JPH08103787A - Batch type activated sludge process for polluted water - Google Patents

Batch type activated sludge process for polluted water

Info

Publication number
JPH08103787A
JPH08103787A JP6266137A JP26613794A JPH08103787A JP H08103787 A JPH08103787 A JP H08103787A JP 6266137 A JP6266137 A JP 6266137A JP 26613794 A JP26613794 A JP 26613794A JP H08103787 A JPH08103787 A JP H08103787A
Authority
JP
Japan
Prior art keywords
activated sludge
denitrification
time
nitrification
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6266137A
Other languages
Japanese (ja)
Other versions
JP3401339B2 (en
Inventor
Hideaki Yabe
英昭 矢部
Osamu Miki
理 三木
Akira Ito
彰 伊藤
Kazuhisa Fukunaga
和久 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26613794A priority Critical patent/JP3401339B2/en
Publication of JPH08103787A publication Critical patent/JPH08103787A/en
Application granted granted Critical
Publication of JP3401339B2 publication Critical patent/JP3401339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE: To process the waste water containing ammonia nitrogen and phosphoric acid phosphorus in a short time by a batch type activated sludge treatment even if a lowest treatment water temperature is equal to a specific low temperature. CONSTITUTION: A nitration process for ammonia nitrogen, a denitrification process for nitrous acid nitrogen and/or nitric acid nitrogen, a process for taking phosphoric acid phosphorus into activated sludge, and a process for separating activated sludge and treated water are performed in one bioreactor. When a lowest processing temperature of polluted water is 5-10 deg.C, (time for nitration process)/(time for denitrification process) is made 2-3 to make the time for nitration precess longer than the time for denitrification process. Immediately before the separation process, a flocculant is added directly to the bioreactor to remove phosphoric acid phosphorus, and it is preferable that iron chloride (II), as the flocculant, is added to the polluted water under conditions that the mole ratio of the iron chloride to the phosphorus contained in the waste water Fe/P is 0.5-3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は都市下水、団地下水、食
品加工工業排水の様なアンモニア態窒素およびリン酸態
リンを含有する排水から窒素およびリンの両者を同時に
除去するための回分式活性汚泥処理方法に関するもので
ある。
FIELD OF THE INVENTION The present invention relates to a batch-type activity for simultaneously removing both nitrogen and phosphorus from wastewater containing ammoniacal nitrogen and phosphoric acid phosphorus, such as municipal sewage, aggregate groundwater, and food processing industrial wastewater. The present invention relates to a sludge treatment method.

【0002】[0002]

【従来の技術】回分式活性汚泥処理方法(以下、回分式
活性汚泥法と略す)は、原水の流入、好気処理、嫌気処
理、活性汚泥の固液分離、処理水の放流という一連の排
水処理の単位操作を単一の生物反応槽内で行う排水の処
理方法である。窒素、リン、有機物の同時除去が比較的
容易に行え、処理を単一の生物反応槽で行うため装置の
設置面積が小さいなどの利点を持つ一方で、制御が煩雑
であることなどから実用化されなかったが、近年の計測
制御技術の進歩に伴って、再び見直されるようになっ
た。
2. Description of the Related Art A batch type activated sludge treatment method (hereinafter abbreviated as a batch type activated sludge method) is a series of drainage of raw water inflow, aerobic treatment, anaerobic treatment, solid-liquid separation of activated sludge, and discharge of treated water. This is a method of treating wastewater in which a unit treatment operation is performed in a single biological reaction tank. Simultaneous removal of nitrogen, phosphorus, and organic substances is relatively easy, and because the treatment is performed in a single biological reaction tank, it has the advantage that the installation area of the device is small, while it is practical because it is complicated to control. Although it was not done, it has come to be reviewed again with the progress of measurement control technology in recent years.

【0003】例えば、特公平3−7436号公報には、
嫌気1工程−好気1工程−嫌気2工程−好気2工程−静
置工程−排出工程というサイクルからなり、生物反応槽
内のORP(銀/塩化銀複合電極基準)を制御する以下
のような回分式活性汚泥法が開示されている。
For example, Japanese Patent Publication No. 3-7436 discloses that
Anaerobic 1 step-aerobic 1 step-anaerobic 2 steps-aerobic 2 steps-static step-discharging step, which controls the ORP (silver / silver chloride composite electrode standard) in the biological reaction tank as follows. Another batch type activated sludge method is disclosed.

【0004】嫌気1工程では、排水を生物反応槽へ導入
すると同時に、生物反応槽内のORPを−300〜−2
00mVに制御することにより、活性汚泥中に含有する
リン酸態リンを放出させる。
In the anaerobic 1 step, the wastewater is introduced into the biological reaction tank, and at the same time, the ORP in the biological reaction tank is adjusted to -300 to -2.
By controlling to 00 mV, the phosphate phosphorus contained in the activated sludge is released.

