JPH08109010A - Production nitride powder - Google Patents

Production nitride powder

Info

Publication number
JPH08109010A
JPH08109010A JP24442694A JP24442694A JPH08109010A JP H08109010 A JPH08109010 A JP H08109010A JP 24442694 A JP24442694 A JP 24442694A JP 24442694 A JP24442694 A JP 24442694A JP H08109010 A JPH08109010 A JP H08109010A
Authority
JP
Japan
Prior art keywords
powder
raw material
particles
surfactant
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24442694A
Other languages
Japanese (ja)
Other versions
JP3603230B2 (en
Inventor
Takashi Shinko
貴史 新子
Isao Nakatani
功 中谷
Katsuto Nakatsuka
勝人 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Nittetsu Mining Co Ltd
Original Assignee
National Research Institute for Metals
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Nittetsu Mining Co Ltd filed Critical National Research Institute for Metals
Priority to JP24442694A priority Critical patent/JP3603230B2/en
Publication of JPH08109010A publication Critical patent/JPH08109010A/en
Application granted granted Critical
Publication of JP3603230B2 publication Critical patent/JP3603230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To form a nitride powder maintaining the initial shapes of the starting powder particles without sintering between the particles during the nitriding. CONSTITUTION: After coating film containing a surfactant comprising oleic, linolic or linolenic acids or their salts or alkylamines is formed on the surface of the starting powder particles, the starting particles are introduced together with crushing medium 14 comprising particles of zirconia, alumina, silica and soda ash glass into a rotary heater 1. As the heater 1 is rotated, they are heated in a nitriding gas atmosphere to effect nitriding. The powder particles can be prevented from sintering each other by dispersing action of the coating film of surfactant and by crushing action of the crushing medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化物粉体の製造方法
に関し、より詳細には窒化物ファインセラミックス原料
粉体や磁性トナー用原料粉体、磁気記録材料用原料粉体
に好適な窒化物粉体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nitride powder, and more particularly to a nitride powder suitable for a nitride fine ceramics raw material powder, a magnetic toner raw material powder, and a magnetic recording material raw material powder. The present invention relates to a method for producing powder.

【0002】[0002]

【従来の技術】従来より、ファインセラミックスや磁性
トナー、磁気記録材料等の原料として、金属や金属酸化
物、金属塩化物等の粉体に窒化処理を施した金属窒化物
粉体が用いられている。この金属窒化物を製造する方法
として、種々の方法が提案、実施されており、例えば、
窒化鉄粉体については、窒化性雰囲気においてプラズマ
アーク中に鉄の粉末を供給する方法や、プラズマアーク
により鉄を蒸発させて鉄蒸気とし、これに窒素ガスを供
給することにより、粒径0.01μm程度の窒化鉄の超
微粒子を製造している。また、金属蒸気や金属塩化物等
の蒸気を、アンモニアガスと還元性のガス雰囲気中で反
応させて金属窒化物の微粉末を製造する方法も採られて
いる。更に、ロータリキルン等の焼成装置を用いて、高
温窒化性雰囲気中に原料粉体を導入し、原料粉体の窒化
物を製造する方法も行われている。
2. Description of the Related Art Conventionally, metal nitride powder obtained by nitriding powder of metal, metal oxide, metal chloride, etc. has been used as a raw material for fine ceramics, magnetic toner, magnetic recording materials and the like. There is. As a method for producing this metal nitride, various methods have been proposed and carried out, for example,
Regarding the iron nitride powder, a method of supplying iron powder into a plasma arc in a nitriding atmosphere or a method of evaporating iron by a plasma arc into iron vapor and supplying nitrogen gas thereto, a grain size of 0. Ultra-fine particles of iron nitride having a size of about 01 μm are manufactured. Further, a method of producing fine powder of metal nitride by reacting vapor of metal vapor or metal chloride with ammonia gas in a reducing gas atmosphere is also adopted. Furthermore, a method of producing a nitride of the raw material powder by introducing the raw material powder into a high temperature nitriding atmosphere using a calcining device such as a rotary kiln is also practiced.

【0003】しかし、上記方法においては、プラズマ法
のように金属蒸気と窒化性ガスとの反応による方法で
は、窒化物粉体が数珠状に連なった状態で生成したり、
またロータリキルンを使用した焼成による方法では、原
料粉体同士が窒化反応進行中に焼結して大径粒子が生成
する等の問題を抱えていた。そこで、本発明の出願人ら
は、先に特願平5−61465号において、回転式加熱
炉内に原料粉体とともに粉砕媒体を導入し、回転により
両者を強く攪拌しながら高温の窒化性雰囲気において窒
化反応を進行させると同時に解砕並びに粉砕を行うこと
により、粉体粒子同志の焼結のない金属窒化物単粒子を
製造する方法を提案している。
However, in the above method, in the method of reacting a metal vapor and a nitriding gas like the plasma method, nitride powder is produced in a beaded state,
Further, in the method of firing using a rotary kiln, there is a problem that raw material powders are sintered during the nitriding reaction and large particles are generated. Therefore, the applicants of the present invention previously disclosed in Japanese Patent Application No. 5-61465 a high temperature nitriding atmosphere while introducing a pulverizing medium together with the raw material powder into a rotary heating furnace and stirring them strongly by rotation. Proposes a method for producing a metal nitride single particle without sintering of powder particles by simultaneously crushing and crushing the nitriding reaction.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
願平5−61465号に記載された窒化物粒子の製造方
法では、窒化反応進行中に生成した焼結粉体を、粉砕媒
体により強制的に解砕並びに粉砕して前記焼結粉体を分
離する方法であるため、粉砕媒体は原料粉体に汚染の影
響を与えず、しかも熱的、機械的強度に優れた物質から
形成されていることが好ましく、また解砕、粉砕効率を
考慮するとある程度比重の大きな材料の方が好ましい。
そのため、使用可能な粉砕媒体の種類が制約されて、高
価なものを使用しなければならない場合がある。また、
高比重の粉砕媒体を使用した際には、焼結粉体が必要以
上に解砕、粉砕されたり、更には焼結が起こっていない
粉体までもが破壊されることがあり、その結果所望の粒
径を有する窒化物の単粒子(それぞれの粒子が単一に独
立して存在し、容易にそれぞれの単一粒子に分散可能な
粒子)の収率が低下したり、あるいは多量の微細粉末が
生成して加熱炉の炉壁に付着して反応効率が低下してい
まう。
However, in the method for producing nitride particles described in the above-mentioned Japanese Patent Application No. 5-61465, the sintered powder produced during the progress of the nitriding reaction is forced by a grinding medium. Since it is a method of crushing and crushing to separate the sintered powder, the crushing medium does not affect the raw material powder by contamination and is formed of a material having excellent thermal and mechanical strength. In view of the crushing and crushing efficiency, a material having a relatively large specific gravity is preferable.
Therefore, the type of grinding medium that can be used is limited, and an expensive one may have to be used. Also,
When using a grinding medium with high specific gravity, the sintered powder may be crushed and crushed more than necessary, and even powder that has not been sintered may be destroyed. Yield of nitride single particles with different particle size (particles that exist independently and can be easily dispersed in each single particle), or a large amount of fine powder Are generated and adhere to the furnace wall of the heating furnace, and the reaction efficiency is decreasing.

