JPH08102320A - Storage method for hydrogen storage alloy for alkaline storage battery - Google Patents

Storage method for hydrogen storage alloy for alkaline storage battery

Info

Publication number
JPH08102320A
JPH08102320A JP6237960A JP23796094A JPH08102320A JP H08102320 A JPH08102320 A JP H08102320A JP 6237960 A JP6237960 A JP 6237960A JP 23796094 A JP23796094 A JP 23796094A JP H08102320 A JPH08102320 A JP H08102320A
Authority
JP
Japan
Prior art keywords
alloy
surfactant
hydrogen storage
storage alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6237960A
Other languages
Japanese (ja)
Inventor
Fusago Mizutaki
房吾 水瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6237960A priority Critical patent/JPH08102320A/en
Publication of JPH08102320A publication Critical patent/JPH08102320A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To prevent oxidation of a hydrogen storage alloy and drop in alloy activity by storing the hydrogen storage alloy with immersed in a surfactant- containing aqueous solution. CONSTITUTION: A mixture of a rare earth element, Ni, Co, Al, and Ma in a ratio of 1:3.4:0.8:0.2:0.6 is melted in a high frequency melting furnace kept in an inert gas atmosphere to manufacture a hydrogen storage alloy ingot. The alloy ingot is crushed in an inert gas atmosphere, and the alloy powder obtained is immersed in a surfactant-containing aqueous solution and stored at a specified temperature. Hydrophilic groups of the surfactant are oriented on the outside and adsorbed on the surface of the hydrogen storage alloy particle, and globular micelles using an alloy particle as a nucleus are formed and cover the alloy particle. Thereby, contact of the hydrogen storage alloy with oxygen or hydrogen ion existing in the aqueous solution is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵、
放出することのできる水素吸蔵合金の保存方法に関し、
詳しくはアルカリ蓄電池用水素吸蔵合金を水中に保存す
る方法に関する。
The present invention relates to the reversible storage of hydrogen,
Regarding a method for storing a hydrogen storage alloy that can be released,
Specifically, it relates to a method of storing a hydrogen storage alloy for alkaline storage batteries in water.

【0002】[0002]

【従来の技術】一般に、水素吸蔵合金電極の製造工程
は、水素吸蔵合金鋳塊を微粉砕する工程を備えるが、生
産効率の面から、前記粉砕工程においてはあるまとまっ
た量の合金鋳塊が一度に粉砕される。したがって、少な
くとも次の工程に移るまでの間、微粉砕した水素吸蔵合
金粉末を貯蔵しておく必要がある。
2. Description of the Related Art Generally, a process for producing a hydrogen storage alloy electrode comprises a step of finely pulverizing a hydrogen storage alloy ingot. However, in view of production efficiency, a certain amount of alloy ingot is produced in the pulverizing process. It is crushed at once. Therefore, it is necessary to store the finely pulverized hydrogen storage alloy powder at least until the next step is performed.

【0003】ところが、微粉砕された水素吸蔵合金粉末
は、合金鋳塊に比べ格段に活性度が高いため、貯蔵条件
が悪いと酸素等と反応して容易に劣化する。また酸化反
応が加速度的に進行した場合には粉粒体爆発が発生する
危険性がある。このため、従来より水素吸蔵合金粉末の
貯蔵には、有機溶剤に浸漬保存する方法や水中に浸漬保
存する方法が用いられており、これらの方法は、合金粉
末を外部環境と簡単に遮断できる点で、簡便で有用な方
法である。特に、有機溶剤に浸漬保存する方法は、有機
溶剤を適正に選択すると効果的に酸化を防止できる。し
かし、水素吸蔵合金に悪影響を与えず、また保存終了後
に容易に除去できる有機溶剤は限られている。しかも、
有機溶剤は一般に引火爆発の危険性を有し、また作業員
の健康を害する恐れを有しているために、その取扱い性
や作業性に問題がある。
However, since the finely pulverized hydrogen-absorbing alloy powder has a remarkably high activity as compared with the alloy ingot, it reacts with oxygen and the like and is easily deteriorated under poor storage conditions. Further, if the oxidation reaction progresses at an accelerated rate, there is a risk of powdery particle explosion. For this reason, conventionally, the hydrogen storage alloy powder is stored by a method of dipping and storing in an organic solvent or a method of dipping and storing in water, and these methods can easily shield the alloy powder from the external environment. It is a simple and useful method. In particular, the method of dipping and storing in an organic solvent can effectively prevent oxidation if the organic solvent is properly selected. However, the number of organic solvents that do not adversely affect the hydrogen storage alloy and that can be easily removed after the end of storage is limited. Moreover,
The organic solvent generally has a risk of ignition and explosion, and also has a risk of deteriorating the health of workers, so that there is a problem in handleability and workability.