【0005】好気1工程では、生物反応槽内のORPを
+100〜+120mVに制御することにより、アンモ
ニア態窒素を硝酸態窒素へ酸化させる(硝化)と同時
に、リン酸態リンを活性汚泥へ過剰に取り込ませること
により、リンの除去を行う。
In the aerobic 1 step, by controlling the ORP in the biological reaction tank to +100 to +120 mV, ammonia nitrogen is oxidized to nitrate nitrogen (nitrification), and at the same time, phosphate phosphorus is excessively added to the activated sludge. Phosphorus is removed by incorporating it into.

【0006】嫌気2工程では、生物反応槽内のORPを
−150〜−50mVに制御することにより、リン酸態
リンの放出を抑制すると同時に、硝酸態窒素を窒素ガス
へ還元する(脱窒)。
In the anaerobic 2 step, by controlling the ORP in the biological reaction tank at -150 to -50 mV, the release of phosphate phosphorus is suppressed and at the same time, nitrate nitrogen is reduced to nitrogen gas (denitrification). .

【0007】好気2工程では、生物反応槽内のORPを
+50〜+150mVに制御することにより、有機物を
除去する。
In the aerobic 2 step, the organic matter is removed by controlling the ORP in the biological reaction tank at +50 to +150 mV.

【0008】静置工程では、生物反応槽内の攪拌および
曝気をすべて停止することにより、活性汚泥を沈降させ
る。
In the stationary step, the activated sludge is settled by stopping all stirring and aeration in the biological reaction tank.

【0009】排出工程では、静置工程における上澄みを
処理水として排出する。
In the discharge step, the supernatant in the stationary step is discharged as treated water.

【0010】[0010]

【発明が解決しようとする課題】従来、回分式活性汚泥
法は、全窒素(T−N)20〜50mg/l、全リン
(T−P)2〜5mg/l程度の濃度を持つ生活排水の
処理に使用される場合が多いが、その場合、回分式活性
汚泥法の1サイクルは通常8時間程度として処理が行わ
れる。例えば、「製鉄研究」、Vol.329、p.6
6、1988には、T−N30〜45mg/l、T−P
3〜5mg/lの都市下水を、処理時間8時間、処理水
温20〜27℃、生物反応槽内MLSS1800〜27
00mg/lの回分式活性汚泥法で処理するとT−N8
7〜88%、T−P86〜93%の除去率が得られると
記載されている。
Conventionally, the batch-type activated sludge method has been a domestic wastewater having a concentration of about 20 to 50 mg / l of total nitrogen (TN) and 2 to 5 mg / l of total phosphorus (TP). In many cases, the treatment is performed for about 8 hours in one cycle of the batch activated sludge method. For example, “Steelmaking Research”, Vol. 329, p. 6
6, 1988, T-N 30-45 mg / l, T-P
Municipal sewage of 3 to 5 mg / l was treated for 8 hours, treated water temperature was 20 to 27 ° C, and biological reaction tank MLSS 1800 to 27 was used.
When treated by the batch activated sludge method of 00 mg / l, T-N8
It is described that removal rates of 7 to 88% and T-P 86 to 93% are obtained.

【0011】T−Nをより高濃度に含有する排水の処理
に回分式活性汚泥法を使用することも可能であるが、濃
度に対応して処理時間を長時間にする必要がある。例え
ば、「防錆管理」、Vol.1992−12、p.1
8、1992には、アンモニア態窒素を900mg/l
含有する排水を、処理水温25℃、生物反応槽内MLS
S4000mg/lの回分式活性汚泥法を用いて完全に
硝化、脱窒するためには、処理時間は48時間必要であ
ると述べられている。
It is possible to use the batch activated sludge method for treating wastewater containing a higher concentration of TN, but it is necessary to lengthen the treatment time depending on the concentration. For example, “rust prevention management”, Vol. 1992-12, p. 1
In 8, 1992, 900 mg / l of ammonia nitrogen
Contain waste water, treated water temperature 25 ℃, biological reaction tank MLS
It is stated that a treatment time of 48 hours is required for complete nitrification and denitrification using the batch activated sludge method of S4000 mg / l.

【0012】また、処理水温が低温となる冬季には活性
汚泥の活性が低下し、窒素除去能力が悪化するため、高
水温時と同じレベルにまで窒素を除去する必要があるな
らば、処理時間を増加する必要がある。
Further, in winter when the temperature of the treated water is low, the activity of activated sludge is reduced and the nitrogen removing ability is deteriorated. Therefore, if it is necessary to remove nitrogen to the same level as at the time of high water temperature, the treatment time Need to increase.