【0005】従って、本発明は窒化反応中に粉体同士が
焼結することなく、しかも原料粉体の初期の形状が維持
された窒化物粉体の製造方法を提供することを目的とす
る。
Therefore, it is an object of the present invention to provide a method for producing a nitride powder in which the powders do not sinter during the nitriding reaction and the initial shape of the raw material powder is maintained.

【0006】[0006]

【課題を解決するための手段及び作用】本発明者らは、
窒化物粉体の製造方法に関する上記目的を達成すべく鋭
意研究した結果、原料粉体の表面に界面活性剤を含む被
膜を形成した後、解砕媒体とともに回転式加熱炉内に導
入し、該回転式加熱炉を回転させながら窒化性ガス雰囲
気下で加熱して窒化反応を行うことにより、粉体同士の
焼結がなく、しかも初期の粒径を維持した窒化物粉体を
製造できることを見出し、本発明を完成するに至った。
前記界面活性剤は、オレイン酸、リノール酸、リノレン
酸またはその塩類、あるいはアルキルアミン類の少なく
とも1種であることが好ましい。前記解砕媒体は、ジル
コニア、アルミナ、シリカ、ソーダ灰ガラスの少なくと
も1種からなることが好ましい。
Means and Action for Solving the Problems The present inventors have
As a result of earnest research to achieve the above object relating to the method for producing a nitride powder, after forming a coating film containing a surfactant on the surface of the raw material powder, it was introduced into a rotary heating furnace together with a crushing medium, It was found that by heating in a nitriding gas atmosphere while rotating a rotary heating furnace to perform a nitriding reaction, it is possible to produce a nitride powder that does not sinter each other and maintains the initial particle size. The present invention has been completed.
The surfactant is preferably at least one of oleic acid, linoleic acid, linolenic acid or salts thereof, and alkylamines. The crushing medium is preferably made of at least one of zirconia, alumina, silica and soda ash glass.

【0007】本発明に用いられる原料粉体は、金属や合
金、金属間化合物、更にそれらの酸化物や塩化物等の金
属化合物からなる粉体であり、具体的には通常の磁性材
料として使用される鉄やコバルト、ニッケル、マンガ
ン、クロム等の金属や合金、あるいはそれらを含む金属
間化合物、その他にもアルミニウムやチタン、シリコン
およびネオジウム、サマリウム等の希土類金属等種々の
金属や合金、あるいはそれらを含む金属間化合物を挙げ
ることができる。ここで、本発明によれば、後述される
理由により原料粉体の初期の形状が窒化反応後も維持さ
れるために、これら原料粉体の粒径は生成窒化物粉体の
用途により適宜選択することが可能である。
The raw material powder used in the present invention is a powder composed of a metal, an alloy, an intermetallic compound, and a metal compound such as an oxide or a chloride thereof, and is specifically used as an ordinary magnetic material. Metals and alloys such as iron, cobalt, nickel, manganese, and chromium, or intermetallic compounds containing them, and various metals and alloys such as aluminum, titanium, silicon and neodymium, rare earth metals such as samarium, or the like. An intermetallic compound containing is mentioned. Here, according to the present invention, since the initial shape of the raw material powder is maintained after the nitriding reaction for the reason described below, the particle diameter of these raw material powders is appropriately selected depending on the use of the produced nitride powder. It is possible to

【0008】窒化反応に先立ち、前記原料粉体はその表
面が界面活性剤を含有する被膜により被覆される。この
界面活性剤含有被膜により、原料粉体の分散性が向上し
て窒化反応中に原料粉体同士が焼結することを防止でき
る。従って、前記界面活性剤としては、窒化反応温度に
達する前に分解、蒸発して原料粉体表面から完全に消失
してしまうと、粉体同士の焼結を防止する作用が得られ
ないために、比較的高い分解温度を有する化合物である
ことが好ましい。
Prior to the nitriding reaction, the surface of the raw material powder is coated with a film containing a surfactant. This surfactant-containing coating improves the dispersibility of the raw material powders and prevents sintering of the raw material powders during the nitriding reaction. Therefore, as the above-mentioned surfactant, if it decomposes and evaporates before reaching the nitriding reaction temperature and completely disappears from the surface of the raw material powder, the effect of preventing sintering of the powder particles cannot be obtained. It is preferable that the compound has a relatively high decomposition temperature.