【0004】他方、水中に浸漬保存する方法は、有機溶
剤におけるような問題がなく、作業性、安全性に優れて
いる。しかし、水中保存方法は、保存期間が長くなる
と、溶存酸素や水酸イオンにより、次第に合金表面が酸
化され合金活性が低下するという問題がある。
On the other hand, the method of immersion storage in water does not have the problems of organic solvents and is excellent in workability and safety. However, the water storage method has a problem that when the storage period is long, the alloy surface is gradually oxidized by dissolved oxygen and hydroxide ions, and the alloy activity is lowered.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点に鑑みなされたものであり、水素吸蔵合金粉末
を水中で保存した場合であっても、合金の酸化や合金活
性の低下を防止できる保存方法を提供しようとするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and even when hydrogen-absorbing alloy powder is stored in water, oxidation of the alloy and deterioration of alloy activity are caused. It is intended to provide a storage method capable of preventing the above.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、水素吸蔵合金を水中に保存するア
ルカリ蓄電池用水素吸蔵合金の保存方法において、前記
保存方法が、界面活性剤を添加した界面活性剤含有水溶
液中に水素吸蔵合金を浸漬して保存することを特徴とす
る。
In order to achieve the above object, the invention of claim 1 is a method for storing a hydrogen storage alloy for an alkaline storage battery, which stores the hydrogen storage alloy in water, wherein the storage method is a surfactant. It is characterized in that the hydrogen storage alloy is immersed and stored in an aqueous solution containing a surfactant added with.

【0007】請求項2の発明は、請求項1記載のアルカ
リ蓄電池用水素吸蔵合金の保存方法において、前記界面
活性剤含有水溶液の界面活性剤含有量が、浸漬する水素
吸蔵合金の重量に対し1〜104 ppmであることを特
徴とする。請求項3の発明は、請求項1乃至請求項2記
載のアルカリ蓄電池用水素吸蔵合金の保存方法におい
て、前記界面活性剤がアニオン系界面活性剤であること
を特徴とする。
According to a second aspect of the present invention, in the method for storing a hydrogen storage alloy for alkaline storage batteries according to the first aspect, the content of the surfactant in the aqueous solution containing the surfactant is 1 with respect to the weight of the hydrogen storage alloy to be dipped. It is characterized in that it is about 10 4 ppm. The invention of claim 3 is the method for storing a hydrogen storage alloy for an alkaline storage battery according to claim 1 or 2, wherein the surfactant is an anionic surfactant.

【0008】[0008]

