JPH0425139B2 - - Google Patents

Info

Publication number
JPH0425139B2
JPH0425139B2 JP59215886A JP21588684A JPH0425139B2 JP H0425139 B2 JPH0425139 B2 JP H0425139B2 JP 59215886 A JP59215886 A JP 59215886A JP 21588684 A JP21588684 A JP 21588684A JP H0425139 B2 JPH0425139 B2 JP H0425139B2
Authority
JP
Japan
Prior art keywords
sound insulation
surface material
wall
sound
areal density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59215886A
Other languages
Japanese (ja)
Other versions
JPS6194749A (en
Inventor
Koji Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP59215886A priority Critical patent/JPS6194749A/en
Publication of JPS6194749A publication Critical patent/JPS6194749A/en
Publication of JPH0425139B2 publication Critical patent/JPH0425139B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多重壁構造、特に所謂GL工法壁と呼
ばれる多重壁構造の遮音性を改善した遮音構造体
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sound insulation structure that improves the sound insulation properties of a multi-wall structure, particularly a multi-wall structure called a GL method wall.

(従来の技術) 近年、住宅騒音等の問題に対処するため、多く
の遮音技術、材料の研究開発がなされている。又
建材においては、建材性能の高性能化が求められ
ている。即ち、省資源・省エネルギー、安全性の
向上の観点から断熱化、軽量化、不燃化が要求さ
れ、空間の拡大、施工性の改善等の観点から薄型
化が求められている。この為、遮音材料及び遮音
構造も、これらの要求に合致するものが求められ
るに至つている。この傾向はマンシヨン等を中心
とするコンクリート集合住宅に於いても見られ
る。一般にGL工法と呼ばれる石こうボード等を
表面材とし、接着材によりコンクリートスラブ素
面に点付施工する工法は、施工性、不燃性、施工
コスト等の点で極めて優れた工法と言われてい
る。このGL工法では、通常厚さ9mm程度の石こ
うボードを用いる事と、接着材を使用する事によ
つて上記長所が生みだされているが、反面、共鳴
透過やコインシデンス効果による遮音性能の著し
い低下を来しており、この改善が重要課題とされ
ている。
(Prior Art) In recent years, in order to deal with problems such as residential noise, research and development of many sound insulation technologies and materials have been carried out. In addition, building materials are required to have higher performance. That is, insulation, weight reduction, and non-combustibility are required from the viewpoints of saving resources, energy, and improving safety, and thinning is required from the viewpoint of expanding space and improving workability. For this reason, sound insulating materials and sound insulating structures that meet these requirements are now required. This trend can also be seen in concrete housing complexes, mainly condominiums. Generally called the GL method, which uses gypsum board as a surface material and attaches dots to the concrete slab surface using an adhesive, it is said to be an extremely superior construction method in terms of ease of construction, nonflammability, construction cost, etc. The GL construction method achieves the above advantages by using a gypsum board with a thickness of about 9 mm and adhesive, but on the other hand, the sound insulation performance deteriorates significantly due to resonance transmission and coincidence effects. This has led to improvements being made as an important issue.

このGL工法壁の遮音性能は、コンクリートス
ラブ壁単体に対し、表面材及び中空層の付設によ
つて、中音域では向上するものの、低音域では共
鳴透過、高音域では表面材のコインシデンス効果
によつて著しい遮音欠損すなわち、大略10dB以
上の性能低下を来たす。この為、隣戸間の重大な
騒音トラブルを引き起こしている。
The sound insulation performance of this GL method wall is improved in the mid-range by adding a surface material and a hollow layer compared to a single concrete slab wall, but it is due to resonance transmission in the low-frequency range and the coincidence effect of the surface material in the high-frequency range. This results in a significant sound insulation loss, that is, a performance drop of approximately 10 dB or more. This causes serious noise problems between neighboring rooms.