【0009】前記界面活性剤として、例えば脂肪酸モノ
カルボン酸塩、N−アシロイルグルタミン酸塩、アルキ
ルベンゼンスルホン酸塩、ナフタレンスルホン酸塩−ホ
ルムアルデヒド縮合物、スルホコハク酸ジアルキルエス
テル、硫酸アルキル塩、硫酸アルキルポリオキシエチレ
ン塩、リン酸アルキル塩などのアニオン系界面活性剤、
アルキルアミン塩、アルキルトリメチルアンモニウム
塩、ジアルキルジメチルアンモニウム塩、アルキルジメ
チルベンジルアンモニウム塩などのカチオン系界面活性
剤、グリセリン脂肪酸エステル、ソルビタン酸エステ
ル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキ
ルフェニルエーテル、ポリオキシエチレンポリオキシプ
ロピレンブロックコポリマー、ポリエチレングリコール
脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸
エステル、脂肪酸アルカノールアミド、N,N−ジメチ
ル−N−アルキルアミノ酢酸ベタイン、2−アルキル−
1−ヒドロキシエチル−1−カルボキシメチルイミダゾ
リニウムベタインなどの両性系界面活性剤を挙げること
ができる。また、原料粉体が鉄を含む物質からなる場合
には、界面活性剤として酸化鉄や金属鉄との親和性の良
いオレイン酸、リノール酸、リノレン酸またはその塩
類、あるいはアルキルアミン類が好ましい。
Examples of the above-mentioned surfactants include fatty acid monocarboxylic acid salts, N-acryloylglutamates, alkylbenzene sulfonates, naphthalene sulfonate-formaldehyde condensates, sulfosuccinic acid dialkyl esters, sulfuric acid alkyl salts and alkyl polyoxysulfates. Anionic surfactants such as ethylene salt and alkyl phosphate,
Cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, glycerin fatty acid esters, sorbitan acid esters, sucrose fatty acid esters, polyoxyethylene alkylphenyl ethers, polyoxyethylene Polyoxypropylene block copolymer, polyethylene glycol fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanolamide, N, N-dimethyl-N-alkylaminoacetic acid betaine, 2-alkyl-
An amphoteric surfactant such as 1-hydroxyethyl-1-carboxymethylimidazolinium betaine can be mentioned. When the raw material powder is made of a substance containing iron, oleic acid, linoleic acid, linolenic acid or salts thereof having high affinity with iron oxide or metallic iron, or alkylamines are preferable as the surfactant.

【0010】そして、これら界面活性剤を適当な溶媒に
溶解したコート溶液に、原料粉体あるいは該原料粉体の
分散溶液を加えて充分攪拌し、固液分離して固体成分を
分取し、洗浄、乾燥することによりその表面に界面活性
剤含有被膜が成膜された原料粉体が得られる。
Then, the raw material powder or a dispersion solution of the raw material powder is added to a coating solution in which these surfactants are dissolved in a suitable solvent, and the mixture is thoroughly stirred and solid-liquid separated to separate solid components. By washing and drying, a raw material powder having a surfactant-containing coating film on its surface can be obtained.

【0011】界面活性剤含有被膜の膜厚は特に限定され
るものではないが、窒化反応進行中に原料粉体表面に存
在していることが必要である。この界面活性剤含有被膜
の分解残量は、膜形成当初の膜厚、反応温度および反応
時間に依存する。そこで、界面活性剤含有被膜の残量と
膜形成当初の膜厚、反応温度および反応時間との関係を
予め求めておくことにより、上記のような膜厚制御が可
能となる。具体的には、反応に伴い発生するガス中の界
面活性剤の分解成分である炭化物あるいは炭化水素やC
Oxなどのガスを質量分析計で経時的に分析し、分析値
が所定値(例えば、0.1vol%)以下となった時点
をもって界面活性剤含有被膜が消失したものと判断でき
る。そこで、膜厚や反応温度を変えて被膜消失までの時
間を測定しておき、実際の生成過程における反応温度や
反応時間に適した膜形成当初の膜厚を設定することがで
きる。尚、膜形成当初の膜厚は、前記コート溶液の界面
活性剤濃度により調整することができる。また、前記コ
ート溶液に、界面活性剤の分散作用に影響を与えない程
度の量のバインダーや膜安定化剤を添加することによ
り、界面活性剤含有被膜の成膜性や膜の安定性を向上さ
せることができる。
The film thickness of the surfactant-containing coating is not particularly limited, but it is necessary that it is present on the surface of the raw material powder during the progress of the nitriding reaction. The remaining amount of decomposition of the surfactant-containing coating depends on the film thickness at the beginning of film formation, the reaction temperature and the reaction time. Therefore, by previously obtaining the relationship between the remaining amount of the surfactant-containing coating and the film thickness at the time of film formation, the reaction temperature, and the reaction time, the above film thickness control becomes possible. Specifically, carbide or hydrocarbon or C which is a decomposition component of the surfactant in the gas generated by the reaction.
A gas such as Ox is analyzed with a mass spectrometer over time, and it can be determined that the surfactant-containing coating has disappeared when the analysis value becomes a predetermined value (for example, 0.1 vol%) or less. Therefore, it is possible to set the film thickness at the beginning of film formation suitable for the reaction temperature and reaction time in the actual production process by changing the film thickness and reaction temperature and measuring the time until the film disappears. The film thickness at the beginning of film formation can be adjusted by the surfactant concentration of the coating solution. Further, by adding an amount of a binder and a film stabilizer to the coating solution in an amount that does not affect the dispersing action of the surfactant, the film-forming property and film stability of the film containing the surfactant are improved. Can be made.

【0012】これら原料粉体とともに回転式加熱炉に導
入される解砕媒体は、前記界面活性剤含有被膜により粉
体の分散性が改善されているために、従来のように高比
重の材料から形成される必要はなく、低比重の材料で形
成されていても粉体同士の焼結を充分に防止することが
可能である。例えば、ジルコニア粒子、アルミナ粒子、
シリカ粒子、ソーダ灰ガラス粒子などのセラミックス粒
子を好適に使用することができる。また、これらセラミ
ックス粒子を混合して使用することもできる。これら低
比重の材料からなる解砕媒体は、原料粉体とともに回転
加熱炉内に導入されても原料粉体を破壊したり、変形さ
せることが少ないために、生成窒化物粒子の粒径制御が
容易になる。
The disintegration medium introduced into the rotary heating furnace together with these raw material powders is made of a material having a high specific gravity as in the prior art because the dispersibility of the powder is improved by the surface active agent-containing coating. It is not necessary to form the particles, and it is possible to sufficiently prevent the sintering of the powder particles even if they are made of a material having a low specific gravity. For example, zirconia particles, alumina particles,
Ceramic particles such as silica particles and soda ash glass particles can be preferably used. Further, these ceramic particles can be mixed and used. The crushing medium made of these materials having a low specific gravity hardly breaks or deforms the raw material powder even if it is introduced into the rotary heating furnace together with the raw material powder. It will be easier.

