JPH08107085A - Jig and method for measuring infrared emissivity of semiconductor wafer - Google Patents

Jig and method for measuring infrared emissivity of semiconductor wafer

Info

Publication number
JPH08107085A
JPH08107085A JP6240938A JP24093894A JPH08107085A JP H08107085 A JPH08107085 A JP H08107085A JP 6240938 A JP6240938 A JP 6240938A JP 24093894 A JP24093894 A JP 24093894A JP H08107085 A JPH08107085 A JP H08107085A
Authority
JP
Japan
Prior art keywords
measuring
temperature
wafer
infrared emissivity
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6240938A
Other languages
Japanese (ja)
Other versions
JP3423436B2 (en
Inventor
Ryoichi Matsumoto
良一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP24093894A priority Critical patent/JP3423436B2/en
Publication of JPH08107085A publication Critical patent/JPH08107085A/en
Application granted granted Critical
Publication of JP3423436B2 publication Critical patent/JP3423436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE: To provide an excellent jig and method for measuring the infrared emissivity of a semiconductor wafer by which an infrared emissivity can be measured in a short time without generating particles in any atmosphere. CONSTITUTION: A jig for measuring the infrared emissivity of a semiconductor wafer in a manufacturing device for a semiconductor integrated circuit device for performing heat treatment by heating with a lamp is provided with a measuring jig main body 11 having a temperature measuring window 13 larger than the temperature measuring region of an infrared thermometer, a jig lid 12 fitted on the measuring jig main body 11 and having an opening 14 formed above the temperature measuring window 13 in a similar size thereto and a temperature measuring hole 15 containing a thermocouple provided in the measuring jig main body 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積装置の製造
工程でのランプアニール炉による熱処理における赤外線
放射率の測定治具及びそれを用いた測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jig for measuring infrared emissivity in a heat treatment by a lamp annealing furnace in a manufacturing process of a semiconductor integrated device, and a measuring device using the jig.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、以下に示すようなものがあった。図3はかかる
従来の赤外線放射率を測定するための測定治具の平面
図、図4は図3のA−A線断面図、図5はそのような測
定治具を用いて赤外線放射率を測定する方法の概念図で
あり、以下に従来の赤外線放射率の測定方法を示す。
2. Description of the Related Art Conventionally, techniques in such a field include:
For example, there were the following. FIG. 3 is a plan view of a conventional measuring jig for measuring the infrared emissivity, FIG. 4 is a sectional view taken along the line AA of FIG. 3, and FIG. It is a conceptual diagram of a measuring method, and the conventional measuring method of infrared emissivity is shown below.

【0003】図3に示すように、赤外線放射率(エミッ
シビティーε)測定治具100は、グラファイト(黒
鉛)製であり、測定するウエハのガイド101と中心部
の測定窓102と測定すべき半導体ウエハ(以下、単に
ウエハという)を固定及び測定治具より熱の伝導の促進
のための真空チャック溝103及び外部へ真空を導く穴
104で構成した測温テーブル105と、これを測温す
るための熱電対を収納する測温孔107、熱電対からの
引き出し線106を有する支持台108で構成されてい
る。
As shown in FIG. 3, an infrared emissivity (emissivity ε) measuring jig 100 is made of graphite and should be measured with a guide 101 of the wafer to be measured and a measuring window 102 at the center. A semiconductor wafer (hereinafter, simply referred to as a wafer) is fixed and a temperature measuring table 105 including a vacuum chuck groove 103 for promoting heat conduction from a measuring jig and a hole 104 for guiding a vacuum to the outside, and a temperature measuring table 105. A thermometer hole 107 for accommodating a thermocouple for this purpose and a support 108 having a lead wire 106 extending from the thermocouple.

【0004】図4に示すように、真空チャック溝103
は外部へ真空を導く穴104に接続されており、外部の
真空ポンプにより測温テーブル105に測温ウエハ10
9を固定できる構造となっている。図5に示すように、
石英製のチャンバー110の上下には、反射鏡111と
ハロゲンランプ112で構成した加熱部と、ガス導入口
113及びガス排出口114があり、チャンバーの蓋体
115には測定治具が支持されており、真空を導く穴
(図示なし)に接続された真空パイプ116により真空
を引いている。また、測定治具100にはウエハ109
の裏面が全面現れるように真空で支持されており、中央
部には赤外線放射温度計(以後、ボロメータという)1
18が配置されている。
As shown in FIG. 4, the vacuum chuck groove 103 is formed.
Is connected to a hole 104 for guiding a vacuum to the outside, and the temperature measuring wafer 105 is transferred to the temperature measuring table 105 by an external vacuum pump.
9 has a structure that can be fixed. As shown in FIG.
Above and below the quartz chamber 110, there are a heating section composed of a reflecting mirror 111 and a halogen lamp 112, a gas inlet 113 and a gas outlet 114, and a measurement jig is supported by a chamber lid 115. The vacuum is drawn by a vacuum pipe 116 connected to a hole (not shown) for guiding the vacuum. Further, the measurement jig 100 has a wafer 109
It is supported in a vacuum so that the entire back surface of it appears, and an infrared radiation thermometer (hereinafter called bolometer) 1
18 are arranged.

【0005】ボロメータ118は赤外線光学系119と
赤外線センサ120及び温度表示計121で構成されて
おり、ウエハの実温である測温テーブル105の温度
は、熱電対106と温度表示計117に表示される。ボ
ロメータ118の温度表示である放射温度123は熱電
対温度122より通常低く、これが赤外線放射率εを表
している。
The bolometer 118 is composed of an infrared optical system 119, an infrared sensor 120 and a temperature indicator 121. The temperature of the temperature measuring table 105 which is the actual temperature of the wafer is displayed on the thermocouple 106 and the temperature indicator 117. It The radiation temperature 123, which is a temperature indication on the bolometer 118, is usually lower than the thermocouple temperature 122, which represents the infrared emissivity ε.

【0006】Siウエハの場合、赤外線放射率εは0.
72であり、反射率=1−ε→28%の赤外線がSiウ
エハ表面で内部反射しているため、放射温度が低く表示
されるわけである。一般に、ボロメータ118には赤外
線放射率εの補正機能があり、この補正機能に0.72
を設定し、実温である熱電対温度と放射温度は等しくし
ており、これを赤外線放射率測定といっている。
In the case of a Si wafer, the infrared emissivity ε is 0.
Since the infrared rays having a reflectance of 1-ε → 28% are internally reflected on the surface of the Si wafer, the radiation temperature is displayed low. Generally, the bolometer 118 has a function of correcting the infrared emissivity ε, and the correction function has a function of 0.72.
Is set so that the actual temperature of the thermocouple is equal to the radiation temperature, which is called infrared emissivity measurement.

【0007】しかし、この赤外線放射率εは固定された
定数ではなく、例えば、Siウエハ表面に成膜すると、
赤外線放射率εは膜厚に周期的に変化することが知られ
ており、熱処理ウエハを必要に応じて赤外線放射率εを
測定している。図6はSiウエハ表面へのシリコン酸化
膜(SiO2 膜)と多結晶シリコン膜を形成した場合の
赤外線放射率εであり、シリコン酸化膜が厚い場合、赤
外線放射率εはほぼ1〜0.2まで変化している。そこ
で測温テーブル105は赤外線放射率εがほぼ1である
グラファイトが使用されている。その他の材質であると
赤外線放射率εは1より小さい値を取り、測定窓102
部分の測温ウエハ109が測温テーブル105より高温
化する可能性があり、汎用性を保つため、グラファイト
が使用されている。
However, this infrared emissivity ε is not a fixed constant and, for example, when a film is formed on the surface of a Si wafer,
It is known that the infrared emissivity ε changes periodically with the film thickness, and the infrared emissivity ε of the heat-treated wafer is measured as necessary. FIG. 6 shows the infrared emissivity ε when the silicon oxide film (SiO 2 film) and the polycrystalline silicon film are formed on the surface of the Si wafer. When the silicon oxide film is thick, the infrared emissivity ε is approximately 1 to 0. It has changed to 2. Therefore, the temperature measuring table 105 uses graphite having an infrared emissivity ε of about 1. If other materials are used, the infrared emissivity ε takes a value smaller than 1, and the measurement window 102
There is a possibility that the temperature measurement wafer 109 of a part may become higher in temperature than the temperature measurement table 105, and graphite is used in order to maintain versatility.