(発明が解決しようとする問題点) GL工法に於ける上記遮音欠損に対し、既に
様々な対策が試みられている。例えば、表面材の
制振構造化、表面材の多層化乃至重量化、空気層
の拡大、接着材の施工パターンの変更、接着材部
分への弾性材料の付加等を掲げる事ができるが、
いずれもGL工法の長所を保持したままで前記し
た遮音欠損の改善効果を発揮させる事ができない
状態にある。この為、GL工法は接着材を用いず、
木製の固定用枠組を用いて石こうボード(表面
材)を施工する方法に転換されつつあるが、これ
は前記したGL工法と呼べるものではなく、また、
施工性やコストの面で大巾に前記GL工法に劣る
ものとなつている。しかも前記した遮音欠損の問
題は殆んど改善されていない。
(Problems to be Solved by the Invention) Various countermeasures have already been attempted to address the above sound insulation deficiency in the GL construction method. For example, it is possible to make the surface material into a vibration damping structure, make the surface material multi-layered or heavier, expand the air layer, change the adhesive construction pattern, add elastic material to the adhesive part, etc.
In either case, the advantages of the GL construction method are retained, but the effect of improving the sound insulation deficiency described above cannot be demonstrated. For this reason, the GL method does not use adhesives,
The method of constructing gypsum boards (surface material) using wooden fixing frameworks is being converted, but this cannot be called the GL construction method described above;
It is vastly inferior to the GL construction method in terms of workability and cost. Moreover, the problem of sound insulation deficiency described above has hardly been improved.

この様にGL工法壁に於ける遮音欠損の改善は
非常に困難な問題とされている。
In this way, improving sound insulation defects in GL construction walls is considered to be a very difficult problem.

(問題点を解決するための手段) このようなGL工法壁の遮音欠損の改善につい
て本発明者はすでに特願昭58−115192等によつて
提起してきたが、さらに別の手法によつても改善
できることを見出し、本発明に至つた。
(Means for solving the problem) The present inventor has already proposed improvement of the sound insulation deficiency of the GL method wall in patent application No. 58-115192, etc., but it has also been proposed by another method. We have discovered that this can be improved, leading to the present invention.

本発明は、従来の考え方の多くが、表面材の制
振や欠損周波数の一括的大幅移動を狙つたもので
あるのに対し、壁体の相対向する両面の表面材の
各部の音響的挙動に差異を与えるべく、面密度を
不均質化し、各部分の透過音の遮音欠損周波数を
わずかに異ならしめるだけで、遮音欠損を大巾に
改善しようとするものであつて、その要旨は、重
量性壁材の両面に中空層を設けて表面材を各施工
してなる構造体において、該構造体の両面に施工
され各表面材がその加重平均面密度を異にして構
成される遮音構造体に係る。
While most of the conventional ideas aim at damping the vibration of the surface material or significantly shifting the missing frequency all at once, the present invention aims to improve the acoustic behavior of each part of the surface material on both opposing sides of the wall. The aim is to significantly improve the sound insulation deficit by making the areal density non-uniform and making the sound insulation deficit frequencies of the transmitted sound of each part slightly different. A sound insulating structure in which a hollow layer is provided on both sides of a natural wall material and each surface material is applied, and each surface material is formed on both sides of the structure and has a different weighted average areal density. Pertains to.

なお、重量性壁材に対し相対向する二つの表面
材をSおよびS′とし、このSおよびS′の加重平均
面密度をそれぞれmおよびm′とすれば、mおよ
びm′のうち大なるものと小なるものの比(もし
m>m′ならばm/m′)が1.2以上となる事が好ま
しく、1.5以上となる事がさらに望ましい。また、
重量性壁材の一方の面をA面、他方の面をB面と
すれば、A面の表面材とB面の表面材の一方また
は両方を、その同一面内で面密度を不均質化して
も良い。
In addition, if the two facing materials facing the heavy wall material are S and S', and the weighted average surface densities of S and S' are m and m', respectively, then the larger of m and m' The ratio of small to small (m/m' if m>m') is preferably 1.2 or more, and more preferably 1.5 or more. Also,
If one side of the heavy wall material is the A side and the other side is the B side, the surface density of one or both of the surface material on the A side and the surface material on the B side can be made inhomogeneous within the same surface. It's okay.