【0013】処理時間を増加することなく、窒素の除去
能力を向上させる手段の1つとして、生物反応槽内の活
性汚泥量を高濃度に維持することが挙げられる。しか
し、回分式活性汚泥法では生物反応槽は活性汚泥の沈降
分離槽を兼用するため、活性汚泥量が高濃度になりすぎ
ると活性汚泥の沈降性が悪化し、活性汚泥と処理水の沈
降分離が良好に行えなくなる問題点がある。そのため、
「資源環境対策」、Vol.29、p.1063、19
93には、回分式活性汚泥法の後段に設置した凝集加圧
浮上分離設備により、また、「水処理技術」、Vol.
35、p.281、1994には、生物反応槽内へ設置
した限外濾過装置により、活性汚泥と処理水を分離する
ことが記載されている。
One of the means for improving the nitrogen removal capacity without increasing the treatment time is to maintain the activated sludge amount in the biological reaction tank at a high concentration. However, in the batch activated sludge method, the biological reaction tank also serves as a settling separation tank for the activated sludge, so if the amount of activated sludge becomes too high, the settling property of the activated sludge deteriorates and the settling separation of activated sludge and treated water occurs. However, there is a problem in that for that reason,
"Resource environment measures", Vol. 29, p. 1063, 19
93, a flocculation pressurization flotation equipment installed at the latter stage of the batch activated sludge method, and "Water treatment technology", Vol.
35, p. 281, 1994 describes that an activated sludge and treated water are separated by an ultrafiltration device installed in a biological reaction tank.

【0014】一方、回分式活性汚泥法による生物学的な
リンの除去は、活性汚泥のリン酸態リン過剰取込現象を
利用している。そのため、排水中の有機物濃度が低く、
活性汚泥がリン酸態リンを取り込む工程のORPが−2
50mV以下にならないとリン酸態リンの取込量が低下
することがあり、また、元来、取込み可能なリン酸態リ
ンの量には限界があるため、高濃度にリン酸態リンを含
有する排水を処理することはかなり困難である。
On the other hand, the biological removal of phosphorus by the batch activated sludge method utilizes the phenomenon of excessive uptake of phosphate in the activated sludge. Therefore, the concentration of organic matter in the wastewater is low,
ORP of the process in which activated sludge takes in phosphate phosphorus is -2
If the concentration does not fall below 50 mV, the phosphate phosphate uptake amount may decrease, and since the amount of phosphate phosphate that can be uptaken is inherently limited, high levels of phosphate phosphate are included. It is quite difficult to treat the wastewater produced.

【0015】本発明の目的は、アンモニア態窒素、リン
酸態リンを含有する排水を、最低処理水温が5〜10℃
という低温の場合においても最短の処理時間で処理でき
る回分式活性汚泥法を提供することである。
An object of the present invention is to treat wastewater containing ammonia nitrogen and phosphorous phosphate at a minimum treated water temperature of 5 to 10 ° C.
It is an object of the present invention to provide a batch activated sludge method that can be treated in the shortest treatment time even at low temperatures.

【0016】[0016]

【課題を解決するための手段】本発明の排水の回分式活
性汚泥法は、アンモニア態窒素の硝化工程、亜硝酸態お
よび/または硝酸態窒素の脱窒工程、リン酸態リンの活
性汚泥への取込工程、活性汚泥と処理水との分離工程を
1つの生物反応槽で行う排水の回分式活性汚泥法におい
て、排水の最低処理温度が5〜10℃になる場合に、前
記硝化工程を前記脱窒工程に対して(硝化工程の時間)
/(脱窒工程の時間)=2〜3と長くすることを特徴と
する排水の回分式活性汚泥法である。この際、前記分離
工程の直前に、リン酸態リン除去のための凝集剤を直接
生物反応槽へ添加すること、その凝集剤として塩化鉄
(III)を排水中のリン含有量に対してFe/Pのモ
ル比として0.5〜3添加することは好ましい。また、
前記硝化工程の開始時から終了時までの酸化還元電位
(ORP、銀/塩化銀複合電極基準)の変化量を200
〜350mVの増加、前記脱窒工程の開始時から終了時
までのORPの変化量を200〜400mVの減少に制
御することは好ましい。
Means for Solving the Problems The batch type activated sludge method for waste water of the present invention comprises a nitrification step for ammonia nitrogen, a denitrification step for nitrite and / or nitrate nitrogen, and an activated sludge for phosphorus phosphate. In the batch-type activated sludge method of wastewater in which the step of taking in the wastewater and the step of separating the activated sludge from the treated water are performed in one biological reaction tank, the nitrification step is performed when the minimum treatment temperature of the wastewater is 5 to 10 ° C. For the denitrification process (time for nitrification process)
/ (Time for denitrification step) = 2 to 3 for a long time, which is a batch type activated sludge method for drainage. At this time, immediately before the separation step, a coagulant for removing phosphorous phosphate is directly added to the biological reaction tank, and iron (III) chloride is used as the coagulant for Fe content relative to the phosphorus content in the waste water. It is preferable to add 0.5 to 3 as a molar ratio of / P. Also,
The change amount of the oxidation-reduction potential (ORP, silver / silver chloride composite electrode reference) from the start to the end of the nitrification step was 200.
It is preferable to control the increase of ˜350 mV and the change amount of ORP from the start to the end of the denitrification step to decrease by 200 to 400 mV.