【0008】また、測定窓102はボロメータ118の
測定波長が3〜10μmであり、この波長ではSiウエ
ハが光学的に透明で測温テーブルの赤外線に妨害される
ことを防止するために設けられたものである。
Further, the measurement window 102 has a measurement wavelength of the bolometer 118 of 3 to 10 μm, and is provided to prevent the Si wafer from being optically transparent at this wavelength and being prevented from being disturbed by the infrared rays of the temperature measuring table. It is a thing.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
た従来の測定治具の構造または測定方法では、 (1)真空チャックによる固定であり、真空中では測温
できない。 (2)極度に低い赤外線放射率εのウエハの場合、裏面
が雰囲気ガスにより冷却され、赤外線放射率εがより低
く測定される。
However, in the above-described conventional measuring jig structure or measuring method, (1) it is fixed by the vacuum chuck, and the temperature cannot be measured in vacuum. (2) In the case of a wafer having an extremely low infrared emissivity ε, the back surface is cooled by the atmosphere gas, and the infrared emissivity ε is measured to be lower.

【0010】(3)熱処理は600℃〜1200℃と高
温であり、測温テーブルと支持台を別の材質にすること
は熱膨張が異なることにより困難であり、熱負荷の大き
いグラファイト一体物となり、昇温降温に時間が必要で
ある。 (4)測定治具は蓋に支持されており、蓋の気密を保つ
のが困難であることから、一般にNH3 など毒ガス雰囲
気での赤外線放射率εの測定ができない。
(3) The heat treatment is a high temperature of 600 ° C. to 1200 ° C. It is difficult to use different materials for the temperature measuring table and the support base due to the different thermal expansion, and it becomes a graphite integrated body with a large heat load. It takes time to raise and lower the temperature. (4) Since the measuring jig is supported by the lid and it is difficult to keep the lid airtight, it is generally not possible to measure the infrared emissivity ε in an atmosphere of poisonous gas such as NH 3 .

【0011】など生産技術的改善では解決できない問題
があり、技術的に満足できるものは得られなかった。本
発明は、上記問題を除去し、短時間で、いかなる雰囲気
でもパーティクル発生なしで、赤外線放射率εの測定が
可能な優れた半導体ウエハの赤外線放射率の測定治具及
び測定方法を提供することを目的とする。
There is a problem that cannot be solved by improving the production technology, and no technically satisfactory product was obtained. The present invention eliminates the above problems, and provides an excellent infrared emissivity measuring jig and method for a semiconductor wafer capable of measuring the infrared emissivity ε in a short time without generating particles in any atmosphere. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (1)ランプによる加熱にて熱処理を行う半導体集積回
路装置の製造装置における半導体ウエハの赤外線放射率
の測定治具において、赤外線放射温度計の測温領域より
大きい測温窓を有する本体と、この本体上に被着され、
前記測温窓の上方に同様の寸法で形成される開口を有す
る治具蓋と、前記本体に設けられる熱電対を収納する測
温孔を設けるようにしたものである。
In order to achieve the above object, the present invention provides: (1) A jig for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus which performs heat treatment by heating with a lamp. In, a body having a temperature measuring window larger than the temperature measuring area of the infrared radiation thermometer, and deposited on the body,
A jig lid having an opening of the same size is provided above the temperature measurement window, and a temperature measurement hole for accommodating a thermocouple provided in the main body is provided.

【0013】(2)上記(1)記載の半導体ウエハの赤
外線放射率の測定治具において、前記治具蓋及び本体が
SiCを被覆したグラファイト製である。 (3)上記(1)記載の半導体ウエハの赤外線放射率の
測定治具において、前記治具蓋及び本体の表面にシリコ
ン酸化膜と多結晶シリコン膜を被覆し、赤外線放射率を
1〜0.9とした多結晶シリコン製である。
(2) In the jig for measuring the infrared emissivity of a semiconductor wafer as described in (1) above, the jig lid and the main body are made of graphite coated with SiC. (3) In the jig for measuring the infrared emissivity of a semiconductor wafer according to the above (1), the surface of the jig lid and the main body is covered with a silicon oxide film and a polycrystalline silicon film to have an infrared emissivity of 1 to 0. 9 made of polycrystalline silicon.

【0014】(4)上記(1)記載の半導体ウエハの赤
外線放射率の測定治具において、前記治具蓋と本体の表
面に多結晶シリコン膜とシリコン酸化膜及び多結晶シリ
コン膜を被覆し、赤外線放射率を1〜0.9とした石英
ガラス製である。 (5)ランプによる加熱にて熱処理を行う半導体集積回
路装置の製造装置における半導体ウエハの赤外線放射率
の測定方法において、上記(1)、(2)、(3)又は
(4)記載の半導体ウエハの赤外線放射率の測定治具の
本体の測温窓を介して前記測温ウエハの裏面の温度を測
定する。
(4) In the jig for measuring the infrared emissivity of a semiconductor wafer according to (1) above, the surface of the jig lid and the main body is covered with a polycrystalline silicon film, a silicon oxide film and a polycrystalline silicon film, It is made of quartz glass with an infrared emissivity of 1 to 0.9. (5) In the method for measuring the infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus that performs heat treatment by heating with a lamp, the semiconductor wafer according to (1), (2), (3) or (4) above. The temperature of the back surface of the temperature measurement wafer is measured through the temperature measurement window of the main body of the infrared emissivity measurement jig.

【0015】(6)ランプによる加熱にて熱処理を行う
半導体集積回路装置の製造装置における半導体ウエハの
赤外線放射率の測定方法において、測定ウエハの裏面の
一部にグラファイトを被覆し、このグラファイト表面と
前記測温ウエハの裏面とを走査できる単一の赤外線放射
温度計にて、前記グラファイト表面の温度と前記測温ウ
エハの裏面の温度を測定する。
(6) In the method for measuring the infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus in which heat treatment is performed by heating with a lamp, a part of the back surface of the measurement wafer is coated with graphite, and the graphite surface is The temperature of the graphite surface and the temperature of the back surface of the temperature measurement wafer are measured by a single infrared radiation thermometer capable of scanning the back surface of the temperature measurement wafer.

【0016】(7)ランプによる加熱にて熱処理を行う
半導体集積回路装置の製造装置における半導体ウエハの
赤外線放射率の測定方法において、測温ウエハの裏面の
一部にグラファイトを被覆し、複数の赤外線放射温度計
にて前記グラファイトの表面の温度と前記測温ウエハの
裏面の温度を個別に測定する。 (8)ランプによる加熱にて熱処理を行う半導体集積回
路装置の製造装置における半導体ウエハの赤外線放射率
の測定方法において、測温ウエハの裏面の一部にグラフ
ァイトペーストで接着したSiC片を設け、このSiC
片表面と前記測温ウエハの裏面とを走査できる単一の赤
外線放射温度計にて、前記グラファイトの表面の温度と
前記ウエハの裏面の温度を測定する。
(7) In a method for measuring the infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus in which heat treatment is performed by heating with a lamp, a part of the back surface of the temperature measurement wafer is coated with graphite to form a plurality of infrared rays. The temperature of the surface of the graphite and the temperature of the back surface of the temperature-measuring wafer are individually measured with a radiation thermometer. (8) In a method for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus in which a heat treatment is performed by heating with a lamp, a SiC piece adhered with a graphite paste is provided on a part of a back surface of a temperature measurement wafer. SiC
The temperature of the front surface of the graphite and the temperature of the back surface of the wafer are measured by a single infrared radiation thermometer capable of scanning one surface and the back surface of the temperature measurement wafer.

【0017】(9)ランプによる加熱にて熱処理を行う
半導体集積回路装置の製造装置における半導体ウエハの
赤外線放射率の測定方法において、測温ウエハの裏面の
一部にグラファイトペーストで接着したSiC片を設
け、複数の赤外線放射温度計にて前記SiC片の表面の
温度と前記測温ウエハの裏面の温度を個別に測定する。 (10)ランプによる加熱にて熱処理を行う半導体集積
回路装置の製造装置における半導体ウエハの赤外線放射
率の測定方法において、測温ウエハの裏面の一部にグラ
ファイトペーストで接着した赤外線放射率が1〜0.9
であるSiウエハ片を設け、このSiウエハ片の表面と
前記測温ウエハの裏面とを走査できる単一の赤外線放射
温度計にて、前記Siウエハ片の表面の温度と前記測温
ウエハの裏面の温度を測定する。
(9) In the method of measuring the infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus in which a heat treatment is performed by heating with a lamp, a SiC piece adhered with graphite paste to a part of the back surface of the temperature measurement wafer. The temperature of the front surface of the SiC piece and the temperature of the back surface of the temperature measurement wafer are individually measured by a plurality of infrared radiation thermometers. (10) In a method for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus in which a heat treatment is performed by heating with a lamp, the infrared emissivity that is adhered to a part of the back surface of the temperature measurement wafer with graphite paste is 1 to 1 0.9
A single infrared radiation thermometer capable of scanning the front surface of the Si wafer piece and the back surface of the temperature measuring wafer, and the temperature of the front surface of the Si wafer piece and the back surface of the temperature measuring wafer. Measure the temperature.