以下に本発明に係る遮音構造体について説明す
る。本発明により、遮音欠損を改善できる理由と
しては以下のように考えられる。
The sound insulation structure according to the present invention will be explained below. The reason why the present invention can improve sound insulation defects is considered to be as follows.

まず、GL工法壁の様な極めて大きな質量と剛
性を持つ重量性壁材に、軽量な表面材を設けた構
造体にあつては、A,B両面の表面材および中空
層と重量性壁材とで構成される5層構造が、一般
に音響学的に言われる(中空層付き)三重壁とし
ての挙動より、A面ないしB面に構成される(中
空層付き)二重壁の挙動の寄与が大きく、特に低
音域の共鳴透過周波数領域(以後frmd域と呼ぶ)
では、本構造体はあたかもA面およびB面の二つ
の二重壁の結合体の如く振舞う。この二重壁構造
部分に、二重壁の共鳴が生じた際に、表面材の振
幅は重量性壁材の振幅に対し極めて大きいため、
重量性壁材の共振振幅は事実上無視でき、両表面
材の共振振動が重要な因子となるためである。従
つて、A面およびB面の二つのfrmd域(欠損周
波数域)が合致すると、この周波数域で音響透過
損失(T,L)は極めて大きく落ち込む事にな
る。これに対し、A,B両面の対向する領域の表
面材の面密度を所定以上異ならせると、それぞれ
のfrmd域は合致せず、その相互の周波数領域の
移動巾に応じて、frmd域の遮音欠損は改善され
ることを見出した。また、これは二重壁の共鳴と
は別の表面材固有の振動についても当はまり、該
板の固有振動数が先の共鳴周波数と近接している
場合には特に顕著な効果となつて現われることも
わかつた。
First, in the case of a structure in which a lightweight surface material is provided on a heavy wall material with extremely large mass and rigidity, such as a GL method wall, the surface material and hollow layer on both sides A and B and the heavy wall material The five-layer structure composed of is large, especially in the low-frequency resonant transmission frequency region (hereinafter referred to as the frmd region)
Then, this structure behaves as if it were a combination of two double walls, the A side and the B side. When double wall resonance occurs in this double wall structure, the amplitude of the surface material is extremely large compared to the amplitude of the heavy wall material, so
This is because the resonance amplitude of the heavy wall material can be virtually ignored, and the resonance vibration of both surface materials becomes an important factor. Therefore, when the two frmd regions (missing frequency regions) of the A side and the B side coincide, the sound transmission loss (T, L) drops extremely significantly in this frequency range. On the other hand, if the surface densities of the surface materials in the opposing areas of both sides A and B are made to differ by more than a predetermined value, the respective frmd ranges will not match, and the sound insulation of the frmd range will change depending on the width of movement of the mutual frequency ranges. It was found that the defects were improved. This also applies to the vibration inherent to the surface material, which is different from the resonance of the double wall, and this effect becomes particularly noticeable when the natural frequency of the plate is close to the resonant frequency. I also understood that.