【0017】[0017]

【作用】通常、回分式活性汚泥法の1サイクルは、原水
の流入→嫌気処理(リン酸態リンの放出)→好気処理
(有機物の除去、アンモニア態窒素の硝化、リン酸態リ
ンの過剰取込み)→嫌気処理(亜硝酸態、硝酸態窒素の
脱窒)→好気処理(有機物の除去)→活性汚泥沈降→処
理水の排出という順序で実施される。
[Function] Usually, one cycle of the batch activated sludge method is as follows: inflow of raw water → anaerobic treatment (release of phosphate phosphorus) → aerobic treatment (removal of organic matter, nitrification of ammonia nitrogen, excess phosphate phosphorus) Intake) → Anaerobic treatment (denitrification of nitrite and nitrate nitrogen) → Aerobic treatment (removal of organic matter) → Settlement of activated sludge → Discharge of treated water.

【0018】回分式活性汚泥法において、アンモニア態
窒素を除去するためには、アンモニア態窒素の硝化を行
うための好気工程と硝酸態窒素の脱窒を行うための嫌気
工程が必要であるが、それぞれの工程の時間の割合は、
硝化速度および脱窒速度の比によって決定される。図1
に硝化速度および脱窒速度と処理水温との関係を示す。
硝化速度、脱窒速度共に温度の低下に伴い減少するが、
硝化速度の傾きに比べて脱窒速度の傾きは小さく、脱窒
速度の方が温度依存性が小さいことがわかる。そのた
め、夏季のように処理水の温度が20℃以上になる時期
には硝化時間の方が脱窒時間よりも短いか、または同じ
で良いのであるが、冬季のように処理水の温度が10℃
以下になる時期には逆に硝化時間を脱窒時間よりも長く
する必要がある。年間を通した処理を考える場合、処理
性能の最も悪化する最低処理水温において処理が行える
ように硝化時間と脱窒時間の割合を決定すべきである。
例えば、最低処理水温が5℃である場合、硝化速度:脱
窒速度=1:3であるため硝化工程は脱窒工程の3倍の
時間が、最低処理水温が10℃である場合、硝化速度:
脱窒速度=1:2であるため硝化工程は脱窒工程の2倍
の時間が必要である。
In the batch activated sludge method, in order to remove ammonia nitrogen, an aerobic step for nitrifying ammonia nitrogen and an anaerobic step for denitrifying nitrate nitrogen are necessary. , The time ratio of each process is
It is determined by the ratio of nitrification rate and denitrification rate. FIG.
Figure 3 shows the relationship between nitrification rate and denitrification rate and treated water temperature.
Both nitrification rate and denitrification rate decrease with decreasing temperature,
It can be seen that the denitrification rate has a smaller gradient than the nitrification rate, and the denitrification rate has a smaller temperature dependence. Therefore, the nitrification time may be shorter than or the same as the denitrification time when the temperature of the treated water is 20 ° C. or higher, such as in the summer, but the temperature of the treated water is 10 times as in the winter. ℃
On the contrary, it is necessary to make the nitrification time longer than the denitrification time at the following times. When considering treatment throughout the year, the ratio of nitrification time and denitrification time should be determined so that treatment can be carried out at the lowest treated water temperature at which treatment performance deteriorates most.
For example, when the minimum treated water temperature is 5 ° C., the nitrification rate: denitrification rate = 1: 3, so the nitrification step is three times as long as the denitrification step, and when the minimum treated water temperature is 10 ° C., the nitrification rate is :
Since the denitrification rate is 1: 2, the nitrification step requires twice as long as the denitrification step.

【0019】凝集沈殿法は最も古くから実用化されてい
るリン酸態リンの除去法である。凝集剤としては、塩化
鉄などの鉄塩、硫酸アルミニウムなどのアルミニウム塩
が近年よく用いられているが、生物反応槽へ直接凝集剤
を添加する場合、凝集剤による活性汚泥への影響を考慮
しなくてはならない。「GWF Wasser Abw
asser」、Vol.131、No.1、p.12、
1990には、硫酸鉄をFe2+として5mg/l加えた
場合に活性汚泥の硝化活性が最も大きくなるという報告
があり、また、「新しい活性汚泥法」、産業用水調査
会、p.206、1986によると、硫酸アルミニウム
よりも塩化鉄(III)を加えた場合の方が活性汚泥の
沈降性が良好になるという報告もあることから、回分式
活性汚泥法の生物反応槽へ直接添加する凝集剤として
は、塩化鉄(III)を用いるのが適切である。
The coagulation sedimentation method is the oldest method of removing phosphoric acid phosphorus. Iron salts such as iron chloride and aluminum salts such as aluminum sulfate have been often used as flocculants in recent years, but when adding the flocculant directly to the biological reaction tank, consider the effect of the flocculant on activated sludge. necessary. "GWF Wasser Abw
Asser ", Vol. 131, No. 1, p. 12,
In 1990, there was a report that the nitrification activity of activated sludge was maximized when iron sulfate was added as Fe 2+ in an amount of 5 mg / l. Also, “New Activated Sludge Method”, Industrial Water Research Committee, p. According to 206, 1986, there is a report that the sedimentation of activated sludge becomes better when iron (III) chloride is added than aluminum sulfate, so it is added directly to the biological reaction tank of the batch activated sludge method. It is appropriate to use iron (III) chloride as the flocculating agent.