【作用】上記構成の本発明では、水素吸蔵合金を浸漬す
る水に界面活性剤を添加したので、この界面活性剤が水
素吸蔵合金の酸化を防止し、合金活性化度の低下を防止
するように作用する。界面活性剤がこのような作用効果
を奏するのは、次のような理由によると考えられる。即
ち、水素吸蔵合金粉末が界面活性剤含有水溶液に浸漬さ
れると、界面活性剤が親水性基を外側に配向して水素吸
蔵合金粒子の表面に吸着し、合金粒子を核とする球状ミ
セル様のものを形成する。これが合金粒子周囲を覆うた
め、水素吸蔵合金と水中に溶存する酸素や水酸イオンと
の接触が阻害される。つまり、前記ミセル様のものが、
合金表面のバリアーとなって、溶存酸素等に起因する合
金表面の酸化を防止する。なお、本発明者らは、界面活
性剤無添加の水中で水素吸蔵合金を長期間保存した場
合、合金表面針状の水酸化物が生成されることを確認し
ている。
In the present invention having the above-mentioned structure, since the surfactant is added to the water in which the hydrogen storage alloy is dipped, the surfactant prevents the hydrogen storage alloy from being oxidized and prevents the alloy activation degree from being lowered. Act on. The reason why the surfactant exerts such an action effect is considered to be as follows. That is, when the hydrogen-absorbing alloy powder is immersed in a surfactant-containing aqueous solution, the surfactant is adsorbed on the surface of the hydrogen-absorbing alloy particles by orienting the hydrophilic groups to the outside, and the spherical micelle-like particles having the alloy particles as cores are formed. To form one. Since this covers the periphery of the alloy particles, contact between the hydrogen storage alloy and oxygen or hydroxide ions dissolved in water is hindered. In other words, the micelle-like thing,
It serves as a barrier for the alloy surface and prevents oxidation of the alloy surface due to dissolved oxygen and the like. Note that the present inventors have confirmed that when the hydrogen storage alloy is stored for a long period of time in water containing no surfactant, acicular hydroxide on the alloy surface is produced.

【0009】上記において、合金保存水溶液への界面活
性剤の添加量は、浸漬する水素吸蔵合金の総重量に対
し、1〜104 ppmとするのが好ましい。この添加範
囲であると、水素吸蔵合金に対する酸化防止効果が、添
加量との関係で効率的に発揮され、且つ界面活性剤添加
に伴う電極反応への悪作用を避けることができるからで
ある。また、使用する界面活性剤は、アニオン系、カチ
オン系、非イオン性系、両性系の何れのタイプであって
もよく、またその種類も特に限定されるものではない。
但し、アニオン系界面活性剤が、界面活性効果に優れ、
また好適にバリアーを形成すると考えれれるので、好ま
しい。なお、界面活性剤の添加量が前記範囲内であると
良好な結果が得られるのは、次のような理由であると考
えられる。即ち、界面活性剤の添加量が1ppm未満で
あると、水素吸蔵合金粒子の全比表面積に対し界面活性
剤量が不足するため、合金粒子表面に充分なバリアーを
形成できない。他方、界面活性剤の添加量が104 pp
mを超えた場合には、バリアーが形成されるものの、合
金に残留する界面活性剤の量が増えるため、この残留界
面活性剤が電極反応を阻害するようになるためと考えら
れる。但し、界面活性剤の添加量が前記範囲外であって
も、界面活性剤無添加の場合に比較し、水素吸蔵合金の
酸化が抑制されるのは勿論である。
In the above, the amount of the surfactant added to the alloy preservation aqueous solution is preferably 1 to 10 4 ppm with respect to the total weight of the hydrogen storage alloy to be immersed. This is because in this addition range, the antioxidant effect on the hydrogen storage alloy is efficiently exhibited in relation to the addition amount, and the adverse effect on the electrode reaction due to the addition of the surfactant can be avoided. The surfactant used may be any of anionic, cationic, nonionic and amphoteric types, and the type thereof is not particularly limited.
However, the anionic surfactant is excellent in the surfactant effect,
It is also preferable because it is considered to form a barrier suitably. The reason why good results are obtained when the amount of the surfactant added is within the above range is considered to be as follows. That is, when the amount of the surfactant added is less than 1 ppm, the amount of the surfactant is insufficient with respect to the total specific surface area of the hydrogen storage alloy particles, and thus a sufficient barrier cannot be formed on the surface of the alloy particles. On the other hand, the amount of surfactant added is 10 4 pp
When m is exceeded, a barrier is formed, but the amount of the surfactant remaining in the alloy increases, and it is considered that this residual surfactant hinders the electrode reaction. However, even if the addition amount of the surfactant is out of the above range, it is needless to say that the oxidation of the hydrogen storage alloy is suppressed as compared with the case where the surfactant is not added.