さらに、遮音構造体の各部での入射音または透
過音によつて生じた共鳴状態の程度、つまり共振
による表面材の振幅は構成領域の条件によつて変
化するが、全領域にわたつて同一の共振周波数を
保つ構造体に比し、共振周波数を異にする構造体
の方が共振レベルが小さくなり、かつ、ある領域
で発生した共振状態が他の面密度を異にする領域
での減衰によつて低下する作用は、表面材の面密
度を異にする複数の領域間の不均質化パターンに
より変化するが、不均質化領域が小形化すると同
一表面材内での減衰が増加し、大形化に伴ない異
表面材間での減衰が相対的に増加することが見出
された。従つて、両表面材がともに均質な面密度
から構成される場合、前記した遮音欠損を改善す
るには相対向して構成される両表面材の面密度を
異にする必要があり、好ましくは面密度比を1.2
以上、更に好ましくは1.5以上の差異が必要であ
る。
Furthermore, the degree of resonance caused by incident sound or transmitted sound in each part of the sound insulation structure, that is, the amplitude of the surface material due to resonance, changes depending on the conditions of the component area, but is the same over the entire area. Compared to a structure that maintains the resonant frequency, a structure that has a different resonant frequency has a lower resonance level, and the resonance state that occurs in one area causes attenuation in another area that has a different areal density. This decreasing effect changes depending on the inhomogeneous pattern between multiple regions with different areal densities of the surface material, but as the inhomogeneous region becomes smaller, the attenuation within the same surface material increases and becomes larger. It was found that the attenuation between materials with different surfaces increases relatively as the shape changes. Therefore, when both surface materials are composed of homogeneous areal densities, in order to improve the sound insulation deficiency described above, it is necessary to make the surface densities of the two facing materials different, and preferably Areal density ratio 1.2
A difference of 1.5 or more is required.

一方、同一表面材内の面密度を不均質化する場
合には、不均質化領域に内包される最大円の直径
が3cm以上、好ましくは10cm以上であれば、振動
挙動が周辺の他の領域と分離し易くなり、欠損周
波数が分散化され易くなる。
On the other hand, when making the areal density within the same surface material inhomogeneous, if the diameter of the maximum circle included in the inhomogeneous area is 3 cm or more, preferably 10 cm or more, the vibration behavior is different from that of the surrounding areas. This makes it easier to separate the missing frequencies, making it easier to disperse the missing frequencies.

なお、表面材としては、重量性壁材に対し、面
密度比(加重平均)で0.3以下であるものを用い
るのが好ましい。
In addition, as the surface material, it is preferable to use one having an areal density ratio (weighted average) of 0.3 or less with respect to the heavy wall material.

ここに重量性壁材としてはコンクリートスラブ
壁、モルタル壁、石壁、れんが壁等、また表面材
としては石こうボード、合板、プラスチツクボー
ド等が用いられる。
Here, as heavy wall materials, concrete slab walls, mortar walls, stone walls, brick walls, etc. are used, and as surface materials, gypsum boards, plywood, plastic boards, etc. are used.

(実施例) 以下に本発明を実施例にもとづき更に説明す
る。
(Examples) The present invention will be further explained below based on Examples.

比較例 1 第1図に示す如き厚さ約14cmのコンクリートス
ラブ壁1の両面に第2図に示す如く約30cmピツチ
の格子点に接着材4,4′を付着させ、この上か
ら面密度6.8Kg/m2、厚さ9mmの0.9×1.8mの石こ
うボード2,2′を中空層3,3′を設けて各2枚
張着施工した。この時の中空層3,3′の厚みは
約15mmで、接着材による全壁体面積に対する接着
面積比率は約20%であつた。接着材の完全硬化後
に、このGL工法壁の音響透過損失(T・L)を
測定した。結果を第5図に示す。図に示す通り、
約250Hzと4000Hzの領域に著しい遮音欠損が出
現したが、これ等は低音域および石こうボードの
高音域の落ち込みであり、GL工法壁特有のもの
である。二重壁化によつて中音域では遮音性が向
上している反面、遮音欠損による落ち込み量も大
略10〜15dB程度に達している。
Comparative Example 1 Adhesives 4 and 4' are applied to both sides of a concrete slab wall 1 with a thickness of about 14 cm as shown in Fig. 1 at lattice points of about 30 cm as shown in Fig. 2, and the area density of 6.8 is applied from above. Two 0.9 x 1.8 m gypsum boards 2 and 2' each having a weight of Kg/m 2 and a thickness of 9 mm were pasted together with hollow layers 3 and 3'. The thickness of the hollow layers 3, 3' at this time was approximately 15 mm, and the adhesive area ratio of the adhesive to the total wall area was approximately 20%. After the adhesive was completely cured, the sound transmission loss (T·L) of this GL method wall was measured. The results are shown in Figure 5. As shown in the figure,
Significant sound insulation defects appeared in the approximately 250 Hz and 4000 Hz regions, but this was due to a drop in the low frequency range and the high frequency range of the plasterboard, which is unique to GL construction walls. Although the double wall structure improves sound insulation in the midrange, the amount of sound reduction due to sound insulation loss also reaches approximately 10 to 15 dB.