【0020】塩化鉄(III)を用いた凝集沈殿法によ
りリン酸態リンを0.1mg/l以下にまで除去する場
合、塩化鉄(III)を排水中のリン含有量に対してF
e/Pのモル比として2以上添加しなければならない。
しかし、回分式活性汚泥法と凝集沈殿法を組み合わせた
場合、回分式活性汚泥法による生物学的なリンの除去も
行われるため、凝集沈殿法のみでリン酸態リンを除去す
る場合に比べて少量のFe/Pのモル比として0.5〜
1.5の塩化鉄(III)の添加で処理水中のリン酸態
リンを0.1mg/l以下にすることが可能である。
When phosphorus phosphate is removed to 0.1 mg / l or less by the coagulation-sedimentation method using iron (III) chloride, iron (III) chloride is added to the phosphorus content in the waste water by F
The molar ratio of e / P must be 2 or more.
However, when the batch activated sludge method and the coagulation sedimentation method are combined, biological phosphorus is also removed by the batch activated sludge method, so compared to the case of removing phosphate phosphorus only by the coagulation sedimentation method. A small Fe / P molar ratio of 0.5-
The addition of 1.5 iron (III) chloride makes it possible to reduce the phosphorus phosphate in the treated water to 0.1 mg / l or less.

【0021】図2に、塩化鉄(III)を添加した場合
と添加しない場合の生物反応槽内の活性汚泥の混液浮遊
物質MLSSと汚泥容量SV30との関係を示す。塩化鉄
(III)を添加した活性汚泥は塩化鉄(III)を添
加しない活性汚泥よりも沈降濃縮性が大変に優れている
ため、回分式活性汚泥法において、通常よりも高い濃度
で活性汚泥を生物反応槽内へ維持することが可能であ
る。
FIG. 2 shows the relationship between the mixed liquid suspended matter MLSS of the activated sludge in the biological reaction tank and the sludge volume SV 30 with and without the addition of iron (III) chloride. Activated sludge with added iron (III) chloride has a much better sedimentation concentration than activated sludge without added iron (III) chloride. Therefore, in the batch activated sludge method, activated sludge is added at a higher concentration than usual. It can be maintained in the bioreactor.

【0022】回分式活性汚泥法の活性汚泥と処理水の沈
降分離工程において最大の活性汚泥の沈降性を得るため
に、また、リンの欠乏が活性汚泥の活動へ影響を与える
ことのないように、塩化鉄(III)は沈降分離工程の
直前に添加することが望ましい。
In order to obtain the maximum sedimentation of activated sludge in the sedimentation separation process of activated sludge and treated water in the batch activated sludge method, and to prevent phosphorus deficiency from affecting the activity of activated sludge. , Iron (III) chloride is preferably added just before the sedimentation step.

【0023】回分式活性汚泥法において、硝化工程のO
RP(銀/塩化銀複合電極基準)を約+100mVに、
脱窒工程のORPを−150〜−100mVになるよう
に生物反応槽内を制御すれば、硝化および脱窒が良好に
進行することが確認されている。しかし、ORPの絶対
値はアンモニア態窒素、亜硝酸態窒素、硝酸態窒素とい
った窒素化合物のみの影響を受ける訳ではなく、BOD
成分のような有機物の影響も受けるため、有機物含有量
が変化する排水の場合、維持すべき最適なORPの値を
一定の絶対値で表すことはできない。そこで、それぞれ
の工程のORPの絶対値ではなく、工程開始時から終了
時までのORPの変化量により生物反応槽内を制御すれ
ば、有機物含有量の変動にかかわらず、生物反応槽内を
硝化および脱窒の進行のために最適な条件に維持可能で
ある。すなわち、硝化工程開始時から終了時までのOR
Pの変化量を200〜350mVの増加、脱窒工程開始
時から終了時までのORPの変化量を200〜400m
Vの減少に生物反応槽内を制御すれば、硝化および脱窒
が良好に進行する。
In the batch type activated sludge method, O in the nitrification process
RP (silver / silver chloride composite electrode standard) to about +100 mV,
It has been confirmed that nitrification and denitrification proceed well if the inside of the biological reaction tank is controlled so that the ORP of the denitrification step is −150 to −100 mV. However, the absolute value of ORP is not affected only by nitrogen compounds such as ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen, and BOD
Since it is also affected by organic matter such as components, in the case of wastewater with a varying organic matter content, the optimum ORP value to be maintained cannot be expressed by a constant absolute value. Therefore, if the inside of the biological reaction tank is controlled not by the absolute value of the ORP of each process but by the change amount of the ORP from the start to the end of the process, the inside of the biological reaction tank is nitrified regardless of the change in the organic matter content. And it is possible to maintain optimal conditions for the progress of denitrification. That is, the OR from the start to the end of the nitrification process
Increase the amount of change in P by 200-350 mV, change the amount of ORP from the start to the end of the denitrification process by 200-400 m
If the inside of the bioreactor is controlled to reduce V, nitrification and denitrification proceed well.