【0010】[0010]

【実施例】【Example】

〔実施例〕Mm(希土類元素の混合物):Ni:Co:
Al:Mnの各金属元素を1:3.4:0.8:0.
2:0.6の割合で不活性ガス雰囲気とした高周波溶解
炉に入れ、溶融して組成式MmNi3.4 Co0.8 Al
0.2 Mn0.6 で表される水素吸蔵合金鋳塊を作製し、こ
の合金鋳塊を不活性ガス雰囲気中で平均粒径150μm
に粉砕してアルカリ蓄電池用水素吸蔵合金粉末を作製し
た。
[Example] Mm (mixture of rare earth elements): Ni: Co:
The respective metal elements of Al: Mn are 1: 3.4: 0.8: 0.
2: 0.6 ratio by taking into high-frequency melting furnace with an inert gas atmosphere, melted and the composition formula MmNi 3.4 Co 0.8 Al
A hydrogen storage alloy ingot represented by 0.2 Mn 0.6 was produced, and the alloy ingot was made to have an average particle size of 150 μm in an inert gas atmosphere.
The powder was pulverized to give a hydrogen storage alloy powder for alkaline storage batteries.

【0011】この水素吸蔵合金粉末1000gを、水2
00gに表1記載の界面活性剤1g添加した10通りの
界面活性剤含有水溶液(合金に対し1000ppm ) にそ
れぞれに浸漬し、液温約25℃で30日間保存した。 〔比較例〕実施例で作製した水素吸蔵合金粉末を上記と
同様な条件で、界面活性剤を添加しない水中に30日間
浸漬保存した。
1000 g of this hydrogen storage alloy powder was added to water 2
Each of them was immersed in 10 kinds of aqueous solutions containing a surfactant (1000 ppm with respect to the alloy) in which 1 g of the surfactant shown in Table 1 was added to 00 g and stored at a liquid temperature of about 25 ° C. for 30 days. [Comparative Example] The hydrogen-absorbing alloy powder produced in the example was immersed and stored in water containing no surfactant under the same conditions as above for 30 days.

【0012】〔実験1〕実施例合金粉末(界面活性剤含
有水溶液に30日間保存)と比較例合金粉末(単なる水
中に30日間保存)について、下記方法により合金の酸
素濃度と合金活性化度の測定を行った。なお、水中保存
開始前の水素吸蔵合金粉末についても、予め同様な方法
で酸素濃度及び活性化度の測定を行った。
[Experiment 1] The oxygen concentration and the degree of activation of the alloys of the example alloy powder (stored in a surfactant-containing aqueous solution for 30 days) and the comparative alloy powder (stored in pure water for 30 days) were measured by the following method. The measurement was performed. The oxygen concentration and the degree of activation of the hydrogen storage alloy powder before the start of storage in water were also measured in advance by the same method.

【0013】酸素濃度と合金活性化度の測定方法 合金酸素濃度は、酸素分析装置(LECO社製TC−4
36)を用い測定した。また、合金活性化度の測定は、
浸漬保存前の合金粉末及び実施例合金粉末並びに比較例
合金粉末をそれぞれ用いた電極を構成し、更にこの電極
で試験用セルを構成し、このセルを用いて行った。その
詳細は次の通りである。
Method for Measuring Oxygen Concentration and Degree of Alloy Activation The alloy oxygen concentration is measured by an oxygen analyzer (TC-4 manufactured by LECO).
36). In addition, the measurement of the alloy activation degree,
An electrode was formed by using the alloy powder before immersion storage, the example alloy powder, and the comparative example alloy powder, and a test cell was formed by the electrode, and the test was performed using this cell. The details are as follows.

【0014】先ず、水素吸蔵合金粉末1gに、導電剤と
してカルボニルニッケル1.2g、及び結着剤としてポ
リテトラフルオロエチレン粉末0.2gを加え、混練し
て合金ペーストを調製し、この合金ペーストをニッケル
メッシュで包みプレス加工し水素吸蔵合金電極を作製し
た。更にこの電極を用いて、この電極よりも充分に大き
な放電容量を有するニッケル極と30重量%のKOH水
溶液とで図2に示す試験用セルを作製した。
First, 1.2 g of carbonyl nickel as a conductive agent and 0.2 g of polytetrafluoroethylene powder as a binder were added to 1 g of hydrogen-absorbing alloy powder and kneaded to prepare an alloy paste. It was wrapped with a nickel mesh and pressed to produce a hydrogen storage alloy electrode. Further, using this electrode, a test cell shown in FIG. 2 was prepared with a nickel electrode having a discharge capacity sufficiently larger than that of the electrode and a 30 wt% KOH aqueous solution.