【0018】(11)ランプによる加熱にて熱処理を行
う半導体集積回路装置の製造装置における半導体ウエハ
の赤外線放射率の測定方法において、測温ウエハの裏面
の一部にグラファイトペーストで接着した赤外線放射率
が1〜0.9のSiウエハ片を設け、複数の赤外線放射
温度計にて前記Siウエハ片の表面の温度と前記測温ウ
エハの裏面の温度を個別に測定する。
(11) In the method for measuring the infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus in which heat treatment is performed by heating with a lamp, the infrared emissivity obtained by adhering a part of the back surface of the temperature measurement wafer with graphite paste. 1 to 0.9 are provided, and the temperature of the front surface of the Si wafer piece and the temperature of the back surface of the temperature measurement wafer are individually measured by a plurality of infrared radiation thermometers.

【0019】[0019]

【作用】本発明によれば、 (1)上記(1)又は(5)記載の半導体ウエハの赤外
線放射率の測定治具又はその赤外線放射率の測定方法に
よれば、測定ウエハを収納方式としたので真空雰囲気で
の測温が可能である。
According to the present invention, (1) the measuring jig for the infrared emissivity of the semiconductor wafer or the method for measuring the infrared emissivity of the semiconductor wafer according to the above (1) or (5), the measuring wafer is stored in a storage system. As a result, it is possible to measure temperature in a vacuum atmosphere.

【0020】また、極度に低い赤外線放射率の半導体ウ
エハの場合でも、ほぼ全面が加熱用の治具に被覆されて
おり、雰囲気ガスによる冷却効果は無視できるレベルに
することができる。更に、測定治具と支持台は別に製作
でき、熱負荷を小さくできるので、昇温降温を高レート
で実施可能である。
Even in the case of a semiconductor wafer having an extremely low infrared emissivity, almost the entire surface is covered with a heating jig, and the cooling effect of the atmospheric gas can be made to a negligible level. Further, since the measuring jig and the support base can be separately manufactured and the heat load can be reduced, the temperature rising / falling can be performed at a high rate.

【0021】また、真空パイプがないこと、小型軽量の
治具が製作可能なため、NH3 ガス雰囲気で測温でき
る。 (2)上記(2)記載の半導体ウエハの赤外線放射率の
測定治具によれば、上記(1)に加え、測定治具の表面
をSiCでコートしたので、パーティクルの発生を皆無
にできる。また、SiCが耐酸化性の性質に富むので、
あらゆるガス雰囲気での測温が可能である。
Further, since there is no vacuum pipe and a small and lightweight jig can be manufactured, the temperature can be measured in an NH 3 gas atmosphere. (2) According to the infrared emissivity measuring jig for a semiconductor wafer described in (2) above, in addition to (1) above, since the surface of the measuring jig is coated with SiC, generation of particles can be eliminated altogether. Moreover, since SiC is rich in oxidation resistance,
It is possible to measure temperature in any gas atmosphere.

【0022】(3)上記(3)記載の半導体ウエハの赤
外線放射率の測定治具によれば、多結晶シリコン表面に
シリコン酸化膜と多結晶シリコン膜を生成し、かつ赤外
線放射率εがほぼ1となる積層構造としたので、上記
(1)に加え、パーティクルの発生を皆無にできる。ま
た、赤外線放射率εが1に近いウエハの測温においても
誤差を極めて小さくできる。
(3) According to the infrared emissivity measuring jig for a semiconductor wafer described in (3) above, a silicon oxide film and a polycrystalline silicon film are formed on the surface of polycrystalline silicon, and the infrared emissivity ε is almost the same. Since the laminated structure of No. 1 is adopted, in addition to the above (1), generation of particles can be completely eliminated. Further, even in the temperature measurement of the wafer whose infrared emissivity ε is close to 1, the error can be made extremely small.

【0023】(4)上記(4)記載の半導体ウエハの赤
外線放射率の測定治具によれば、上記(1)に加え、測
定治具を石英で製作したので、安価であるとともに、製
作形状の自由度が大きく、また、破損の場合の修理が可
能となった。更に、SiCより不純物濃度が低く汚染が
少ない特徴をも有する。また、赤外線放射率εをほぼ1
となる積層構造としたので、赤外線放射率εが1に近い
ウエハの測定でも誤差を小さくできる。
(4) According to the infrared emissivity measuring jig for a semiconductor wafer as described in (4) above, since the measuring jig is made of quartz in addition to the above (1), the manufacturing cost is low and the manufacturing shape is low. It has a high degree of freedom and can be repaired in case of damage. Further, it has a characteristic that the impurity concentration is lower than that of SiC and the pollution is less. Also, the infrared emissivity ε is approximately 1
Since the laminated structure is such that the error can be reduced even in the measurement of a wafer having an infrared emissivity ε close to 1.

【0024】(5)上記(6)記載の半導体ウエハの赤
外線放射率の測定方法によれば、 測温ウエハの裏面の一部に赤外線放射率εが既知で
ほぼ1のグラファイトを被覆しただけであるので、真空
中での測温が可能である。 極度に低い赤外線放射率εのウエハの場合でも、ほ
ぼ全面が被覆されておらず、雰囲気ガスによる冷却効果
は全面で発生し、測温誤差は無視できるレベルにするこ
とができる。
(5) According to the method for measuring the infrared emissivity of a semiconductor wafer according to the above (6), a part of the back surface of the temperature-measuring wafer is coated with graphite having a known infrared emissivity ε of about 1 only. Therefore, it is possible to measure temperature in vacuum. Even in the case of a wafer having an extremely low infrared emissivity ε, almost the entire surface is not covered, the cooling effect by the atmospheric gas occurs on the entire surface, and the temperature measurement error can be ignored.

【0025】 測定治具は事実上なく、支持台は別に
製作することができ、熱負荷は極めて小さくすることが
できるので、昇温降温レートは通常の熱処理での値(高
レート100℃/秒)で実施可能である。 測定治具が事実上必要でなく、しかも小型軽量の治
具が製作可能であるためNH3 ガス雰囲気で測温でき
る。
Since there is virtually no measurement jig and the support base can be manufactured separately, and the heat load can be made extremely small, the temperature rising / falling rate is the value in the normal heat treatment (high rate 100 ° C./sec. ) Is possible. Since a measurement jig is practically unnecessary and a small and lightweight jig can be manufactured, the temperature can be measured in an NH 3 gas atmosphere.

【0026】 半導体ウエハの測温において、熱電対
を外部から挿入する必要がなく、測温作業が単純であ
る。 (6)上記(7)記載の半導体ウエハの赤外線放射率の
測定方法によれば、上記(6)に加え、グラファイトの
測温と測温ウエハの裏面の測温が個別に同時に実施可能
であり、加熱用ランプの光リップル(加熱エネルギーの
時間的ムラ)に影響されなくなる。
When measuring the temperature of the semiconductor wafer, it is not necessary to insert a thermocouple from the outside, and the temperature measuring operation is simple. (6) According to the method for measuring the infrared emissivity of a semiconductor wafer according to the above (7), in addition to the above (6), the temperature measurement of graphite and the temperature measurement of the back surface of the temperature measurement wafer can be individually and simultaneously performed. , It is not affected by light ripple of heating lamp (temporal unevenness of heating energy).