【0024】[0024]

【実施例】図3に実施例に使用した回分式活性汚泥処理
装置を示す。
EXAMPLE FIG. 3 shows a batch type activated sludge treatment device used in the example.

【0025】生物反応槽1内には、ORPセンサー2
(銀/塩化銀複合電極)、pHセンサー3、DOセンサ
ー4、攪拌器5を設置し、ORPはORP制御装置6に
よる補助エアーブロア8のオン−オフによって希望のO
RP変化量に管理した。攪拌器5、ベースエアーブロア
9、原水供給ポンプ10、処理水排出ポンプ11、塩化
鉄供給ポンプ12、メタノール供給ポンプ13はタイマ
ー14によって制御し、必要に応じて作動させた。原水
15には、し尿排水の一次処理水を使用した。
The ORP sensor 2 is installed in the biological reaction tank 1.
(Silver / silver chloride composite electrode), pH sensor 3, DO sensor 4, and stirrer 5 are installed, and the ORP is controlled by turning on / off the auxiliary air blower 8 by the ORP control device 6 to obtain the desired O.
The amount of change in RP was controlled. The stirrer 5, the base air blower 9, the raw water supply pump 10, the treated water discharge pump 11, the iron chloride supply pump 12, and the methanol supply pump 13 were controlled by a timer 14 and operated as necessary. As the raw water 15, the primary treated water of human waste water was used.

【0026】表1に1サイクルにおけるタイムスケジュ
ールを示す。
Table 1 shows a time schedule in one cycle.

【0027】[0027]

【表1】 [Table 1]

【0028】1サイクルは、嫌気1工程(リン酸態リン
の放出)→硝化工程(アンモニア態窒素の放出、リン酸
態リンの過剰取込み)→脱窒工程(亜硝酸態、硝酸態窒
素の脱窒)→取込工程(有機物の除去)→分離工程(活
性汚泥と処理水の分離)→排出工程という順序で処理を
行った。
One cycle consists of 1 step of anaerobic (release of phosphate phosphorus) → nitrification step (release of ammonia nitrogen, excessive uptake of phosphate phosphorus) → denitrification step (denitration of nitrite and nitrate nitrogen). Nitrogen) → intake process (removal of organic matter) → separation process (separation of activated sludge and treated water) → discharge process.

【0029】原水15は嫌気1工程において、原水供給
ポンプ10によって生物反応槽1内へ導入し、処理水1
8は排出工程において、処理水排出ポンプ11によって
生物反応槽1の容積の半分の量を排出した。凝集剤とし
て塩化鉄(III)溶液16を、原水中のリン酸態リン
の含有量(平均値)に対してFe/P=1(モル比)と
なるように、脱窒工程において添加した。また、原水1
5中に脱窒の際の水素供与体となるべき有機物が不足し
ていたため、メタノール17を、原水15中のアンモニ
ア態窒素の含有量(平均値)に対してメタノール/N=
2(重量比)となるように、脱窒工程において添加し
た。硝化工程のORPは硝化工程開始時のORPから2
00mV増加した時点で、また、脱窒工程のORPは脱
窒工程開始時のORPから200mV減少した時点で、
それぞれ一定となるように補助エアーブロア8のオン−
オフによる制御を行った。
The raw water 15 is introduced into the biological reaction tank 1 by the raw water supply pump 10 in the anaerobic 1 step to treat the treated water 1
In the discharging step 8, the treated water discharging pump 11 discharged half the volume of the biological reaction tank 1. Iron (III) chloride solution 16 was added as a coagulant in the denitrification step so that Fe / P = 1 (molar ratio) with respect to the content (average value) of phosphate phosphorus in the raw water. In addition, raw water 1
Since there was a shortage of organic substances to serve as hydrogen donors during denitrification in 5, the amount of methanol 17 was changed from the content (average value) of ammonia nitrogen in raw water 15 to methanol / N =
It was added in the denitrification step so as to have a ratio of 2 (weight ratio). ORP of nitrification process is 2 from ORP at the start of nitrification process.
When the ORP of the denitrification process is increased by 00 mV and when the ORP at the start of the denitrification process is decreased by 200 mV,
Auxiliary air blower 8 is turned on so that each becomes constant.
Control was performed by turning off.