【0013】解砕媒体の形状は、特に制限されるもので
はないが、直径0.2〜30mm、好ましくは0.5〜
10mmの小球を、単独または直径の異なる小球を適宜
組み合わせて使用することができる。また、球状に限ら
ず、同様の大きさを有する棒状でも構わない。更に、球
状と棒状のものとを組み合わせて使用してもよい。ま
た、原料粉体と解砕媒体との混合比率は、原料粉体の種
類や、解砕媒体の形状やその使用形態、即ち球状解砕媒
体単独であるか、球状と棒状解砕媒体との組み合わせで
あるか等により異なるが、しかし何れの場合でも前記界
面活性剤含有膜により粉体の分散性が改善されているた
めに、従来よりも解砕媒体の量を低減することができ
る。このことは、原料粉体の初期形状を維持する上で、
更なる利点となる。具体的には、重量比で、原料粉体1
00に対して解砕媒体10〜1000、好ましくは原料
粉体100に対して解砕媒体30〜400の比率で回転
式加熱炉内に導入される。
The shape of the crushing medium is not particularly limited, but the diameter is 0.2 to 30 mm, preferably 0.5 to.
Small spheres of 10 mm can be used alone or in combination of small spheres having different diameters. Further, the shape is not limited to the spherical shape, and may be a rod shape having the same size. Furthermore, spherical and rod-shaped ones may be used in combination. Further, the mixing ratio of the raw material powder and the crushing medium, the type of the raw material powder, the shape of the crushing medium and its usage, that is, the spherical crushing medium alone, or the spherical and rod-like crushing medium Although it depends on the combination or the like, in any case, since the dispersibility of the powder is improved by the surfactant-containing film, the amount of the crushing medium can be reduced as compared with the conventional case. This is to maintain the initial shape of the raw material powder,
It is a further advantage. Specifically, in terms of weight ratio, raw material powder 1
00 is introduced into the rotary heating furnace at a ratio of 10 to 1000, preferably 30 to 400 of the raw material powder.

【0014】これら原料粉体と解砕媒体とを、回転式加
熱炉に導入して窒化処理を行う。回転式加熱炉として
は、本発明の出願人らが先に出願した特願平5−593
10号に記載される装置を好適に使用することができ
る。即ち、図1に示されるように、製造装置1は、円筒
状の反応容器2と、反応容器2を取り囲むように配設さ
れる加熱炉3及び、反応容器2を回転させる回転駆動装
置4とから構成されており、ガスボンベ7に充填された
反応性ガスやキャリアガスは、反応容器2のガス供給口
5から供給管8を通じて該反応容器2の内部に導入さ
れ、排気口6に連結された排気管9を通じて排出され、
次いで空冷トラップ10、油トラップ11及び水トラッ
プ12を通り、浄化されて系外に排出される。
The raw material powder and the crushing medium are introduced into a rotary heating furnace for nitriding. As a rotary heating furnace, the applicants of the present invention previously filed Japanese Patent Application No. 5-593.
The device described in No. 10 can be preferably used. That is, as shown in FIG. 1, the manufacturing apparatus 1 includes a cylindrical reaction container 2, a heating furnace 3 arranged so as to surround the reaction container 2, and a rotary drive device 4 for rotating the reaction container 2. The reactive gas or carrier gas filled in the gas cylinder 7 is introduced from the gas supply port 5 of the reaction container 2 into the reaction container 2 through the supply pipe 8 and is connected to the exhaust port 6. Exhausted through the exhaust pipe 9,
Then, it passes through the air-cooled trap 10, the oil trap 11, and the water trap 12, and is purified and discharged to the outside of the system.

【0015】窒化反応は、界面活性剤含有被膜が形成さ
れた原料粉体13を解砕媒体14と共に反応容器2内部
の隔壁15で画成された空間に収容し、反応容器2を回
転させて窒化性雰囲気の下所定時間加熱することにより
行われる。反応条件は、原料粉体表面に界面活性剤含有
被膜が形成されているものの、その膜厚は通常窒化性ガ
スの浸透性に影響を与える程厚く形成されることはな
く、界面活性剤含有被膜が形成されない場合の窒化反応
と同等で構わない。例えば、水素ガス等の還元性ガス、
窒素ガスやアルゴンガス等の不活性ガスまたはこれらの
混合ガスからなるキャリアガスと、アンモニアガス等の
窒化性ガスとを体積比で、キャリアガス:窒化性ガスと
して1:100〜100:1の混合割合からなる窒化性
雰囲気中で、温度200〜1000℃、好ましくは40
0〜800℃で、0.5〜10時間、好ましくは2〜8
時間加熱することにより、窒化物粉体が得られる。この
時、原料粉体はその表面に成膜された界面活性剤含有被
膜により分散性が改善されているとともに、反応中原料
粉体並びに生成する窒化物粉体が、解砕媒体により絶え
ず解砕作用を受けるため、粒子同士の焼結が防止され
る。
In the nitriding reaction, the raw material powder 13 on which the surfactant-containing coating is formed is housed together with the crushing medium 14 in the space defined by the partition wall 15 inside the reaction vessel 2, and the reaction vessel 2 is rotated. It is performed by heating for a predetermined time in a nitriding atmosphere. As for the reaction conditions, although the surfactant-containing coating is formed on the surface of the raw material powder, the film thickness is usually not so thick as to affect the permeability of the nitriding gas. It may be the same as the nitriding reaction in the case of not being formed. For example, a reducing gas such as hydrogen gas,
A carrier gas composed of an inert gas such as nitrogen gas or argon gas or a mixed gas thereof and a nitriding gas such as ammonia gas are mixed in a volume ratio of 1: 100 to 100: 1 as carrier gas: nitriding gas. In a nitriding atmosphere consisting of a proportion of 200 to 1000 ° C., preferably 40
0 to 800 ° C., 0.5 to 10 hours, preferably 2 to 8
A nitride powder is obtained by heating for a time. At this time, the dispersibility of the raw material powder is improved by the surfactant-containing film formed on the surface of the raw material powder, and the raw material powder and the nitride powder produced during the reaction are constantly crushed by the crushing medium. As a result, the particles are prevented from sintering together.