比較例 2 比較例1のGL工法壁の石こうボードを全て面
密度が9Kg/m2の重量化石こうボードに変更し、
同様に音響透過損失の測定を行なつた。結果を第
5図に示す。この工法壁はGL工法壁の遮音欠損
の代表的な改善方法と考えられている面材の重量
化に沿つたものである。しかし、図に示す如く、
低音域が先の比較例1(GL工法壁)に較べ低音域
側(欠損域:200Hz)へ移行しているが、依然と
して欠損量は十数dB程度あり、遮音欠損はほと
んど改善されていない。高音域では、欠損周波数
が中音域側に移行し、むしろ好ましくない状態と
なつており、また欠損は殆んど改善されていな
い。
Comparative Example 2 All the gypsum boards on the GL method wall in Comparative Example 1 were changed to heavy fossil gypsum boards with an areal density of 9Kg/ m2 ,
Similarly, sound transmission loss was measured. The results are shown in Figure 5. This method of wall construction is in line with increasing the weight of the facing material, which is considered to be a typical method for improving the sound insulation defects of GL method walls. However, as shown in the figure,
Although the bass range has shifted to the lower range side (deficit range: 200Hz) compared to the previous Comparative Example 1 (GL construction wall), the loss is still about 10-odd dB, and the sound insulation deficit has hardly been improved. In the high range, the missing frequency shifts to the middle range side, resulting in a rather unfavorable state, and the loss has hardly been improved.

実施例 1 比較例1で用いたコンクリートスラブ壁の両面
に比較例1と同様に接着材を格子状に点付し、下
記の表面材を張着施工した。一方の表面材には面
密度6.8Kg/m2、厚さ9mmの石こうボードを用い、
他方の表面材には該石こうボードに面密度4.0Kg/
m2、厚さ1.1mmの軟質遮音シート(ゼオン化成(株)
製、サンダムS10、塩化ビニル樹脂に鉄粉等を混
入しシート状としたもの)を全面貼着したものを
用いた。この壁体についても比較例1と同様に音
響透過損失の測定を行つた。結果を第6図に示
す。
Example 1 Adhesive was dotted in a grid pattern on both sides of the concrete slab wall used in Comparative Example 1 in the same manner as in Comparative Example 1, and the following surface material was applied. One surface material is a gypsum board with an areal density of 6.8Kg/m 2 and a thickness of 9mm.
For the other surface material, the gypsum board has an areal density of 4.0Kg/
m 2 , 1.1 mm thick soft sound insulation sheet (Zeon Kasei Co., Ltd.)
Sandum S10, manufactured by Komatsu, Ltd., a sheet made of vinyl chloride resin mixed with iron powder, etc.) was used. The sound transmission loss of this wall was also measured in the same manner as in Comparative Example 1. The results are shown in Figure 6.

図に示すとおり、本実施例においては、比較例
に比し低音域で約5dB、高音域でも約5dBの欠損
を改善している。本実施例においては相対向する
表面材の面密度比は6.8+4.0/6.8≒1.6であつた。
As shown in the figure, the present example improves the loss by about 5 dB in the bass range and by about 5 dB in the treble range compared to the comparative example. In this example, the areal density ratio of the opposing surface materials was 6.8+4.0/6.8≈1.6.