【0030】種汚泥として下水処理場から採取した活性
汚泥を生物反応槽1へ投入し、1週間馴養した後、ML
SSが6000mg/lとなるように維持管理を行っ
た。1サイクルは24時間としたが、生物反応槽1の水
温は最高が12℃、最低が7℃であったため、硝化工程
を14時間、脱窒工程を6時間とした。
Activated sludge collected from the sewage treatment plant as seed sludge was put into the biological reaction tank 1 and acclimated for 1 week, and then ML
Maintenance was carried out so that the SS was 6000 mg / l. Although one cycle was set to 24 hours, the maximum water temperature of the biological reaction tank 1 was 12 ° C. and the minimum was 7 ° C. Therefore, the nitrification step was 14 hours and the denitrification step was 6 hours.

【0031】表2に原水と処理水の水質の平均値を示
す。
Table 2 shows average values of water quality of raw water and treated water.

【0032】[0032]

【表2】 [Table 2]

【0033】原水の窒素濃度およびリン濃度は一般的な
都市下水よりも非常に高い値であったが、7℃という低
水温にもかかわらず、処理時間24時間で98%以上が
除去された。また、MLSSを高濃度に維持したにもか
かわらず、処理水のSSは10mg/l以下であった。
The nitrogen concentration and phosphorus concentration of the raw water were much higher than those of general urban sewage, but 98% or more of them were removed after 24 hours of treatment despite the low water temperature of 7 ° C. Further, the SS of the treated water was 10 mg / l or less even though the MLSS was maintained at a high concentration.

【0034】[0034]

【発明の効果】本発明により、最低処理水温が5〜10
℃という低温時において、排水中のアンモニア態窒素お
よびリン酸態リンを最短の処理時間で除去可能である。
According to the present invention, the minimum treated water temperature is 5 to 10
At a low temperature of ℃, it is possible to remove ammonia nitrogen and phosphorus phosphate in wastewater in the shortest treatment time.

【図面の簡単な説明】[Brief description of drawings]

【図1】硝化速度および脱窒速度と水温との関係を示す
図である。
FIG. 1 is a diagram showing the relationship between nitrification rate and denitrification rate and water temperature.

【図2】塩化鉄添加時および塩化鉄なし時の生物反応槽
内のMLSSとSV30との関係を示す図である。
FIG. 2 is a diagram showing a relationship between MLSS and SV 30 in a biological reaction tank when iron chloride was added and when iron chloride was not added.

【図3】実施例に使用した回分式活性汚泥処理装置を示
す図である。
FIG. 3 is a view showing a batch type activated sludge treatment device used in Examples.

【符号の説明】[Explanation of symbols]

1 生物反応槽 2 ORPセンサー 3 pHセンサー 4 DOセンサー 5 攪拌器 6 ORP制御装置 7 記録計 8 補助エアーブロア 9 ベースエアーブロア 10 原水供給ポンプ 11 処理水排出ポンプ 12 塩化鉄供給ポンプ 13 メタノール供給ポンプ 14 タイマー 15 原水 16 塩化鉄(III)溶液 17 メタノール 18 処理水 1 Biological reaction tank 2 ORP sensor 3 pH sensor 4 DO sensor 5 Stirrer 6 ORP controller 7 Recorder 8 Auxiliary air blower 9 Base air blower 10 Raw water supply pump 11 Treated water discharge pump 12 Iron chloride supply pump 13 Methanol supply pump 14 Timer 15 Raw Water 16 Iron (III) Chloride Solution 17 Methanol 18 Treated Water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 3/34 ZAB 101 C (72)発明者 福永 和久 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 3/34 ZAB 101 C (72) Inventor Kazuhisa Fukunaga 20-1 Shintomi, Futtsu-shi, Chiba Made in Shinnihon Iron & Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア態窒素の硝化工程、亜硝酸態
および/または硝酸態窒素の脱窒工程、リン酸態リンの
活性汚泥への取込工程、活性汚泥と処理水との分離工程
を1つの生物反応槽で行う排水の回分式活性汚泥処理方
法において、排水の最低処理温度が5〜10℃になる場
合に、前記硝化工程を前記脱窒工程に対して(硝化工程
の時間)/(脱窒工程の時間)=2〜3と長くすること
を特徴とする排水の回分式活性汚泥処理方法。
1. A nitrification process of ammonia nitrogen, a denitrification process of nitrite and / or nitrate nitrogen, a process of incorporating phosphorous phosphate into activated sludge, and a process of separating activated sludge from treated water In a batch type activated sludge treatment method for wastewater performed in two biological reaction tanks, when the minimum treatment temperature of wastewater is 5 to 10 ° C., the nitrification step is compared with the denitrification step (time of nitrification step) / ( (Denitrification step time) = 2 to 3 for a long time, and a batch type activated sludge treatment method for wastewater.
【請求項2】 前記分離工程の直前に、リン酸態リン除
去のための凝集剤を直接生物反応槽へ添加することを特
徴とする請求項1記載の排水の回分式活性汚泥処理方
法。
2. The method for treating batchwise activated sludge of wastewater according to claim 1, wherein a coagulant for removing phosphoric acid-state phosphorus is added directly to the biological reaction tank immediately before the separation step.
【請求項3】 凝集剤として塩化鉄(III)を排水中
のリン含有量に対してFe/Pのモル比として0.5〜
3添加することを特徴とする請求項2記載の排水の回分
式活性汚泥処理方法。
3. Iron (III) chloride as a coagulant is added in an amount of 0.5 to 5 as a molar ratio of Fe / P to the phosphorus content in the waste water.
3. The batch type activated sludge treatment method for wastewater according to claim 2, wherein 3 is added.
【請求項4】 前記硝化工程の開始時から終了時までの
酸化還元電位(ORP、銀/塩化銀複合電極基準)の変
化量を200〜350mVの増加、前記脱窒工程の開始
時から終了時までのORPの変化量を200〜400m
Vの減少に制御することを特徴とする請求項1、2また
は3記載の排水の回分式活性汚泥処理方法。
4. The amount of change in redox potential (ORP, silver / silver chloride composite electrode reference) from the start to the end of the nitrification step is increased by 200 to 350 mV, and from the start to the end of the denitrification step. Change of ORP up to 200-400m
The method for treating wastewater according to claim 1, 2 or 3, wherein the V is controlled to be reduced.
JP26613794A 1994-10-06 1994-10-06 Batch activated sludge treatment method for wastewater Expired - Fee Related JP3401339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26613794A JP3401339B2 (en) 1994-10-06 1994-10-06 Batch activated sludge treatment method for wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26613794A JP3401339B2 (en) 1994-10-06 1994-10-06 Batch activated sludge treatment method for wastewater