【0015】上記試験用セルを用い、50mA/g−合
金で8時間充電した後、200mA/g−合金でセル電
圧が1.0Vに達するまで放電し、この時の放電容量C
1を測定した。他方、同一セルに対し、50mA/g−
合金で8時間充電した後、50mA/g−合金でセル電
圧が1.0Vに達するまで放電し、この時の放電容量C
2を測定した。このC1とC2から下式により活性化度
を求めた。 活性化度(%)=C1/(C1+C2) ×100 なお、以下に試験用セルの構造を図2に基づき説明して
おく。図2中、1は負極であり、この1に円筒形状に成
形した上記水素吸蔵合金電極が設置されている。2は公
知の方法により作製された公知の焼結式ニッケル極(正
極)であり、この焼結式ニッケル極2は、密閉容器3の
上面5に接続された正極リード4により保持されてお
り、前記電極1は焼結式ニッケル極2の円筒内の略中央
に垂直に位置するように密閉容器3の上面5に接続され
た負極リード6により保持されている。更に、正極リー
ド4及び負極リード6の各端部は、密閉容器3の上面5
を貫通して外部に露出し、それぞれ正極端子4a及び負
極端子6aに接続されている。密閉容器3には、アルカ
リ電解液として30重量%水酸化カリウム水溶液が入れ
られており、この溶液に前記水素吸蔵合金電極1及び焼
結式ニッケル極2が浸漬されている。7は圧力計、8は
リリーフ管、9はガス逃がし弁である。
Using the above test cell, the battery was charged with 50 mA / g-alloy for 8 hours and then discharged with 200 mA / g-alloy until the cell voltage reached 1.0 V. At this time, the discharge capacity C
1 was measured. On the other hand, for the same cell, 50 mA / g-
After being charged with the alloy for 8 hours, it was discharged with 50 mA / g-alloy until the cell voltage reached 1.0 V, and the discharge capacity C at this time
2 was measured. The activation degree was calculated from the C1 and C2 by the following formula. Degree of activation (%) = C1 / (C1 + C2) × 100 The structure of the test cell will be described below with reference to FIG. In FIG. 2, reference numeral 1 is a negative electrode, and the hydrogen storage alloy electrode formed in a cylindrical shape is installed on the negative electrode 1. 2 is a known sintered nickel electrode (positive electrode) manufactured by a known method, and this sintered nickel electrode 2 is held by a positive electrode lead 4 connected to an upper surface 5 of a closed container 3, The electrode 1 is held by a negative electrode lead 6 connected to the upper surface 5 of the hermetically sealed container 3 so as to be vertically positioned substantially in the center of the cylinder of the sintered nickel electrode 2. Further, the respective ends of the positive electrode lead 4 and the negative electrode lead 6 are connected to the upper surface 5 of the closed container 3.
Exposed to the outside and connected to the positive electrode terminal 4a and the negative electrode terminal 6a, respectively. A 30 wt% potassium hydroxide aqueous solution is put in the closed container 3 as an alkaline electrolyte, and the hydrogen storage alloy electrode 1 and the sintered nickel electrode 2 are immersed in this solution. 7 is a pressure gauge, 8 is a relief pipe, and 9 is a gas relief valve.

【0016】(実験1の結果)表1に実施例及び比較例
並びに水中保存開始前の各種合金粉末における測定結果
の一覧を示す。
(Result of Experiment 1) Table 1 shows a list of measurement results of various alloy powders before starting storage in water in Examples and Comparative Examples.