実施例 2 表面材として、一方を比較例1と同じ面密度
6.8Kg/m2の均質の石こうボードを用い、他方を同
じ面密度6.8Kg/m2の石こうボードを45×45cmの16
領域に分割し、第3図に示す如く交互に実施例1
で用いた軟質遮音シート(面密度4.0Kg/m2)を貼
着した(斜線領域)ものを用い、他は比較例1と
同様にして壁体を構成し、音響透過損失の測定を
行つた。結果を第6図に示す。なお相対向する表
面材の加重平均面密度比は8.8/6.8≒1.29であり、
不均質化領域における最大円の直径は45cmであつ
た。図に示す如く、比較例に比し、低音域で
6dB、高音域で5dBの欠損を改善している。
Example 2 As a surface material, one side had the same surface density as Comparative Example 1.
A homogeneous gypsum board with a density of 6.8Kg/m 2 is used, and the other is a gypsum board with the same surface density of 6.8Kg/m 2 measuring 45 x 45cm.
Divide into areas and alternately apply Example 1 as shown in Figure 3.
The walls were constructed in the same manner as in Comparative Example 1, except that the soft sound insulating sheet (area density 4.0 Kg/m 2 ) used in Comparative Example 1 was pasted (shaded area), and the sound transmission loss was measured. . The results are shown in Figure 6. The weighted average areal density ratio of opposing surface materials is 8.8/6.8≒1.29,
The diameter of the largest circle in the heterogenized region was 45 cm. As shown in the figure, compared to the comparative example,
6dB, improving the 5dB loss in the high frequency range.

実施例 3 表面材として、一方を面密度6.8Kg/m2の石こう
ボードに第4図に示す如く60×90cmの6領域に分
割し、交互に実施例1で用いた軟質遮音シート
(面密度40Kg/m2)を貼着した(斜線領域)ものを
用い、他方を面密度9.0Kg/m2の石こうボードを6
領域に分割し、交互に実施例1で用いた軟質遮音
シートを貼着したものを用いて、比較例1と同様
にして壁体を構成し、音響透過損失の測定を行つ
た。結果を第6図に示す。なお、壁体の構成に際
し、相対向する両表面材の配置を一方の表面材の
重量領域が他方の表面材の軽量領域に対応するよ
うに施工した。
Example 3 As a surface material, a gypsum board with an areal density of 6.8 Kg/m 2 was divided into 6 areas of 60 x 90 cm as shown in Figure 4, and the soft sound insulating sheets used in Example 1 (area density 40Kg/m 2 ) (shaded area), and the other is a gypsum board with an areal density of 9.0Kg/m 2 6
A wall was constructed in the same manner as in Comparative Example 1 by dividing the area into areas and alternately pasting the soft sound insulating sheets used in Example 1, and measuring the sound transmission loss. The results are shown in Figure 6. In constructing the wall, the opposing surface materials were arranged so that the weight area of one surface material corresponded to the light weight area of the other surface material.

本実施例における相対向する表面材の加重平均
面密度は11/8.8≒1.25であり、不均質化領域に
おける最大円の直径は60cmであつた。図に示す如
く、比較例と比し、低音域で6〜7dB、高音域で
も6〜7dB欠損を改善している。
The weighted average areal density of the opposing surface materials in this example was 11/8.8≈1.25, and the diameter of the maximum circle in the non-homogenized region was 60 cm. As shown in the figure, compared to the comparative example, the loss has been improved by 6 to 7 dB in the bass range and by 6 to 7 dB in the treble range.