Publications (2)

Publication Number Publication Date
JPH08103787A true JPH08103787A (en) 1996-04-23
JP3401339B2 JP3401339B2 (en) 2003-04-28

Family

ID=17426837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26613794A Expired - Fee Related JP3401339B2 (en) 1994-10-06 1994-10-06 Batch activated sludge treatment method for wastewater

Country Status (1)

Country Link
JP (1) JP3401339B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279447A (en) * 2004-03-30 2005-10-13 Kubota Corp Water treatment method and apparatus
CN102502949A (en) * 2011-11-02 2012-06-20 青岛理工大学 Method for improving activity of nitrification function microbiology in activated sludge through feeding iron hydroxide during in situ preparation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502950B (en) * 2011-11-02 2013-07-17 青岛理工大学 Method for improving activity of nitrification function microbiology in activated sludge through directly feeding Fe ions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279447A (en) * 2004-03-30 2005-10-13 Kubota Corp Water treatment method and apparatus
JP4508694B2 (en) * 2004-03-30 2010-07-21 株式会社クボタ Water treatment method and apparatus
CN102502949A (en) * 2011-11-02 2012-06-20 青岛理工大学 Method for improving activity of nitrification function microbiology in activated sludge through feeding iron hydroxide during in situ preparation

Also Published As

Publication number Publication date
JP3401339B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
CN108483655B (en) Method for deep denitrification by coupling shortcut nitrification and denitrification with anaerobic ammonia oxidation and sulfur autotrophic denitrification
EP1012121B1 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
US20110259821A1 (en) Methods and Systems for Treating Wastewater
CN101182074A (en) Real-time controlling method for denitrification by reinforced circulating type active sludge process
CN110759604B (en) Two-stage SBR (sequencing batch reactor) series efficient biological denitrification method for low-carbon-source sewage
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
JPS60206494A (en) Simultaneous removal of nitrogen and phosphorus in waste water by sulfur replenishing aerobic-anaerobic activated sludge method
JP3401339B2 (en) Batch activated sludge treatment method for wastewater
CN112340947B (en) Sewage denitrification and dephosphorization regulating system and regulating method thereof
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JP2003071490A (en) Method for removing nitrogen from wastewater
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
Furumai et al. Effect of sludge retention time (SRT) on nutrient removal in sequencing batch reactors
Moriyama et al. Retrofitting and operation of small extended aeration plants for advanced treatment–some experiences in Japan
KR100415437B1 (en) Advanced sludge reaeration process improving denitrification rate for nutrient removal
KR102052163B1 (en) Wastewater treatment apparatus and method
JP3270652B2 (en) Wastewater nitrogen removal method
JP2987103B2 (en) Intermittent aeration
Rebhun et al. Kinetic studies of chemical and biological treatment for renovation
KR100319375B1 (en) Method and Apparatus of Nitrogen Removal from the Recycle Water in the Sewage Treatment Plant
JP3303475B2 (en) Operation control method of activated sludge circulation method
KR100721682B1 (en) A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)
JPH10328695A (en) Method for removing nitrogen from waste water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees