring the notch or interval.

m/Bの異なる領域からなる板体を得る方法と
しては、断面形状一定の場合、面密度、曲げ剛性
をそれぞれ単独で、また適宜両者を変えたもので
もよく、遮音板の断面形状が異なつてもよい場合
には、同一素材で厚みを変え、または板面に別の
板を積層してもよく、上記何れの場合に不均質領
域が複数個所に分割されていてもよい。なお、部
分的に積層する場合には、例えば軟質遮音シート
のように剛性が小さく面密度の高い材料を用いる
とその部分の面密度のみを増大させ、結果的にk
を効果的に向上させることができ、分散化効果が
極めて高くなる。又、この軟質材料の積層による
cの分離はcの高音側に生じ、放射係数の関係か
ら、遮音上、特に有利で、遮音欠損改善策として
最良であることを見い出した。なお、部分的に積
層してm/Bの異なる領域とした場合、c以外の
ほぼ全周波数域で音響透過損失は、質量則に従つ
た各領域の値の平均的な値となることが見い出さ
れた。従つて、このことから上記の各m/Bの異
なる領域を得る方法においても、c以外では、面
密度による質量則が適用されることが推定され
る。なお、本発明の遮音板は、どのような構造体
例えば遮音を主目的としない構造体に組入れても
使用できる。また梁等と接合する場合は梁等の接
合部分をkを異にする領域間の境界と重ねた方が
良い。これは、例えば梁のように剛性や密度の高
い材料を板状の遮音面に接合すると、付近の板内
の音響的挙動が平均化し易く、分散化の効果を発
揮しなくなる。この弊害を無くす事が必要である
一方、境界に重ねて用いれば、分断された両領域
の音響的挙動の分離が促進される場合があるため
である。従つて本発明に沿つて不均質化した軟質
材料はこの効果が非常に高い。更に軟質材料は、
前記した特記事項に加えて面密度増大による質量
則に基ずくT.L.の向上等によつて、本発明手法
が最も効果的に利用し得る素材となる。従つて、
軟質遮音シートの新たな使用方法として極めて重
要となる。また本発明が平面板のみならず曲面板
にも適用されることは明らかである。
As a method for obtaining a board consisting of regions with different m/B, when the cross-sectional shape is constant, the areal density and bending rigidity may be changed independently, or both may be changed as appropriate. If desired, the same material may be used with different thicknesses, or another plate may be laminated on the plate surface, and in any of the above cases, the non-uniform region may be divided into a plurality of locations. Note that when partially laminating, if a material with low rigidity and high areal density is used, such as a soft sound insulating sheet, only the areal density of that part will increase, resulting in k
can be effectively improved, and the dispersion effect becomes extremely high. Also, due to the lamination of this soft material,
The separation of c occurs on the treble side of c, which is particularly advantageous in terms of sound insulation from the relationship of the radiation coefficient, and was found to be the best measure to improve sound insulation deficiencies. It has been found that when partially laminated to form regions with different m/B, the sound transmission loss in almost all frequency ranges except c becomes the average value of the values of each region according to the mass law. It was. Therefore, it is presumed from this that the mass law based on areal density is applied in the above method of obtaining regions with different m/B except for c. Note that the sound insulation board of the present invention can be used even if it is incorporated into any structure, for example, a structure whose main purpose is not sound insulation. Further, when joining a beam or the like, it is better to overlap the joint part of the beam or the like with the boundary between regions having different k. This is because, for example, when a material with high rigidity and density, such as a beam, is joined to a plate-shaped sound insulating surface, the acoustic behavior within the nearby plates tends to average out, and the dispersion effect is no longer exhibited. This is because while it is necessary to eliminate this adverse effect, if it is used over the boundary, separation of the acoustic behavior of the two divided regions may be promoted. Therefore, the soft material made heterogeneous according to the present invention has a very high effect. Furthermore, soft materials
In addition to the above-mentioned special notes, the method of the present invention becomes a material that can be used most effectively due to the improvement in TL based on the mass law due to an increase in areal density. Therefore,
This is extremely important as a new way to use soft sound insulation sheets. Furthermore, it is clear that the present invention is applicable not only to flat plates but also to curved plates.