【0016】[0016]

【実施例】次に、本発明に係る窒化物粉体の製造方法に
関して、実施例に基づいてより詳細に説明する。 〔実施例1〕平均粒径が約0.2μmの球状四三酸化鉄
微粒子50gを、95℃に保持したウォーターバス中で
予め用意しておいたオレイン酸ナトリウム10%水溶液
500mlに加え、この四三酸化鉄微粒子を含む溶液を
モータ攪拌機で攪拌しながら1時間保持して分散溶液を
得た。前記分散溶液に0.1N塩酸を加えてpHを4に
調整し、表面にオレイン酸単分子膜が成膜された酸化鉄
微粒子を凝集させ、得られた凝集物を濾紙で濾別し、温
度20℃の脱イオン水1リットルで洗浄して表面に付着
した電解質を除去し、次いで真空乾燥機により温度10
0℃で乾燥して乾燥粉末を得た。このようにして得られ
た粉末52gを平均粒径1mmのジルコニアビーズ15
0gとともに図1に示される回転式加熱炉の反応容器に
収容し、体積比で水素ガス1に対してアンモニアガス1
の割合の混合ガスを毎分1リットルの流量で供給しなが
ら500℃まで2時間かけて昇温し、更に500℃で4
時間保持した後、放冷した。冷却後、ジルコニアビーズ
を篩分して、窒化鉄粉末38gを得た。この窒化鉄粉末
を走査型電子顕微鏡で観察したところ、球状であり、粒
子同士の焼結は見られず、それぞれ独立した球状窒化物
微粒子であった。また(株)ニレコ製の画像処理装置L
UZEXIIIを用いて求めた平均粒径は、0.18μ
mであった。また、磁気特性に関しては、10kOeの
磁場内での磁化は145emu/gであった。
EXAMPLES Next, the method for producing a nitride powder according to the present invention will be described in more detail based on examples. [Example 1] 50 g of spherical tetrairon trioxide fine particles having an average particle size of about 0.2 µm were added to 500 ml of a 10% aqueous solution of sodium oleate prepared in advance in a water bath maintained at 95 ° C. The solution containing iron trioxide fine particles was kept for 1 hour while stirring with a motor stirrer to obtain a dispersion solution. The pH of the dispersion solution was adjusted to 4 by adding 0.1N hydrochloric acid, the iron oxide fine particles having the oleic acid monomolecular film formed on the surface were aggregated, and the obtained aggregate was filtered with a filter paper, and the temperature was adjusted. The electrolyte adhering to the surface was removed by washing with 1 liter of deionized water at 20 ° C, and then the temperature was adjusted to 10
It dried at 0 degreeC and obtained the dry powder. 52 g of the powder thus obtained was used as zirconia beads 15 having an average particle diameter of 1 mm.
1 g of hydrogen gas and 1 g of ammonia gas in the reaction vessel of the rotary heating furnace shown in FIG.
While supplying a mixed gas at a flow rate of 1 liter per minute, the temperature was raised to 500 ° C. over 2 hours, and then at 500 ° C.
After holding for a while, it was allowed to cool. After cooling, the zirconia beads were sieved to obtain 38 g of iron nitride powder. When this iron nitride powder was observed with a scanning electron microscope, it was spherical, and sintering of the particles was not observed, and they were independent spherical nitride fine particles. Also, image processing device L manufactured by Nireco Co., Ltd.
The average particle size obtained using UZEXIII is 0.18μ
It was m. Regarding the magnetic characteristics, the magnetization in a magnetic field of 10 kOe was 145 emu / g.

【0017】〔実施例2〕80℃に加熱された脱水ケロ
シン86gにオレイン酸3gを添加し、混合溶解させた
溶液に、平均粒径が約0.5μmの球状鉄微粒子30g
を加え、モータ攪拌機で攪拌しながら3時間保持して分
散溶液を得た。前記分散溶液を遠心分離機により固液分
離し、冷却後固形分を真空乾燥機により温度80℃で8
時間乾燥して乾燥粉末を得た。このようにして得られた
オレイン酸被覆粉末30gを平均粒径3mmのジルコニ
アビーズ100gとともに図1に示される回転式加熱炉
の反応容器に収容し、体積比で水素ガス1に対してアン
モニアガス1の割合の混合ガスを毎分1リットルの流量
で供給しながら500℃まで2時間かけて昇温し、更に
500℃で5時間保持した後、放冷した。冷却後、ジル
コニアビーズを篩分して、窒化鉄粉末28gを得た。こ
の窒化鉄粉末を走査型電子顕微鏡で観察したところ、球
状であり、粒子同士の焼結は見られず、それぞれ独立し
た球状窒化物微粒子であった。また(株)ニレコ製の画
像処理装置LUZEXIIIを用いて求めた平均粒径
は、0.6μmであった。また、磁気特性に関しては、
10kOeの磁場内での磁化は150emu/gであっ
た。
Example 2 3 g of oleic acid was added to 86 g of dehydrated kerosene heated to 80 ° C., and mixed and dissolved in a solution of 30 g of spherical iron fine particles having an average particle size of about 0.5 μm.
Was added, and the mixture was held for 3 hours while stirring with a motor stirrer to obtain a dispersion solution. The dispersion solution is subjected to solid-liquid separation by a centrifuge, and after cooling, the solid content is 8 at a temperature of 80 ° C. by a vacuum dryer.
After drying for an hour, a dry powder was obtained. 30 g of the oleic acid-coated powder thus obtained was housed together with 100 g of zirconia beads having an average particle diameter of 3 mm in the reaction container of the rotary heating furnace shown in FIG. While supplying the mixed gas at a flow rate of 1 liter per minute, the temperature was raised to 500 ° C. over 2 hours, the temperature was further maintained at 500 ° C. for 5 hours, and then allowed to cool. After cooling, the zirconia beads were sieved to obtain 28 g of iron nitride powder. When this iron nitride powder was observed with a scanning electron microscope, it was spherical, and sintering of the particles was not observed, and they were independent spherical nitride fine particles. Further, the average particle size obtained by using an image processing device LUZEXIII manufactured by Nireco Co., Ltd. was 0.6 μm. Regarding the magnetic characteristics,
The magnetization in a magnetic field of 10 kOe was 150 emu / g.