(発明の効果) このように、表面材の面密度の不均質化形態に
よつて、効果も変化するが、相対向する表面材の
面密度を所定以上異ならせることにより、低音
域、高音域における遮音欠損を大幅に改善するこ
とができる。その改善効果も大略5dB程度以上で
あり、遮音等級(D−値)の一ランク向上を可能
としている。これは既存の工法、構造体ではとう
てい成し難いことである。本発明の実施例をGL
工法にもとづき説明したが、GL工法に限られる
ものでなく、また中空層に吸音材等を充填した場
合等も本発明に当然に含まれるものである。
(Effect of the invention) As described above, although the effect changes depending on the form of non-uniformity of the areal density of the surface materials, by making the areal densities of the opposing surface materials different by more than a predetermined value, it is possible to improve the bass and high frequency ranges. can significantly improve sound insulation deficiencies in The improvement effect is approximately 5 dB or more, making it possible to improve the sound insulation class (D-value) by one rank. This is extremely difficult to achieve using existing construction methods and structures. Examples of the invention
Although the explanation has been made based on the construction method, the present invention is not limited to the GL construction method, and also cases where the hollow layer is filled with a sound absorbing material or the like are naturally included in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGL工法壁の部分断面図であり、第2
図は表面材に接着材を点付した状態を示す図であ
り、第3図及び第4図は面密度を不均質化した表
面材の平面図であり、第5図は比較例1,2の音
響透過損失を示す図であり、第6図は実施例1〜
3の音響透過損失を示す図である。
Figure 1 is a partial cross-sectional view of the GL method wall, and Figure 2
The figure shows a state in which the adhesive is dotted on the surface material, FIGS. 3 and 4 are plan views of the surface material with non-uniform areal density, and FIG. FIG. 6 is a diagram showing the sound transmission loss of Examples 1-
FIG. 3 is a diagram showing the sound transmission loss of No. 3.

Claims (1)

【特許請求の範囲】 1 重量性壁材の両面に中空層を設けて表面材を
各施工してなる構造体において、該構造体の両面
に施工される各表面材がその加重平均面密度を異
にして構成されることを特徴とする遮音構造体。 2 前記両表面材の加重平均面密度比を1.2以上
異にして構成される特許請求の範囲第1項に記載
の遮音構造体。 3 前記表面材が面密度を異にする複数の領域か
ら構成される特許請求の範囲第1項又は第2項に
記載の遮音構造体。
[Scope of Claims] 1. In a structure formed by providing a hollow layer on both sides of a heavy wall material and applying each surface material, each surface material applied to both sides of the structure has a weighted average areal density. A sound insulation structure characterized by being configured differently. 2. The sound insulation structure according to claim 1, wherein the weighted average areal density ratios of both the surface materials are different from each other by 1.2 or more. 3. The sound insulation structure according to claim 1 or 2, wherein the surface material is composed of a plurality of regions having different areal densities.
JP59215886A 1984-10-15 1984-10-15 Sound-insulating structure Granted JPS6194749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215886A JPS6194749A (en) 1984-10-15 1984-10-15 Sound-insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215886A JPS6194749A (en) 1984-10-15 1984-10-15 Sound-insulating structure

Publications (2)

Publication Number Publication Date
JPS6194749A JPS6194749A (en) 1986-05-13
JPH0425139B2 true JPH0425139B2 (en) 1992-04-30

Family

ID=16679884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215886A Granted JPS6194749A (en) 1984-10-15 1984-10-15 Sound-insulating structure

Country Status (1)

Country Link
JP (1) JPS6194749A (en)

Also Published As

Publication number Publication date
JPS6194749A (en) 1986-05-13

Similar Documents

Publication Publication Date Title
CN105369936A (en) Metal sheet light partition wall
CN114670521B (en) Sandwich honeycomb embedded coupling structure sound insulation board
JPH0425139B2 (en)
JPH0312885Y2 (en)
CN114645592A (en) Sound-absorbing wallboard
CN210622171U (en) Vibration-damping sound-insulating assembled external wall panel
JPS649421B2 (en)
JPS5936572Y2 (en) soundproof wall material
JPH0447837B2 (en)
JPS63239497A (en) Sound isolating composite
CN217840527U (en) Glass fiber sound-absorbing board for ceiling
CN215406663U (en) Sound absorption diffusion composite structure
CN211138386U (en) Honeycomb sound insulation floor
CN213204828U (en) Noise reduction reinforced floor
JPH0468418B2 (en)
JPH0447839B2 (en)
JP2586619Y2 (en) Sound insulation composite panel
JPH0447838B2 (en)
JPS63239496A (en) Sound isolating laminate
JPS6229646A (en) Sound blocking structure
JPH0132461Y2 (en)
JPH0351448A (en) Sound insulating wall structure
JPH0335767Y2 (en)
JPS60416Y2 (en) Sound insulation fireproof partition wall
JPH0542476Y2 (en)