本発明に係る遮音板は、上述のように音響的挙
動の異なる領域からの透過音の合成効果として、
cにおけるT.L.の落ち込みは平準化または分散
化され、かつc以外のほぼ全周波数域で面密度の
増大による質量則上の寄与が得られ、T.L.の改
善がなされる。この結果、遮音板の厚み、重量の
相対的にわずかな増加で従来達成できなかつた軽
量性と取扱の良好性を保持し、かつ優れた遮音性
能、例えば遮音等級D−値を大きく向上させるこ
とができる。
As described above, the sound insulation board according to the present invention has the effect of synthesizing transmitted sound from regions with different acoustic behaviors.
The drop in TL at c is leveled or dispersed, and in almost all frequency ranges other than c, a contribution according to the mass law due to the increase in areal density is obtained, and the TL is improved. As a result, with a relatively small increase in the thickness and weight of the sound insulation board, it is possible to maintain lightness and ease of handling that could not be achieved in the past, and to greatly improve excellent sound insulation performance, such as the sound insulation grade D-value. I can do it.

以下、本発明に係る遮音板について、実施例に
よりさらに具体的に説明する。
Hereinafter, the sound insulating plate according to the present invention will be described in more detail with reference to Examples.

実施例 1 重量ケイカル石綿板−軟質遮音シート−重量ケ
イカル石綿板から形成された重量面材(面密度m
=14.7Kg/m2、曲げ剛性B=910N・m,k=
0.0162)の90×90cm板と軽量ケイカル石綿板(m
=4.5Kg/m2,B=79N・m,k′=0.0570)の90×
90cm板の夫々の一辺が衝合するようにして、一枚
の板材に接合した。k′/k=3.53となる。各面積
は前代の1/2で、内包円の直径は90cmで、(π/
850)×(B/m)1/2=6.5cmより大である。この遮
音板について各1/3オクターブ中心周波数(Hz)
におけるT.L.を測定した。測定はJIS−A−1416
に基ずく残響壁における音響透過損失測定法に拠
つた。以下の実施例においても、すべてこの方法
により測定した。結果を第1図の実線で示す。比
較のため、同じ寸法の前記重量面材(同図破線)、
軽量ケイカル石綿板(同図点線)の測定結果を掲
げた。第1図に示されるようにc(2k〜3.5kHz)
以外の周波数域では、T.L.は重量面材と軽量ケ
イカル石綿板の中間にあり、c付近では重量面材
側を上回つている。
Example 1 Heavy-duty silica asbestos board - Soft sound insulation sheet - Heavy-duty face material formed from a heavy silica asbestos board (area density m
=14.7Kg/ m2 , bending rigidity B=910N・m, k=
0.0162) 90×90cm board and lightweight Keical asbestos board (m
= 4.5Kg/m 2 , B = 79N・m, k′ = 0.0570) 90×
The 90 cm boards were joined together into a single board so that one side of each board met. k′/k=3.53. The area of each is 1/2 of the previous one, the diameter of the inner circle is 90cm, and (π/
850)×(B/m) 1/2 = larger than 6.5cm. About this sound insulation board Each 1/3 octave center frequency (Hz)
The TL was measured. Measurement is JIS-A-1416
Based on the sound transmission loss measurement method in reverberant walls. All of the following examples were also measured using this method. The results are shown by the solid line in FIG. For comparison, the heavy-duty surface material with the same dimensions (dashed line in the same figure),
The measurement results for lightweight calcic asbestos board (dotted line in the same figure) are listed. c (2k~3.5kHz) as shown in Figure 1
In other frequency ranges, the TL is between the heavy facing material and the lightweight siliceous asbestos board, and exceeds that of the heavy facing material near c.

実施例 2 耐水1類3plyの合板の厚み3.0mm(m=1.65、B
=15、m/B=0.110)の90×90cmのものと、同
じく合板で厚み5.5mmの90×90cmのものを夫々の
合板の一辺を衝合させて一枚の遮音板を形成し
た。5.5mmの合板のm=3.03、B=92、m/B=
0.0329であつた。結果を第2図の実線で示す。比
較のため同じ寸法の3mm合板(同図点線)、5.5mm
合板(同図破線)の結果を掲げた。実施例ではc
付近でT.L.の落ち込みが著しく改善されている
ことが判る。
Example 2 Water resistant Class 1 3ply plywood thickness 3.0 mm (m = 1.65, B
= 15, m/B = 0.110), 90 x 90 cm, and the same plywood, 5.5 mm thick, 90 x 90 cm, and one side of each plywood was brought together to form a single sound insulating board. 5.5mm plywood m=3.03, B=92, m/B=
It was 0.0329. The results are shown by the solid line in FIG. For comparison, 3mm plywood of the same size (dotted line in the same figure), 5.5mm
The results for plywood (dashed line in the same figure) are listed. In the example c
It can be seen that the drop in TL has been significantly improved in the vicinity.