【0018】〔実施例3〕脱水ケロシン120gにアミ
ン(ポリブテニルコハク酸イミドテトラエチレンペンタ
ミン)20gを加え、更に球状鉄粉末30gを加えて窒
素雰囲気中で120℃に加熱し、モータ攪拌機で30分
間攪拌を行った後冷却し、固液分離を行い、真空乾燥機
により80℃で8時間乾燥して乾燥粉末を得た。このよ
うにして得られたアミン被覆鉄粉末40gを平均粒径1
mmのアルミナビーズ30gと平均粒径3mmのアルミ
ナビーズ50gとともに図1に示される回転式加熱炉の
反応容器に収容し、体積比で窒素ガス1に対してアンモ
ニアガス4の割合の混合ガスを毎分1リットルの流量で
供給しながら600℃まで2時間かけて昇温し、更に6
00℃で4時間30分間保持した後、放冷した。冷却
後、アルミナビーズを篩分して、窒化鉄粉末32gを得
た。この窒化鉄粉末を走査型電子顕微鏡で観察したとこ
ろ、球状であり、粒子同士の焼結は見られず、それぞれ
独立した球状窒化物微粒子であった。また(株)ニレコ
製の画像処理装置LUZEXIIIを用いて求めた平均
粒径は、0.6μmであった。また、磁気特性に関して
は、10kOeの磁場内での磁化は160emu/gで
あった。
Example 3 To 120 g of dehydrated kerosene, 20 g of amine (polybutenyl succinimide tetraethylenepentamine) was added, and further 30 g of spherical iron powder was added and heated to 120 ° C. in a nitrogen atmosphere and stirred with a motor stirrer. After stirring for 30 minutes, the mixture was cooled, solid-liquid separated, and dried at 80 ° C. for 8 hours by a vacuum dryer to obtain a dry powder. 40 g of the amine-coated iron powder thus obtained had an average particle size of 1
mm alumina beads 30 g and average diameter 3 mm alumina beads 50 g were housed in the reaction vessel of the rotary heating furnace shown in FIG. 1, and a mixed gas of a ratio of volume ratio of nitrogen gas 1 to ammonia gas 4 was set for each. While supplying at a flow rate of 1 liter / minute, the temperature was raised to 600 ° C over 2 hours, and then 6
After holding at 00 ° C. for 4 hours and 30 minutes, it was allowed to cool. After cooling, the alumina beads were sieved to obtain 32 g of iron nitride powder. When this iron nitride powder was observed with a scanning electron microscope, it was spherical, and sintering of the particles was not observed, and they were independent spherical nitride fine particles. Further, the average particle size obtained by using an image processing device LUZEXIII manufactured by Nireco Co., Ltd. was 0.6 μm. Regarding the magnetic characteristics, the magnetization in a magnetic field of 10 kOe was 160 emu / g.

【0019】〔実施例4〕平均粒径0.33μmの八面
体の四三酸化鉄微粒子50gを鉄原料に用い、被膜原料
としてオレイン酸2,5gを用いて実施例1と同様の方
法で四三酸化鉄表面に被膜を形成し、解砕媒体として平
均粒径1mmのジルコニアビーズ30gと平均粒径3m
mのジルコニアビーズ20gを用いて前記被覆粉末50
gとともに図1に示される回転式加熱炉の反応容器に収
容し、体積比でアンモニアガス1に対して水素ガス1の
割合の混合ガスを毎分1リットルの流量で供給しながら
450℃まで1時間30分かけて昇温し、更に450℃
で6時間保持した後、放冷した。冷却後、ジルコニアビ
ーズを篩分して、窒化鉄粉末45gを得た。この窒化鉄
粉末の形状を走査型電子顕微鏡で確認したところ、ほぼ
原料と同じ八面体であった。また(株)ニレコ製の画像
処理装置LUZEXIIIを用いて求めた平均粒径は、
0.35μmであった。更に、粉末X線回折法により得
られた化合物の組成は、Fe4 Nであった。また、磁気
特性に関しては、10kOeの磁場内での磁化は135
emu/gであった。
Example 4 Using the same method as in Example 1, 50 g of octahedral tetrairon tetraoxide fine particles having an average particle size of 0.33 μm was used as the iron raw material, and oleic acid of 2.5 g was used as the coating raw material. A coating is formed on the surface of iron trioxide, and 30 g of zirconia beads having an average particle size of 1 mm and an average particle size of 3 m are used as a crushing medium.
20 g of zirconia beads of m.
g together with g in the reaction vessel of the rotary heating furnace shown in FIG. 1 and supplying a mixed gas of hydrogen gas to hydrogen gas at a ratio of 1 to 1 at a flow rate of 1 liter per minute to 450 ° C. Temperature rises over 30 minutes, then 450 ° C
It was kept for 6 hours and then left to cool. After cooling, the zirconia beads were sieved to obtain 45 g of iron nitride powder. When the shape of this iron nitride powder was confirmed by a scanning electron microscope, it was found to be an octahedron which was almost the same as the raw material. Also, the average particle size obtained using the image processing device LUZEXIII manufactured by Nireco Co., Ltd.
It was 0.35 μm. Further, the composition of the compound obtained by the powder X-ray diffraction method was Fe 4 N. Regarding the magnetic characteristics, the magnetization in a magnetic field of 10 kOe is 135
It was emu / g.

【0020】〔実施例5〕平均粒径1.8μmの球状の
カルボニル鉄微粒子を鉄原料に用いて実施例2と同様の
方法でオレイン酸被膜を有する乾燥粉末を用意し、解砕
媒体として平均粒径1mmのアルミナビーズ30gと平
均粒径3mmのアルミナビーズ10gを用いて前記乾燥
粉末ととともに図1に示される回転式加熱炉の反応容器
に収容し、体積比でアンモニアガス6に対して窒素ガス
1の割合の混合ガスを毎分1.5リットルの流量で供給
しながら450℃まで1時間30分かけて昇温し、更に
450℃で8時間保持した後、放冷した。得られた窒化
鉄粉末の形状を走査型電子顕微鏡で確認したところ、ほ
ぼ原料と同じ球状であった。また(株)ニレコ製の画像
処理装置LUZEXIIIを用いて求めた平均粒径は、
2.2μmであった。更に、粉末X線回折法により得ら
れた化合物の組成は、Fe4 Nであった。また、磁気特
性に関しては、10kOeの磁場内での磁化は156e
mu/gであった。窒化鉄中に残存する全炭素量は0.
1重量%以下であり、ほとんど蒸発して消失しているこ
とが確認された。
[Embodiment 5] Dry powder having an oleic acid coating was prepared in the same manner as in Embodiment 2 by using spherical carbonyl iron fine particles having an average particle diameter of 1.8 μm as an iron raw material. 30 g of alumina beads having a particle diameter of 1 mm and 10 g of alumina beads having an average particle diameter of 3 mm were housed together with the dry powder in the reaction container of the rotary heating furnace shown in FIG. While supplying the mixed gas in the ratio of gas 1 at a flow rate of 1.5 liters per minute, the temperature was raised to 450 ° C. over 1 hour and 30 minutes, and the temperature was further maintained at 450 ° C. for 8 hours and then allowed to cool. When the shape of the obtained iron nitride powder was confirmed by a scanning electron microscope, it was found to have a spherical shape almost the same as that of the raw material. Also, the average particle size obtained using the image processing device LUZEXIII manufactured by Nireco Co., Ltd.
It was 2.2 μm. Further, the composition of the compound obtained by the powder X-ray diffraction method was Fe 4 N. Regarding the magnetic characteristics, the magnetization in a magnetic field of 10 kOe is 156e.
It was mu / g. The total amount of carbon remaining in the iron nitride is 0.
It was 1% by weight or less, and it was confirmed that most of it evaporated and disappeared.

【0021】〔比較例1〕平均粒径1.8μmの球状の
カルボニル鉄微粒子を鉄原料に用いて実施例2と同様の
方法でオレイン酸被膜を有する乾燥粉末を用意し、また
解砕媒体として平均粒径1mmの鉄球30gと平均粒径
3mmの鉄球10gを用いて前記乾燥粉末とともに図1
に示される回転式加熱炉の反応容器に収容し、体積比で
アンモニアガス6に対して窒素ガス1の割合の混合ガス
を毎分1.5リットルの流量で供給しながら450℃ま
で1時間30分かけて昇温し、更に450℃で8時間保
持した後、放冷した。得られた窒化鉄粉末の形状を走査
型電子顕微鏡で観察したところ、偏平な粒子や過粉砕に
よる超微粒子が確認された。(株)ニレコ製の画像処理
装置LUZEXIIIを用いて求めた平均粒径は、1.
3μmであり、また0.1μm以下の微粉末の重量は2
5%であり、全体の粒度分布が細粒側にシフトした。
Comparative Example 1 A dry powder having an oleic acid coating was prepared in the same manner as in Example 2 by using spherical carbonyl iron fine particles having an average particle diameter of 1.8 μm as an iron raw material, and used as a crushing medium. Using 30 g of iron balls having an average particle size of 1 mm and 10 g of iron balls having an average particle size of 3 mm, together with the dry powder, FIG.
In a reaction vessel of a rotary heating furnace shown in Fig. 1 and supplying a mixed gas of a volume ratio of ammonia gas 6 to nitrogen gas 1 at a flow rate of 1.5 liters per minute to 450 ° C for 1 hour 30 The temperature was raised over a period of minutes, the temperature was further maintained at 450 ° C. for 8 hours, and then the mixture was allowed to cool. When the shape of the obtained iron nitride powder was observed with a scanning electron microscope, flat particles and ultrafine particles due to over-milling were confirmed. The average particle size obtained using an image processing device LUZEXIII manufactured by Nireco Co., Ltd. is 1.
3 μm, and the weight of fine powder of 0.1 μm or less is 2
It was 5%, and the entire particle size distribution was shifted to the fine particle side.

【0022】[0022]

【発明の効果】以上説明したとおり、本発明によると、
原料粉体はその表面に成膜された界面活性剤含有被膜に
より分散性が改善されているとともに、反応中原料粉体
並びに生成する窒化物粉体が、解砕媒体により絶えず解
砕作用を受けるため、粒子同士の焼結が防止される。し
かも、解砕媒体として低比重の材料のものを使用できる
ために、原料粉体とともに回転加熱炉内に導入されても
原料粉体を破壊したり、変形させることが少なく、原料
粉体の初期の形状を維持して窒化物に転化することがで
き、生成窒化物粒子の粒径制御が容易になる。
As described above, according to the present invention,
The dispersibility of the raw material powder is improved by the surfactant-containing film formed on the surface of the raw material powder, and the raw material powder and the nitride powder produced during the reaction are constantly disintegrated by the disintegration medium. Therefore, sintering of the particles is prevented. Moreover, since the material having a low specific gravity can be used as the crushing medium, the raw material powder is less likely to be broken or deformed even when introduced into the rotary heating furnace together with the raw material powder, and the initial stage of the raw material powder can be reduced. The shape can be maintained and converted into a nitride, and the particle size of the generated nitride particles can be easily controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に使用される回転式加熱炉を示す図で
ある。
FIG. 1 is a diagram showing a rotary heating furnace used in the present invention.

【符号の説明】[Explanation of symbols]

1 回転式加熱炉 2 反応容器 3 加熱炉 4 回転駆動手段 7 ガスボンベ 8 ガス供給管 9 ガス排気管 13 原料粉体 14 解砕媒体 DESCRIPTION OF SYMBOLS 1 rotary heating furnace 2 reaction container 3 heating furnace 4 rotation drive means 7 gas cylinder 8 gas supply pipe 9 gas exhaust pipe 13 raw material powder 14 crushing medium

フロントページの続き (72)発明者 新子 貴史 東京都三鷹市下連雀8丁目10番16号 日鉄 鉱業株式会社内 (72)発明者 中谷 功 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 中塚 勝人 宮城県仙台市太白区茂庭台4丁目3番5の 1403Front page continuation (72) Inventor Takashi Shinko 8-10-16 Shimorenjaku, Mitaka-shi, Tokyo Within Nittetsu Mining Co., Ltd. (72) Inventor Isao Nakatani 1-2-1 Sengen, Tsukuba-shi, Ibaraki Science and Technology Agency (72) Inventor Katsuhito Nakatsuka 4-3-5-3, Moiwadai, Taihaku-ku, Sendai City, Miyagi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料粉体の表面に界面活性剤を含む被膜
を形成した後、解砕媒体と共に回転式加熱炉内に導入
し、該回転式加熱炉を回転させながら窒化性ガス雰囲気
下で加熱して窒化反応を行うことを特徴とする窒化物粉
体の製造方法。
1. After forming a film containing a surfactant on the surface of the raw material powder, the raw material powder is introduced into a rotary heating furnace together with a crushing medium, and the rotary heating furnace is rotated under a nitriding gas atmosphere. A method for producing a nitride powder, which comprises heating and performing a nitriding reaction.
【請求項2】 前記界面活性剤は、オレイン酸、リノー
ル酸、リノレン酸またはその塩類、あるいはアルキルア
ミン類の少なくとも1種であることを特徴とする請求項
1記載の窒化物粉体の製造方法。
2. The method for producing a nitride powder according to claim 1, wherein the surfactant is at least one of oleic acid, linoleic acid, linolenic acid or salts thereof, or alkylamines. .
【請求項3】 前記解砕媒体が、ジルコニア、アルミ
ナ、シリカ、ソーダ灰ガラスの少なくとも1種からなる
ことを特徴とする請求項1記載の窒化物粉体の製造方
法。
3. The method for producing a nitride powder according to claim 1, wherein the crushing medium comprises at least one of zirconia, alumina, silica and soda ash glass.
JP24442694A 1994-10-07 1994-10-07 Method for producing nitride powder Expired - Lifetime JP3603230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24442694A JP3603230B2 (en) 1994-10-07 1994-10-07 Method for producing nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24442694A JP3603230B2 (en) 1994-10-07 1994-10-07 Method for producing nitride powder

Publications (2)

Publication Number Publication Date
JPH08109010A true JPH08109010A (en) 1996-04-30
JP3603230B2 JP3603230B2 (en) 2004-12-22

Family

ID=17118487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24442694A Expired - Lifetime JP3603230B2 (en) 1994-10-07 1994-10-07 Method for producing nitride powder

Country Status (1)

Country Link
JP (1) JP3603230B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419714B1 (en) * 2001-06-20 2004-02-21 이원경 Manufacturing method for natural four leaf clover and accessories using the same
CN105154814A (en) * 2015-10-12 2015-12-16 贝利特化学股份有限公司 Rotary nitriding furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419714B1 (en) * 2001-06-20 2004-02-21 이원경 Manufacturing method for natural four leaf clover and accessories using the same
CN105154814A (en) * 2015-10-12 2015-12-16 贝利特化学股份有限公司 Rotary nitriding furnace

Also Published As

Publication number Publication date
JP3603230B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JPH11241104A (en) Samarium-iron-nitrogen series alloy powder and its production
JP2002363724A (en) Spherical particle for thermal spraying and thermal spraying member
JP3157080B2 (en) Manufacturing method of ferrite material
JP4737161B2 (en) Rare earth-iron-nitrogen based magnetic powder and method for producing the same
JPS63310768A (en) Zirconia product and chemical manufacture
JP3280688B2 (en) Production method of rare earth oxide
JPH07309618A (en) Method for manufacture of aluminium oxide powder, aluminium oxide powder manufactured by said method and use thereof
JP3603230B2 (en) Method for producing nitride powder
JP2600762B2 (en) Method for producing zinc oxide whiskers
JP5170138B2 (en) Magnetic powder
JP2000040608A (en) Magnetic silica grain and manufacture thereof
JPS62275027A (en) Production of ferromagnetic fine powder for magnetic recording
JP3580435B2 (en) Nitride powder and method for producing the same
JP5543348B2 (en) Deposition material for strontium-calcium composite oxide film production
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JP4590920B2 (en) Magnetic powder
CN110550952A (en) zirconia ceramic powder and preparation method thereof
JP2689251B2 (en) Magnetic fluid manufacturing method
JPH07118016A (en) Uniform-composition zirconia solid solution monodisperse fine globular powder and its production
JPS6259531A (en) Production of barium ferrite powder
JP2002038206A (en) Method for producing rare earth-transition metal- nitrogen-based alloy powder
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH10261514A (en) Magnetic material
JP3362742B2 (en) Method for producing nitride powder
JP2004277543A (en) Method for producing phosphor particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term