【0027】(7)上記(8)及び(9)記載の半導体
ウエハの赤外線放射率の測定方法によれば、上記(5)
に加え、SiC片をグラファイトペーストで接着したの
で、パーティクルの発生を皆無にでき、酸化雰囲気中で
も測温が可能である。 (8)上記(10)及び(11)記載の半導体ウエハの
赤外線放射率の測定方法によれば、上記(5)に加え、
赤外線放射率が1〜0.9であるSiウエハ片をグラフ
ァイトペーストで接着したので、パーティクルの発生を
皆無にでき、酸化雰囲気中でも測温が可能である。
(7) According to the method for measuring the infrared emissivity of a semiconductor wafer as described in (8) and (9) above, (5) above
In addition, since the SiC pieces are bonded with the graphite paste, the generation of particles can be eliminated, and the temperature can be measured even in an oxidizing atmosphere. (8) According to the method for measuring the infrared emissivity of a semiconductor wafer according to the above (10) and (11), in addition to the above (5),
Since the Si wafer pieces having the infrared emissivity of 1 to 0.9 are bonded with the graphite paste, the generation of particles can be eliminated and the temperature can be measured even in the oxidizing atmosphere.

【0028】[0028]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。図1は本発明の第1実施例を示す測定
治具の構成図であり、図1(a)はその測温治具の上面
図、図1(b)はその測定治具の一部破断側面図であ
る。図2はその測定治具を用いた赤外線放射率の測定方
法の概念図である。なお、従来例と同一部分について
は、同じ符号を付与している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a measuring jig showing a first embodiment of the present invention. FIG. 1 (a) is a top view of the temperature measuring jig, and FIG. 1 (b) is a partial cutaway of the measuring jig. It is a side view. FIG. 2 is a conceptual diagram of a method for measuring infrared emissivity using the measuring jig. The same parts as those in the conventional example are designated by the same reference numerals.

【0029】図1に示すように、測定治具10は、測温
窓13が開口している測定治具本体11と、開口14を
有している治具蓋12とで構成されており、開口寸法
は、測温エリアの倍程度で10〜20mmφである。材
質はグラファイトであり、治具蓋12の板厚は1〜2m
mである。測定治具本体11の内部は、半導体ウエハ
(測温ウエハ)109が収納できる大きさで、底板には
実温測定のための熱電対収納用の測温孔15が設けられ
ている。治具蓋12と測定治具本体11は嵌め合い構造
とし、互いにずれない構造にしている。
As shown in FIG. 1, the measuring jig 10 is composed of a measuring jig body 11 having a temperature measuring window 13 opened, and a jig lid 12 having an opening 14. The opening size is about 10 to 20 mmφ, which is about twice the temperature measurement area. The material is graphite, and the plate thickness of the jig lid 12 is 1 to 2 m.
m. The inside of the measurement jig main body 11 is large enough to accommodate a semiconductor wafer (temperature measurement wafer) 109, and the bottom plate is provided with a temperature measurement hole 15 for accommodating a thermocouple for actual temperature measurement. The jig lid 12 and the measurement jig body 11 are fitted to each other so that they do not shift from each other.

【0030】図2に示すように、石英製のチャンバー1
10の上下には、反射鏡111とハロゲンランプ112
で構成した加熱部と、ガス導入口113及びガス排出口
114が設けられ、チャンバーの蓋体115には測定治
具が支持される支持台17が固定されている。また、測
温ウエハ109の裏面が測定治具10の底板に接するよ
うに収納されている。
As shown in FIG. 2, the chamber 1 made of quartz is used.
Above and below 10, there are a reflector 111 and a halogen lamp 112.
The heating unit configured as described above, a gas inlet 113 and a gas outlet 114 are provided, and a support stand 17 for supporting a measurement jig is fixed to a chamber lid 115. Further, the back surface of the temperature measurement wafer 109 is housed so as to contact the bottom plate of the measurement jig 10.

【0031】更に、中央部には赤外線放射温度計(ボロ
メータ)118が配置されている。ボロメータ118は
赤外線光学系119と赤外線センサ120及び温度表示
計121で構成されており、測温ウエハ109の実際の
温度である測定治具10の温度は、測温孔15に収納さ
れる熱電対(図示なし)からの引き出し線106に接続
される温度表示計117によって表示される。ボロメー
タ118の温度表示計123に表示される放射温度は、
前記した温度表示計117による温度122より、通常
低くなり、赤外線放射率εが測定できる。
Further, an infrared radiation thermometer (bolometer) 118 is arranged at the center. The bolometer 118 includes an infrared optical system 119, an infrared sensor 120, and a temperature indicator 121. The actual temperature of the temperature measuring wafer 109, that is, the temperature of the measuring jig 10, is a thermocouple stored in the temperature measuring hole 15. It is displayed by a temperature indicator 117 connected to a lead line 106 from (not shown). The radiation temperature displayed on the temperature indicator 123 of the bolometer 118 is
The temperature is usually lower than the temperature 122 measured by the temperature indicator 117, and the infrared emissivity ε can be measured.

【0032】次に、本発明の第2実施例として、図7に
示すように、グラファイト製の測定治具本体11と治具
蓋12の表面に、CVD法により、SiC膜16を0.
1〜1μm被覆させるようにしている。次いで、本発明
の第3実施例として、図8に示すように、多結晶シリコ
ン製の測定治具本体21の表面に4500ÅのSiO2
膜(以下、単に、シリコン酸化膜)23を生成し、その
後、200〜300Åまたは4800Åの多結晶シリコ
ン膜24をCVD法にて生成させ、被覆するようにして
いる。同様に、多結晶シリコン製の測温蓋22の表面に
4500Åのシリコン酸化膜23を生成し、その後、2
00〜300Åまたは4800Åの多結晶シリコン膜2
4をCVD法にて生成させ、被覆するようにしている。
Next, as a second embodiment of the present invention, as shown in FIG. 7, a SiC film 16 is formed on the surfaces of the graphite measuring jig main body 11 and the jig lid 12 by the CVD method.
1 to 1 μm is coated. Next, as a third embodiment of the present invention, as shown in FIG. 8, 4500Å SiO 2 is formed on the surface of the measuring jig body 21 made of polycrystalline silicon.
A film (hereinafter simply referred to as a silicon oxide film) 23 is formed, and then a polycrystalline silicon film 24 having a thickness of 200 to 300Å or 4800Å is formed by a CVD method so as to cover the film. Similarly, a silicon oxide film 23 of 4500Å is formed on the surface of the temperature measuring lid 22 made of polycrystalline silicon, and then 2
Polycrystalline silicon film 2 of 0 to 300Å or 4800Å
4 is produced by the CVD method so as to be coated.

【0033】次に、本発明の第4実施例として、図9に
示すように、石英製の測定治具本体31の表面に、0.
5μm以上の多結晶シリコン膜33をCVD法にて生成
し、その後、表面に4500Åのシリコン酸化膜及び2
00〜300Åまたは4800Åの多結晶シリコン膜か
らなる被膜34をCVD法にて生成させ、被覆する。同
様に、石英製の測温蓋32の表面に、0.5μm以上の
多結晶シリコン膜33をCVD法にて生成し、その表面
に4500Åのシリコン酸化膜及び200〜300Åま
たは4800Åの多結晶シリコン膜からなる被膜34を
CVD法にて生成させ、被覆するようにしている。
Next, as a fourth embodiment of the present invention, as shown in FIG.
A polycrystalline silicon film 33 having a thickness of 5 μm or more is formed by a CVD method, and then a silicon oxide film of 4500 Å and 2
A coating 34 made of a polycrystalline silicon film having a thickness of 00 to 300Å or 4800Å is formed by a CVD method and is covered. Similarly, a polycrystalline silicon film 33 of 0.5 μm or more is formed by the CVD method on the surface of the quartz temperature measuring lid 32, and a silicon oxide film of 4500 Å and a polycrystalline silicon film of 200 to 300 Å or 4800 Å is formed on the surface. The coating film 34 made of a film is formed by the CVD method so as to cover the film.

【0034】次に、本発明の第5実施例として、図10
を用いて説明する。なお、従来例と同一の部分について
は、同じ番号を付して、その説明は省略する。測温ウエ
ハ109の裏面の一部に、グラファイトペースト「商品
名 ヒタゾルAB M 日立粉末冶金(株)製」51を
被覆させ、チャンバーの蓋体41に固定された支持台4
2に、少なくとも3箇所に形成された石英の突起43を
介して点接触状態で載置して石英製のチャンバー110
に挿入する。
Next, as a fifth embodiment of the present invention, FIG.
Will be explained. The same parts as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted. A part of the back surface of the temperature measurement wafer 109 is covered with a graphite paste 51 (trade name: Hitasol AB M Hitachi Powder Metallurgy Co., Ltd.) 51, and is fixed to the chamber lid 41.
2, the quartz chamber 110 is placed in a point contact state through the quartz protrusions 43 formed at least at three positions.
To insert.

【0035】図10に示すように、ボロメータ52は測
温ウエハ109の裏面を走査できる構造とし、グラファ
イトペースト51の表面と測温ウエハ109の裏面の測
温を行い、温度表示計121に表示する。次に、本発明
の第6実施例として、図11を用いて説明する。なお、
従来例と同一の部分については、同じ番号を付して、そ
の説明は省略する。
As shown in FIG. 10, the bolometer 52 has a structure capable of scanning the back surface of the temperature measuring wafer 109, measures the temperature of the front surface of the graphite paste 51 and the back surface of the temperature measuring wafer 109, and displays it on the temperature indicator 121. . Next, a sixth embodiment of the present invention will be described with reference to FIG. In addition,
The same parts as those in the conventional example are designated by the same reference numerals and the description thereof will be omitted.

【0036】図11に示すように、測温ウエハ109の
裏面の一部に、グラファイトペースト「商品名 ヒタゾ
ルAB M 日立粉末冶金(株)製」51を被覆させ、
チャンバーの蓋体41に固定された支持台42に点接触
状態で載置して石英製のチャンバー110に挿入する。
そこで、ボロメータ61は2個の赤外線センサ62,6
3を配置し、赤外線センサ62はグラファイトペースト
51の測温を行い、赤外線センサ63は測温ウエハ10
9の裏面の測温を行い、温度表示計64はグラファイト
ペースト51及び温度表示計65は測温ウエハ109の
温度をそれぞれ表示する。
As shown in FIG. 11, a part of the back surface of the temperature measuring wafer 109 is coated with a graphite paste 51 (trade name: HITASOL AB M Hitachi Powder Metallurgy Co., Ltd.) 51.
It is mounted in a point contact state on a support table 42 fixed to a chamber lid 41 and inserted into a quartz chamber 110.
Therefore, the bolometer 61 has two infrared sensors 62, 6
3, the infrared sensor 62 measures the temperature of the graphite paste 51, and the infrared sensor 63 measures the temperature of the temperature measuring wafer 10.
The temperature of the back surface of 9 is measured, and the temperature indicator 64 displays the graphite paste 51 and the temperature indicator 65 displays the temperature of the temperature-measured wafer 109, respectively.

【0037】次に、本発明の第7実施例として、図12
を用いて説明する。なお、従来例と同一の部分について
は、同じ番号を付して、その説明は省略する。図12に
示すように、測温ウエハ109の裏面の一部にグラファ
イトペースト「商品名 ヒタゾルAB M 日立粉末冶
金(株)製」53を被覆させ、板厚100〜600μm
のSiC片54を接着させ、チャンバーの蓋体41に固
定された支持台42に点接触状態で載置して石英製のチ
ャンバー110に挿入する。
Next, as a seventh embodiment of the present invention, FIG.
Will be explained. The same parts as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 12, a part of the back surface of the temperature measurement wafer 109 is covered with a graphite paste “Hitasol ABM Hitachi Powder Metallurgy Co., Ltd.” 53, which has a plate thickness of 100 to 600 μm.
The SiC piece 54 is adhered, placed on the support 42 fixed to the lid 41 of the chamber in a point contact state, and inserted into the quartz chamber 110.

【0038】そこで、ボロメータ52は測温ウエハ10
9の裏面を走査できる構造とし、グラファイトペースト
53で接着したSiC片54の表面と測温ウエハ109
の裏面の測温を行う。次に、本発明の第8実施例とし
て、図13を用いて説明する。なお、従来例と同一の部
分については、同じ番号を付して、その説明は省略す
る。
Therefore, the bolometer 52 is used as the temperature measuring wafer 10.
9 has a structure capable of scanning the back surface, and the front surface of the SiC piece 54 adhered with the graphite paste 53 and the temperature measurement wafer 109.
Measure the temperature on the back side of. Next, an eighth embodiment of the present invention will be described with reference to FIG. The same parts as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

【0039】図13に示すように、測温ウエハ109の
裏面の一部にグラファイトペースト「商品名 ヒタゾル
AB M 日立粉末冶金(株)」53を被覆させ、板厚
100〜600μmのSiC片54を接着させ、チャン
バーの蓋体41に固定された支持台42に点接触状態で
載置して石英製のチャンバー110に挿入する。そこ
で、ボロメータ61は2個の赤外線センサ62,63を
配置し、赤外線センサ62はグラファイトペースト53
で接着したSiC片54の測温を行い、赤外線センサ6
3は測温ウエハ109の裏面の測温を行い、温度表示計
64はSiC片54の温度を表示し、温度表示計65は
測温ウエハ109の温度をそれぞれ表示する。
As shown in FIG. 13, a part of the back surface of the temperature measuring wafer 109 is covered with graphite paste “Hitasol AB M Hitachi Powder Metallurgy Co., Ltd.” 53, and a SiC piece 54 having a plate thickness of 100 to 600 μm is coated. It is adhered and placed in a point contact state on a support table 42 fixed to a chamber lid 41 and inserted into a quartz chamber 110. Therefore, the bolometer 61 is provided with two infrared sensors 62 and 63, and the infrared sensor 62 uses the graphite paste 53.
The temperature of the SiC piece 54 adhered by
3 measures the temperature of the back surface of the temperature measuring wafer 109, the temperature indicator 64 displays the temperature of the SiC piece 54, and the temperature indicator 65 displays the temperature of the temperature measuring wafer 109.

【0040】次に、本発明の第9実施例として、図14
を用いて説明する。図14に示すように、測温ウエハ1
09の裏面の一部にグラファイトペースト「商品名 ヒ
タゾルAB M 日立粉末冶金(株)」55を被着し、
そこに赤外線放射率が1〜0.9であるSiウエハ片5
6を接着させる。その測温ウエハ109を、チャンバー
の蓋体41に固定された支持台42に点接触状態で載置
して石英製のチャンバー110に挿入する。ここで、S
iウエハ片56はシリコン酸化膜を4500Å、多結晶
シリコン膜を200〜300Åまたは4800ÅCVD
法にて生成したものである。
Next, as a ninth embodiment of the present invention, FIG.
Will be explained. As shown in FIG. 14, the temperature measurement wafer 1
The graphite paste "Hitasol ABM Hitachi Powdered Metals Co., Ltd." 55 is attached to a part of the back surface of 09,
Si wafer piece 5 with infrared emissivity of 1 to 0.9
Bond 6 together. The temperature measurement wafer 109 is placed on the support 42 fixed to the chamber lid 41 in a point contact state and inserted into the quartz chamber 110. Where S
The i-wafer piece 56 has a silicon oxide film of 4500Å and a polycrystalline silicon film of 200 to 300Å or 4800Å CVD.
It was generated by the method.

【0041】そこで、ボロメータ52は測温ウエハ10
9の裏面を走査できる構造とし、グラファイトペースト
55で接着したSiウエハ片56の表面と測温ウエハ1
09の裏面の測温を行い、温度表示計121に表示す
る。次に、本発明の第10実施例として、図15を用い
て説明する。図15に示すように、測温ウエハ109の
裏面の一部にグラファイトペースト「商品名 ヒタゾル
AB M 日立粉末冶金(株)」55を被着し、そこに
赤外線放射率が1〜0.9であるSiウエハ片56を接
着させる。その測温ウエハ109をチャンバーの蓋体4
1に固定された支持台42に点接触状態で載置して、石
英製のチャンバー110に挿入する。ここで、Siウエ
ハ片56はシリコン酸化膜を4500Å、多結晶シリコ
ン膜を200〜300Åまたは4800ÅCVD法にて
生成したものである。
Therefore, the bolometer 52 is the temperature measuring wafer 10.
9 has a structure capable of scanning the back surface and the front surface of the Si wafer piece 56 bonded with the graphite paste 55 and the temperature measurement wafer 1.
The temperature of the back surface of 09 is measured and displayed on the temperature indicator 121. Next, a tenth embodiment of the present invention will be described with reference to FIG. As shown in FIG. 15, a graphite paste “Hitasol ABM Hitachi Powdered Metals Co., Ltd.” 55 was applied to a part of the back surface of the temperature measurement wafer 109, and the infrared emissivity was 1 to 0.9. A Si wafer piece 56 is bonded. The temperature measurement wafer 109 is attached to the chamber lid 4.
It is placed in a point contact state on the support table 42 fixed to No. 1 and inserted into the quartz chamber 110. Here, the Si wafer piece 56 is formed by a silicon oxide film of 4500Å and a polycrystalline silicon film of 200 to 300Å or 4800Å CVD.

【0042】そこで、ボロメータ61は2個の赤外線セ
ンサ62,63を配置し、赤外線センサ62はグラファ
イトペースト55で接着したSiウエハ片56の測温を
行い、赤外線センサ63は測温ウエハ109の裏面の測
温を行い、温度表示計64はSiウエハ片56の温度を
表示し、温度表示計65は測温ウエハ109の温度をそ
れぞれ表示する。
Therefore, the bolometer 61 is provided with two infrared sensors 62 and 63, the infrared sensor 62 measures the temperature of the Si wafer piece 56 adhered with the graphite paste 55, and the infrared sensor 63 is the back surface of the temperature measuring wafer 109. The temperature indicator 64 displays the temperature of the Si wafer piece 56, and the temperature indicator 65 displays the temperature of the temperature-measured wafer 109.

【0043】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0044】[0044]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (1)請求項1及び6記載の発明によれば、測定ウエハ
を収納方式としたので真空中での測温が可能である。
As described in detail above, according to the present invention, the following effects can be achieved. (1) According to the first and sixth aspects of the invention, since the measurement wafer is stored, the temperature can be measured in vacuum.

【0045】また、極度に低い赤外線放射率の半導体ウ
エハの場合でも、ほぼ全面が加熱用の治具に被覆されて
おり、雰囲気ガスによる冷却効果は無視できるレベルに
することができる。更に、測定治具と支持台は別に製作
でき、熱負荷を小さくできるので、昇温降温を高レート
で実施可能である。
Further, even in the case of a semiconductor wafer having an extremely low infrared emissivity, almost the entire surface is covered with a heating jig, and the cooling effect by the atmospheric gas can be made to a negligible level. Further, since the measuring jig and the support base can be separately manufactured and the heat load can be reduced, the temperature rising / falling can be performed at a high rate.

【0046】また、真空パイプがないこと、小型軽量の
治具が製作可能なため、NH3 ガス雰囲気で測温でき
る。 (2)請求項2記載の発明によれば、上記(1)の効果
に加え、SiCコートしたので、パーティクルの発生を
皆無にできる。また、SiCが耐酸化性の性質に富むの
で、あらゆるガス雰囲気での測温が可能である。
Further, since there is no vacuum pipe and a small and lightweight jig can be manufactured, the temperature can be measured in the NH 3 gas atmosphere. (2) According to the invention of claim 2, in addition to the effect of (1) above, since SiC coating is performed, generation of particles can be completely eliminated. Further, since SiC is rich in oxidation resistance, it is possible to measure temperature in any gas atmosphere.

【0047】(3)請求項3記載の発明によれば、多結
晶シリコン表面にシリコン酸化膜と多結晶シリコン膜を
生成し、かつ赤外線放射率εがほぼ1となる積層構造と
したので、上記(1)の効果に加え、パーティクルの発
生を皆無にできる。また、赤外線放射率εが1に近いウ
エハの測温においても誤差を極めて小さくできる。 (4)請求項4記載の発明によれば、上記(1)の効果
に加え、測定治具を石英で製作したので、安価であると
ともに、製作形状の自由度が大きく、また、破損の場合
の修理が可能となった。更に、SiCより不純物濃度が
低く汚染が少ない特徴をも有する。また、赤外線放射率
εをほぼ1となる積層構造としたので、赤外線放射率ε
が1に近いウエハの測定でも誤差を小さくできる。
(3) According to the invention described in claim 3, since the silicon oxide film and the polycrystalline silicon film are formed on the surface of the polycrystalline silicon, and the infrared emissivity ε is about 1, the laminated structure is obtained. In addition to the effect of (1), generation of particles can be eliminated. Further, even in the temperature measurement of the wafer whose infrared emissivity ε is close to 1, the error can be made extremely small. (4) According to the invention of claim 4, in addition to the effect of the above (1), since the measuring jig is made of quartz, it is inexpensive, has a large degree of freedom in the manufacturing shape, and is broken. Repairs have become possible. Further, it has a characteristic that the impurity concentration is lower than that of SiC and the pollution is less. In addition, since the laminated structure has an infrared emissivity ε of approximately 1, the infrared emissivity ε
The error can be reduced even in the measurement of a wafer having a value close to 1.

【0048】(5)請求項6記載の発明によれば、 測温ウエハの裏面の一部に赤外線放射率εが既知で
ほぼ1のグラファイトを被覆しただけであるので、真空
中での測温が可能である。 極度に低い赤外線放射率εのウエハの場合でも、ほ
ぼ全面が被覆されておらず、雰囲気ガスによる冷却効果
は全面で発生し、測温誤差は無視できるレベルにするこ
とができる。
(5) According to the invention described in claim 6, since the back surface of the temperature measuring wafer is only coated with graphite having a known infrared emissivity ε of about 1, the temperature measurement in vacuum is performed. Is possible. Even in the case of a wafer having an extremely low infrared emissivity ε, almost the entire surface is not covered, the cooling effect by the atmospheric gas occurs on the entire surface, and the temperature measurement error can be ignored.

【0049】 測定治具は事実上なく、支持台は別に
製作することができ、熱負荷は極めて小さくすることが
できるので、昇温降温レートは通常の熱処理での値(高
レート100℃/秒)で実施可能である。 測定治具が事実上必要でなく、しかも小型軽量の治
具が製作可能であるためNH3 ガス雰囲気で測温でき
る。
Since there is virtually no measurement jig, the support base can be manufactured separately, and the heat load can be made extremely small. Therefore, the temperature rising / falling rate is the value in the normal heat treatment (high rate 100 ° C./sec. ) Is possible. Since a measurement jig is practically unnecessary and a small and lightweight jig can be manufactured, the temperature can be measured in an NH 3 gas atmosphere.

【0050】 半導体ウエハの測温において、熱電対
を外部から挿入する必要がなく、測温作業が単純であ
る。 (6)請求項7記載の発明によれば、上記(5)の効果
に加え、グラファイトの測温と測温ウエハの裏面の測温
が個別に同時に実施可能であり、加熱用ランプの光リッ
プル(加熱エネルギーの時間的ムラ)に影響されなくな
る。
When measuring the temperature of the semiconductor wafer, it is not necessary to insert a thermocouple from the outside, and the temperature measuring operation is simple. (6) According to the invention of claim 7, in addition to the effect of the above (5), the temperature measurement of graphite and the temperature measurement of the back surface of the temperature measurement wafer can be performed individually at the same time, and the light ripple of the heating lamp is increased. It is not affected by (temporal unevenness of heating energy).

【0051】(7)請求項8及び9記載の発明によれ
ば、上記(5)の効果に加え、SiC片をグラファイト
ペーストで接着したので、パーティクルの発生を皆無に
でき、酸化雰囲気中でも測温が可能である。 (8)請求項10及び11記載の発明によれば、上記
(5)の効果に加え、赤外線放射率が1〜0.9である
Siウエハ片をグラファイトペーストで接着したので、
パーティクルの発生を皆無にでき、酸化雰囲気中でも測
温が可能である。
(7) According to the invention described in claims 8 and 9, in addition to the effect of the above (5), since the SiC pieces are adhered by the graphite paste, generation of particles can be eliminated and temperature measurement can be performed even in an oxidizing atmosphere. Is possible. (8) According to the inventions of claims 10 and 11, in addition to the effect of the above (5), Si wafer pieces having an infrared emissivity of 1 to 0.9 are bonded with a graphite paste.
Generation of particles can be eliminated and temperature can be measured even in an oxidizing atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す測定治具の構成図で
ある。
FIG. 1 is a configuration diagram of a measuring jig showing a first embodiment of the present invention.

【図2】本発明の第1実施例を示す測定治具を用いた赤
外線放射率の測定方法の概念図である。
FIG. 2 is a conceptual diagram of a method for measuring infrared emissivity using a measuring jig according to the first embodiment of the present invention.

【図3】従来の赤外線放射率を測定するための測定治具
の平面図である。
FIG. 3 is a plan view of a conventional measuring jig for measuring infrared emissivity.

【図4】図3のA−A線の断面図である。4 is a cross-sectional view taken along the line AA of FIG.