実施例 3 軽量ケイカル石綿板90×180cm遮音板の単板
(第3図点線)、この板に同質同厚の90×30cm板を
板の中央線左側に積層した場合(第3図破線、積
層面積は全体の16.7%)およびさらに右側未積層
面に同質同厚の90×90cm板を積層した場合(実施
例、第3図実線)を示す。第3図に示されるよう
に積層面積が不足の場合には単板の場合と、ほと
んど差異がないが、実施例ではc付近(5k付近)
でのT.L.が5dB以上も改善されている。
Example 3 A veneer of lightweight silica asbestos board 90 x 180 cm sound insulating board (dotted line in Figure 3), when this board is laminated with a 90 x 30 cm board of the same quality and thickness to the left of the center line of the board (dashed line in Figure 3, laminated (The area is 16.7% of the total) and the case where a 90×90 cm plate of the same quality and thickness is further laminated on the unlaminated surface on the right side (Example, solid line in Figure 3). As shown in Figure 3, when the laminated area is insufficient, there is almost no difference from the case of veneer, but in the example, it is around c (around 5k).
TL has been improved by more than 5dB.

実施例 4,5 重量ケイカル石綿板90×180cm単板の場合(第
4図点線)、これに同質同厚の90×60cm板を左端
から積層した場合(実施例4、第4図破線)およ
びさらに前記重量ケイカル石綿板に接して右側に
軽量ケイカル石綿板を90×60cmのものを積層した
場合(実施例5、第4図実線)の測定結果を示
す。実施例4はもちろん、実施例5の曲線が示す
ように積層は同質同厚のものでなくても、積層面
の増加によりc域(4k〜5kHz)でも5dB以上も
の改善がなされていることが判る。
Examples 4 and 5 In the case of a 90 x 180 cm single heavy silica asbestos board (dotted line in Figure 4), when a 90 x 60 cm board of the same quality and thickness is laminated from the left end (Example 4, broken line in Figure 4) and Furthermore, the measurement results are shown when a lightweight calcical asbestos board of 90 x 60 cm was laminated on the right side in contact with the heavy silica asbestos board (Example 5, solid line in Figure 4). As shown by the curves of Example 5 as well as Example 4, even if the laminated layers are not of the same quality and thickness, an improvement of more than 5 dB is achieved even in the c range (4 kHz to 5 kHz) due to the increase in the laminated surface. I understand.

実施例 6,7 軽量ケイカル石綿板−軟質遮音シート−軽量ケ
イカル石綿板を全面貼り合せてなる軽量面材(m
=11.1、B=607)90×180cmのみの場合(第5図
点線)、これに軽量ケイカル石綿板(m=4.5、B
=79)90×60cm板を左端から積層した場合(実施
例6、第5図破線)、さらにこれに接して同じ板
90×60cmのものを付加積層した場合(実施例7、
第5図実線)の測定結果を示す。第5図に示すよ
うに、積層面積の増加によりc域におけるT.L.
の改善も向上する。
Examples 6 and 7 Lightweight surface material (m
= 11.1, B = 607) If only 90 x 180 cm (dotted line in Figure 5) is used, lightweight silica asbestos board (m = 4.5, B
=79) When 90 x 60cm plates are stacked from the left end (Example 6, broken line in Figure 5), the same plate
When 90 x 60 cm pieces were additionally laminated (Example 7,
The measurement results shown in Fig. 5 (solid line) are shown. As shown in Figure 5, due to the increase in lamination area, the TL in region c is
The improvement will also improve.

実施例 8 重量ケイカル石綿板−軟質遮音シート−重量ケ
イカル石綿板を全面貼り合せてなる重量面材90×
180cm板のみの場合(第6図点線)、これに同質同
厚の面材90×90cmを左半分に積層した場合(実施
例8、第6図実線)の測定結果を第6図に示す。
重量面材でも同様にc域でのT.L.の改善が行な
われることが判る。
Example 8 Heavy-weight surface material 90× made by laminating the entire surface of heavy-duty silica asbestos board, soft sound insulation sheet, and heavy-duty silico-asbestos board
Figure 6 shows the measurement results for the case of only a 180 cm plate (dotted line in Figure 6) and the case where a 90 x 90 cm panel of the same quality and thickness was laminated on the left half (Example 8, solid line in Figure 6).
It can be seen that the TL in the c region is similarly improved with the heavy facing material.

実施例 9 本発明において、上張り積層する場合に積層方
法によりT.L.に差異が生ずるかどうかを測定し
た。単に載置(第7図点線)、釘打ち固定(第7
図破線)および両面粘着テープによる接着(第7
図実線)の結果が示すように、何れもほぼ同一曲
線上にプロツトされ、上張り積層方法によるT.
L.の差異は見られなかつた。
Example 9 In the present invention, it was determined whether or not there was a difference in TL depending on the lamination method when top layers were laminated. Simply place it (dotted line in Figure 7) and fix it by nailing (Figure 7)
(Dotted line in the figure) and adhesion using double-sided adhesive tape (No. 7)
As shown in the results (solid line in the figure), all plots are plotted on almost the same curve, and the T.
No difference was observed between L.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は、本発明の上記した実施
例、比較例について中心周波数(Hz)と音響透過
損失(T.L.,dB)の関係を示す図面である。
1 to 7 are drawings showing the relationship between center frequency (Hz) and sound transmission loss (TL, dB) for the above-described embodiments and comparative examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 面密度mと曲げ剛性Bの比k=m/Bを異に
する複数領域の境界を接した集合からなる板状構
造であつて、前記複数領域のkの最大値(k
max.)とkの最小値(k min.)の比が1.2以上
であり、前記板状の全面積におけるkの荷重平均
値()より大なる値(k+)を有する領域およ
び小なる値(k-)を有する領域の面積のそれぞ
れの和が前記板状の全面積の少なくとも25%をそ
れぞれ有し、かつ前記k+値を有する各領域に内
包される最大円の直径の平均が(π/850)×
(B/m)1/2以上であることを特徴とする遮音板。
1 A plate-like structure consisting of a set of adjacent boundaries of multiple regions having different ratios k=m/B of surface density m and bending stiffness B, where the maximum value of k of the multiple regions (k
The ratio of the minimum value of k (k min.) to the minimum value of k (k min.) is 1.2 or more, and a region having a value (k + ) larger than the weighted average value () of k in the total area of the plate shape and a smaller value The sum of the areas of the regions having (k - ) each has at least 25% of the total area of the plate, and the average diameter of the largest circle included in each region having the k + value is ( π/850)×
(B/m) 1/2 or more.
JP58115191A 1983-06-28 1983-06-28 Sound insulation plate Granted JPS607490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115191A JPS607490A (en) 1983-06-28 1983-06-28 Sound insulation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115191A JPS607490A (en) 1983-06-28 1983-06-28 Sound insulation plate

Publications (2)

Publication Number Publication Date
JPS607490A JPS607490A (en) 1985-01-16
JPH0447837B2 true JPH0447837B2 (en) 1992-08-05

Family

ID=14656601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115191A Granted JPS607490A (en) 1983-06-28 1983-06-28 Sound insulation plate

Country Status (1)

Country Link
JP (1) JPS607490A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229048A (en) * 1985-04-03 1986-10-13 日本ゼオン株式会社 Sound blocking structure
JPH01262861A (en) * 1988-04-14 1989-10-19 Zuikou:Kk Absorptive product
JPH0226555A (en) * 1988-07-17 1990-01-29 Zuikou:Kk Body fluid absorber

Also Published As

Publication number Publication date
JPS607490A (en) 1985-01-16

Similar Documents

Publication Publication Date Title
RU2405216C2 (en) Layered structure having double order frequency-selective characteristic
CN106782475B (en) Composite resonance sound absorption structure
WO2022000954A1 (en) Keel, sound insulating wall body unit and wall body
GB2499063A (en) Building panel with elastomer-modified bituminous strips
CN210639979U (en) Inhale sound insulation composite member and transformer
JP2007107315A (en) Sound insulating partition wall
CN106917457A (en) low-frequency resonance sound absorption structure
JPH0447837B2 (en)
JPH1037619A (en) Sound-proof door
CN213014769U (en) Micropore composite full-frequency sound absorption plate
CN114645592A (en) Sound-absorbing wallboard
JPH0312885Y2 (en)
CN111809756A (en) Sound absorption and insulation board
JPS5936572Y2 (en) soundproof wall material
CN212613129U (en) Sound absorption and insulation board
JP2004293065A (en) Low-acoustic-radiation type interior finishing structure and interior finishing panel material
JPH0448238B2 (en)
JPH0447839B2 (en)
CA2248797A1 (en) Sound deadening panels
JPH0447838B2 (en)
JP2004116118A (en) Structural panel
JP2005070562A (en) Sound insulating lightweight structural member and manufacturing method therefor
JPH08109687A (en) Sound-insulating triple wall body structure
JPH0425139B2 (en)
JPS63239497A (en) Sound isolating composite