【図5】従来の測定治具を用いて赤外線放射率を測定す
る方法の概念図である。
FIG. 5 is a conceptual diagram of a method for measuring infrared emissivity using a conventional measuring jig.

【図6】測温ウエハ上にシリコン酸化膜と多結晶シリコ
ン膜を形成した場合の、多結晶シリコン膜の膜厚と赤外
線放射率との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a film thickness of a polycrystalline silicon film and an infrared emissivity when a silicon oxide film and a polycrystalline silicon film are formed on a temperature measurement wafer.

【図7】本発明の第2実施例を示す測定治具の構成図で
ある。
FIG. 7 is a configuration diagram of a measuring jig showing a second embodiment of the present invention.

【図8】本発明の第3実施例を示す測定治具の構成図で
ある。
FIG. 8 is a configuration diagram of a measuring jig showing a third embodiment of the present invention.

【図9】本発明の第4実施例を示す測定治具の構成図で
ある。
FIG. 9 is a configuration diagram of a measuring jig showing a fourth embodiment of the present invention.

【図10】本発明の第5実施例を示す赤外線放射率の測
定方法の概念図である。
FIG. 10 is a conceptual diagram of a method for measuring infrared emissivity showing a fifth embodiment of the present invention.

【図11】本発明の第6実施例を示す赤外線放射率の測
定方法の概念図である。
FIG. 11 is a conceptual diagram of a method for measuring infrared emissivity showing a sixth embodiment of the present invention.

【図12】本発明の第7実施例を示す赤外線放射率の測
定方法の概念図である。
FIG. 12 is a conceptual diagram of a method for measuring infrared emissivity showing a seventh embodiment of the present invention.

【図13】本発明の第8実施例を示す赤外線放射率の測
定方法の概念図である。
FIG. 13 is a conceptual diagram of an infrared emissivity measuring method showing an eighth embodiment of the present invention.

【図14】本発明の第9実施例を示す赤外線放射率の測
定方法の概念図である。
FIG. 14 is a conceptual diagram of a method for measuring infrared emissivity showing a ninth embodiment of the present invention.

【図15】本発明の第10実施例を示す赤外線放射率の
測定方法の概念図である。
FIG. 15 is a conceptual diagram of a method for measuring infrared emissivity showing a tenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 測定治具 11 測定治具本体 12 治具蓋 13 測温窓 14 開口 15 測温孔 16 SiC膜 17,42 支持台 21 多結晶シリコン製の測定治具本体 22 多結晶シリコン製の治具蓋 23,33 シリコン酸化膜 24 多結晶シリコン膜 31 石英製の測定治具本体 32 石英製の治具蓋 34 被膜(シリコン酸化膜及び多結晶シリコン膜) 41,115 チャンバーの蓋体 51,53,55 グラファイトペースト 52,61,118 赤外線放射温度計(ボロメー
タ) 54 SiC片 56 Siウエハ片(シリコン酸化膜及び多結晶シリ
コン膜) 62,63 赤外線センサ 64,65 温度表示計 109 半導体ウエハ(測温ウエハ) 110 石英製のチャンバー 111 反射鏡 112 ハロゲンランプ 113 ガス導入口 114 ガス排出口 119 赤外線光学系 120 赤外線センサ 121 温度表示計
10 Measuring Jig 11 Measuring Jig Main Body 12 Jig Lid 13 Temperature Measuring Window 14 Opening 15 Temperature Measuring Hole 16 SiC Film 17,42 Supporting Base 21 Polycrystalline Silicon Measuring Jig Main Body 22 Polycrystalline Silicon Jig Lid 23, 33 Silicon oxide film 24 Polycrystalline silicon film 31 Quartz measurement jig body 32 Quartz jig lid 34 Coating (silicon oxide film and polycrystalline silicon film) 41, 115 Chamber lid 51, 53, 55 Graphite paste 52,61,118 Infrared radiation thermometer (bolometer) 54 SiC piece 56 Si wafer piece (silicon oxide film and polycrystalline silicon film) 62,63 Infrared sensor 64,65 Temperature indicator 109 Semiconductor wafer (temperature measuring wafer) 110 Quartz chamber 111 Reflector 112 Halogen lamp 113 Gas inlet 114 Gas outlet 19 infrared optical system 120 infrared sensor 121 Temperature Indicator

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ランプによる加熱にて熱処理を行う半導
体集積回路装置の製造装置における半導体ウエハの赤外
線放射率の測定治具において、(a)赤外線放射温度計
の測温領域より大きい測温窓を有する本体と、(b)該
本体上に被着され、前記測温窓の上方に同様の寸法で形
成される開口を有する治具蓋と、(c)前記本体に設け
られる熱電対を収納する測温孔を有することを特徴とす
る半導体ウエハの赤外線放射率の測定治具。
1. A jig for measuring an infrared emissivity of a semiconductor wafer in a manufacturing apparatus of a semiconductor integrated circuit device, which performs heat treatment by heating with a lamp, comprises: (a) a temperature measuring window larger than a temperature measuring area of an infrared radiation thermometer. A main body having: (b) a jig lid which is attached to the main body and has an opening of the same size above the temperature measuring window; and (c) a thermocouple provided in the main body. A jig for measuring the infrared emissivity of a semiconductor wafer, which has a temperature measuring hole.
【請求項2】 請求項1記載の半導体ウエハの赤外線放
射率の測定治具において、前記治具蓋及び本体がSiC
を被覆したグラファイト製であることを特徴とする半導
体ウエハの赤外線放射率の測定治具。
2. A jig for measuring infrared emissivity of a semiconductor wafer according to claim 1, wherein the jig lid and the main body are made of SiC.
A jig for measuring infrared emissivity of a semiconductor wafer, which is made of graphite coated with.
【請求項3】 請求項1記載の半導体ウエハの赤外線放
射率の測定治具において、前記治具蓋及び本体の表面に
シリコン酸化膜と多結晶シリコン膜を被覆し、赤外線放
射率を1〜0.9とした多結晶シリコン製であることを
特徴とする半導体ウエハの赤外線放射率の測定治具。
3. The jig for measuring infrared emissivity of a semiconductor wafer according to claim 1, wherein the surface of the jig lid and the main body are covered with a silicon oxide film and a polycrystalline silicon film, and the infrared emissivity is 1 to 0. 9. A jig for measuring the infrared emissivity of a semiconductor wafer, which is made of polycrystalline silicon.
【請求項4】 請求項1記載の半導体ウエハの赤外線放
射率の測定治具において、前記治具蓋と本体の表面に多
結晶シリコン膜と、シリコン酸化膜及び多結晶シリコン
膜を被覆し、赤外線放射率を1〜0.9とした石英ガラ
ス製であることを特徴とする半導体ウエハの赤外線放射
率の測定治具。
4. The infrared wafer emissivity measuring jig for a semiconductor wafer according to claim 1, wherein the jig lid and the surface of the main body are covered with a polycrystalline silicon film and a silicon oxide film and a polycrystalline silicon film. A jig for measuring infrared emissivity of a semiconductor wafer, which is made of quartz glass having an emissivity of 1 to 0.9.
【請求項5】 ランプによる加熱にて熱処理を行う半導
体集積回路装置の製造装置における半導体ウエハの赤外
線放射率の測定方法において、 請求項1、2、3又は4記載の半導体ウエハの赤外線放
射率の測定治具の本体の測温窓を介して前記測温ウエハ
の裏面の温度を測定することを特徴とする半導体ウエハ
の赤外線放射率の測定方法。
5. A method for measuring an infrared emissivity of a semiconductor wafer in a manufacturing apparatus of a semiconductor integrated circuit device, wherein heat treatment is performed by heating with a lamp, wherein the infrared emissivity of the semiconductor wafer according to claim 1, 2, 3 or 4. A method for measuring the infrared emissivity of a semiconductor wafer, which comprises measuring the temperature of the back surface of the temperature-measuring wafer through a temperature-measuring window of the main body of the measuring jig.
【請求項6】 ランプによる加熱にて熱処理を行う半導
体集積回路装置の製造装置における半導体ウエハの赤外
線放射率の測定方法において、 測定ウエハの裏面の一部にグラファイトを被覆し、該グ
ラファイト表面と前記測温ウエハの裏面とを走査できる
単一の赤外線放射温度計にて、前記グラファイト表面の
温度と前記測温ウエハの裏面の温度を測定することを特
徴とする半導体ウエハの赤外線放射率の測定方法。
6. A method for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus for performing heat treatment by heating with a lamp, wherein a part of the back surface of the measurement wafer is coated with graphite, and the graphite surface and A method for measuring the infrared emissivity of a semiconductor wafer, characterized in that the temperature of the graphite surface and the temperature of the back surface of the temperature measurement wafer are measured with a single infrared radiation thermometer capable of scanning the back surface of the temperature measurement wafer. .
【請求項7】 ランプによる加熱にて熱処理を行う半導
体集積回路装置の製造装置における半導体ウエハの赤外
線放射率の測定方法において、 測温ウエハの裏面の一部にグラファイトを被覆し、複数
の赤外線放射温度計にて前記グラファイトの表面の温度
と前記測温ウエハの裏面の温度を個別に測定することを
特徴とする半導体ウエハの赤外線放射率の測定方法。
7. A method for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus for performing heat treatment by heating with a lamp, wherein a part of the back surface of a temperature measuring wafer is coated with graphite to emit a plurality of infrared rays. A method for measuring an infrared emissivity of a semiconductor wafer, wherein the temperature of the surface of the graphite and the temperature of the back surface of the temperature measuring wafer are individually measured by a thermometer.
【請求項8】 ランプによる加熱にて熱処理を行う半導
体集積回路装置の製造装置における半導体ウエハの赤外
線放射率の測定方法において、 測温ウエハの裏面の一部にグラファイトペーストで接着
したSiC片を設け、該SiC片表面と前記測温ウエハ
の裏面とを走査できる単一の赤外線放射温度計にて、前
記グラファイトの表面の温度と前記ウエハの裏面の温度
を測定することを特徴とする半導体ウエハの赤外線放射
率の測定方法。
8. A method for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus for performing heat treatment by heating with a lamp, wherein a SiC piece adhered with a graphite paste is provided on a part of a back surface of a temperature measuring wafer. A single infrared radiation thermometer capable of scanning the front surface of the SiC and the back surface of the temperature-measuring wafer, the temperature of the front surface of the graphite and the temperature of the back surface of the wafer are measured. Method of measuring infrared emissivity.
【請求項9】 ランプによる加熱にて熱処理を行う半導
体集積回路装置の製造装置における半導体ウエハの赤外
線放射率の測定方法において、 測温ウエハの裏面の一部にグラファイトペーストで接着
したSiC片を設け、複数の赤外線放射温度計にて前記
SiC片の表面の温度と前記測温ウエハの裏面の温度を
個別に測定することを特徴とする半導体ウエハの赤外線
放射率の測定方法。
9. A method for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus for performing heat treatment by heating with a lamp, wherein a SiC piece adhered with graphite paste is provided on a part of a back surface of a temperature measuring wafer. A method for measuring an infrared emissivity of a semiconductor wafer, wherein the temperature of the front surface of the SiC piece and the temperature of the back surface of the temperature measuring wafer are individually measured by a plurality of infrared radiation thermometers.
【請求項10】 ランプによる加熱にて熱処理を行う半
導体集積回路装置の製造装置における半導体ウエハの赤
外線放射率の測定方法において、 測温ウエハの裏面の一部にグラファイトペーストで接着
した赤外線放射率が1〜0.9であるSiウエハ片を設
け、該Siウエハ片の表面と前記測温ウエハの裏面とを
走査できる単一の赤外線放射温度計にて、前記Siウエ
ハ片の表面の温度と前記測温ウエハの裏面の温度を測定
することを特徴とする半導体ウエハの赤外線放射率の測
定方法。
10. A method of measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus, wherein heat treatment is performed by heating with a lamp, wherein the infrared emissivity adhered to a part of the back surface of the temperature measurement wafer with graphite paste is With a single infrared radiation thermometer capable of providing a Si wafer piece of 1 to 0.9 and scanning the front surface of the Si wafer piece and the back surface of the temperature measuring wafer, the temperature of the front surface of the Si wafer piece and the A method for measuring the infrared emissivity of a semiconductor wafer, which comprises measuring the temperature of the back surface of a temperature measuring wafer.
【請求項11】 ランプによる加熱にて熱処理を行う半
導体集積回路装置の製造装置における半導体ウエハの赤
外線放射率の測定方法において、 測温ウエハの裏面の一部にグラファイトペーストで接着
した赤外線放射率が1〜0.9のSiウエハ片を設け、
複数の赤外線放射温度計にて前記Siウエハ片の表面の
温度と前記測温ウエハの裏面の温度を個別に測定するこ
とを特徴とする半導体ウエハの赤外線放射率の測定方
法。
11. A method for measuring an infrared emissivity of a semiconductor wafer in a semiconductor integrated circuit device manufacturing apparatus, wherein heat treatment is performed by heating with a lamp, wherein the infrared emissivity adhered to a part of the back surface of the temperature measuring wafer with a graphite paste is used. Provide 1 to 0.9 Si wafer pieces,
A method for measuring the infrared emissivity of a semiconductor wafer, wherein the temperature of the front surface of the Si wafer piece and the temperature of the back surface of the temperature measurement wafer are individually measured with a plurality of infrared radiation thermometers.
JP24093894A 1994-10-05 1994-10-05 Jig and method for measuring infrared emissivity of semiconductor wafer Expired - Fee Related JP3423436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24093894A JP3423436B2 (en) 1994-10-05 1994-10-05 Jig and method for measuring infrared emissivity of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24093894A JP3423436B2 (en) 1994-10-05 1994-10-05 Jig and method for measuring infrared emissivity of semiconductor wafer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002373347A Division JP3977244B2 (en) 2002-12-25 2002-12-25 Measuring method of infrared emissivity of semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH08107085A true JPH08107085A (en) 1996-04-23
JP3423436B2 JP3423436B2 (en) 2003-07-07

Family

ID=17066884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24093894A Expired - Fee Related JP3423436B2 (en) 1994-10-05 1994-10-05 Jig and method for measuring infrared emissivity of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP3423436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072916A (en) * 2010-10-28 2011-05-25 清华大学 Method and device for measuring total hemispherical emissivity of non-metallic material
CN111725100A (en) * 2020-06-16 2020-09-29 北京北方华创微电子装备有限公司 Preheating device and preheating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072916A (en) * 2010-10-28 2011-05-25 清华大学 Method and device for measuring total hemispherical emissivity of non-metallic material
CN111725100A (en) * 2020-06-16 2020-09-29 北京北方华创微电子装备有限公司 Preheating device and preheating method
CN111725100B (en) * 2020-06-16 2023-02-10 北京北方华创微电子装备有限公司 Preheating device and preheating method

Also Published As

Publication number Publication date
JP3423436B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
Roozeboom et al. Rapid thermal processing systems: A review with emphasis on temperature control
JP4511724B2 (en) Substrate temperature measuring method and substrate temperature measuring apparatus
US6630991B2 (en) Thermal processing apparatus
US6839507B2 (en) Black reflector plate
US6435869B2 (en) Quartz window having reinforcing ribs
US5315092A (en) Apparatus for heat-treating wafer by light-irradiation and device for measuring temperature of substrate used in such apparatus
US20010036706A1 (en) Thermal processing apparatus for introducing gas between a target object and a cooling unit for cooling the target object
JP2002203804A (en) Heating apparatus, heat treatment equipment having the heating apparatus, and method for conrolling heat treatment
JPH03215670A (en) Substrate heater
US5507639A (en) Heat treatment apparatus and method thereof
JPH07134069A (en) Method for monitoring temperature of substrate
JP3977244B2 (en) Measuring method of infrared emissivity of semiconductor wafer
JPH08107085A (en) Jig and method for measuring infrared emissivity of semiconductor wafer
JPH09329499A (en) Infrared sensor and infrared detector
JPH07221154A (en) Temperature detector and semiconductor manufacturing device
JPS6037116A (en) Optical irradiating furnace
JP2001304971A (en) Temperature measuring method, method and device for heat treatment, and computer readable medium
JP3042229B2 (en) Substrate heating device
JP3200657B2 (en) Infrared sensor
JP2009218301A (en) Temperature measuring apparatus, placement table structure and thermal processing apparatus
JPS6294925A (en) Heat treatment device
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JPH03210437A (en) Infrared sensor and its manufacture
JPH08162415A (en) Cvd equipment
JP3325384B2 (en) Temperature measurement device for heat treatment furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030415

LAPS Cancellation because of no payment of annual fees