【0017】[0017]

【表1】 No1〜10;本発明例、No11;比較例 表1から明らかな如く、比較例の水素吸蔵合金粉末の酸
素濃度は、浸漬保存開始前0.10Wt%であったもの
が、30日間の水中浸漬保存後には0.50Wt%に増
加していた。これに対し、1000ppm (合金重量に対
する濃度)の界面活性剤含有水溶液で浸漬保存した実施
例では、30日保存後の合金酸素濃度は何れも0.11
〜0.15Wt%の範囲内に留まっており、顕著に酸素
濃度の上昇が抑制されていた。
[Table 1] No. 1 to 10; Inventive example, No. 11; Comparative example As is clear from Table 1, the oxygen concentration of the hydrogen storage alloy powder of the comparative example was 0.10 Wt% before the start of immersion storage, but it was immersed in water for 30 days. It increased to 0.50 Wt% after storage. On the other hand, in the examples which were immersed and stored in a 1000 ppm (concentration based on alloy weight) aqueous solution containing a surfactant, the alloy oxygen concentration after storage for 30 days was 0.11 for each.
It remained within the range of 0.15 Wt%, and the increase in oxygen concentration was significantly suppressed.

【0018】一方、合金の活性化度について見ると、比
較例では、浸漬保存開始前の活性化度が80%であった
ものが30日間の水中保存で35%(低下率56.3
%)に低下していた。これに対し、実施例では何れも7
9%〜76%(低下率1.3〜5.0%)であり、極め
て少ない低下に留まっていた。これらの結果から、界面
活性剤含有水溶液を用い、水素吸蔵合金を浸漬保存す方
法であると、水素吸蔵合金の酸化が有効に防止でき、そ
れゆえ水素吸蔵合金の活性化度の低下が顕著に抑制され
ることが判る。界面活性剤の添加によりこのような効果
が得られるのは、水素吸蔵合金粒子の表面に界面活性剤
により球状ミセル様のバリアーが形成され、このバリア
ーがが酸素を遮断するためではないかと考えられる。
On the other hand, regarding the activation degree of the alloy, in the comparative example, the activation degree of 80% before the start of immersion storage was 80%, but it was 35% after storage in water for 30 days (reduction rate 56.3).
%). On the other hand, in each of the examples, 7
It was 9% to 76% (reduction rate 1.3 to 5.0%), which was an extremely small reduction. From these results, it is possible to effectively prevent the oxidation of the hydrogen storage alloy by the method of dipping and storing the hydrogen storage alloy using the surfactant-containing aqueous solution, and therefore, the activation degree of the hydrogen storage alloy is significantly reduced. It turns out that it is suppressed. It is considered that the reason why such an effect is obtained by adding a surfactant is that a spherical micelle-like barrier is formed by the surfactant on the surface of the hydrogen storage alloy particles, and this barrier blocks oxygen. .

【0019】〔実験2〕次に、界面活性剤濃度と合金の
酸素濃度(酸化程度)並びに合金活性化度との関係を調
べるため、界面活性剤としてオレイン酸ナトリウムを用
い、その濃度を0〜105 ppm (浸漬合金量に対する濃
度)に変化させた7通りのオレイン酸ナトリウム水溶液
を調製し、これらの水溶液に前記と同様な条件で水素吸
蔵合金粉末を浸漬保存し、更に前記と同様な方法で合金
の酸化濃度及び活性化度を測定した。
[Experiment 2] Next, in order to investigate the relationship between the surfactant concentration, the oxygen concentration (oxidation degree) of the alloy, and the alloy activation degree, sodium oleate was used as the surfactant and the concentration was adjusted to 0 Seven kinds of sodium oleate aqueous solutions were prepared by changing the concentration to 10 5 ppm (concentration with respect to the immersion alloy amount), the hydrogen storage alloy powder was immersed and stored in these aqueous solutions under the same conditions as described above, and the same method as above. The oxidation concentration and activation degree of the alloy were measured by.

【0020】図1にその結果を示す。図1中、●−●
は、界面活性剤濃度と水素吸蔵合金の酸素濃度との関係
を示し、×…×は、界面活性剤濃度と合金活性化度との
関係をを示す。なお、界面活性剤濃度(横軸)は対数目
盛りとしてある。図1から、界面活性剤濃度が1ppm で
あっても合金の酸化が抑制でき、更に界面活性剤濃度が
1ppm から102 ppm に増加するに従い酸化抑制効果が
上昇することが判る。しかし、界面活性剤濃度が102
ppm を超えた場合には、更なる酸化抑制効果は認められ
なかった。
The results are shown in FIG. ●-● in Fig. 1
Indicates the relationship between the surfactant concentration and the oxygen concentration of the hydrogen storage alloy, and X ... X indicates the relationship between the surfactant concentration and the alloy activation degree. The surfactant concentration (horizontal axis) is on a logarithmic scale. From FIG. 1, it can be seen that even if the surfactant concentration is 1 ppm, the oxidation of the alloy can be suppressed, and as the surfactant concentration increases from 1 ppm to 10 2 ppm, the oxidation suppressing effect increases. However, if the surfactant concentration is 10 2
When the concentration exceeded ppm, no further oxidation inhibitory effect was observed.

【0021】他方、合金活性化度の低下を防止する効果
は、102 ppm までは酸化抑制効果における場合とほぼ
軌を一にしており、界面活性剤濃度の増加とともに活性
化度の低下防止効果が高まった。しかし、103 ppm を
超えると、酸化防止効果の場合と異なり、活性化度が急
激に低下する傾向が認められ、105 ppm添加した場
合、無添加と同等まで低下した。
On the other hand, the effect of preventing the decrease in the degree of activation of the alloy is almost in line with the case of the effect of suppressing the oxidation up to 10 2 ppm, and the effect of preventing the decrease in the degree of activation increases as the concentration of the surfactant increases. It was However, when it exceeds 10 3 ppm, unlike the case of the antioxidant effect, the activation degree tends to be sharply reduced, and when 10 5 ppm is added, it is reduced to the same level as when it is not added.

【0022】これらの結果から、界面活性剤濃度は1pp
m 〜104 ppm が好ましく、より好ましくは1〜103
ppm であることが判る。なお、界面活性剤濃度が103
ppmを超えると、急激に合金活性化度が低下したのは、
次の様に考えられる。即ち、合金と溶存酸素等との接触
を遮断し得る充分の厚さ(又は密度)の界面活性剤バリ
アーは、ほぼ102 ppm で完成され、それ以上ではもは
やその効果が増強されることがない一方、合金表面に残
留する界面活性剤の量が増加し、この残留界面活性剤が
水素吸蔵合金の電極反応を阻害するため、却って合金活
性化度が低下するのではないかと考えられる。
From these results, the surfactant concentration was 1 pp.
m is preferably 10 to 4 ppm, more preferably 1 to 10 3
It turns out to be ppm. The surfactant concentration is 10 3
The alloy activation rate decreased sharply when the concentration exceeded ppm.
It can be considered as follows. That is, a surfactant barrier having a sufficient thickness (or density) capable of blocking the contact between the alloy and dissolved oxygen is completed at about 10 2 ppm, and beyond that, the effect is no longer enhanced. On the other hand, it is considered that the amount of the surfactant remaining on the alloy surface increases, and this residual surfactant inhibits the electrode reaction of the hydrogen storage alloy, so that the alloy activation degree is rather decreased.

【0023】[0023]

【発明の効果】以上のように本発明の水素吸蔵合金保存
方法によれば、水溶液中に存在する界面活性剤が水素吸
蔵合金の酸化を有効に防止するので、長期にわたって水
中保存した場合であっても、合金活性化度の低下が抑制
できる。よって、本発明によれば、保存性に優れ、且つ
作業性、安全性にも優れた水素吸蔵合金の保存方法を提
供できるという顕著な効果が得られる。
As described above, according to the method for storing a hydrogen storage alloy of the present invention, the surfactant present in the aqueous solution effectively prevents the hydrogen storage alloy from being oxidized. However, the reduction of the alloy activation degree can be suppressed. Therefore, according to the present invention, it is possible to provide a remarkable effect that it is possible to provide a method for storing a hydrogen storage alloy that is excellent in storability, workability, and safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】保存水溶液の界面活性剤濃度と、30日保存後
の合金酸素濃度及び合金活性化度との関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the surfactant concentration of a stored aqueous solution, and the alloy oxygen concentration and the degree of alloy activation after storage for 30 days.

【図2】水素吸蔵合金の活性化度を測定するために用い
た試験用セルの概要を示す図である。
FIG. 2 is a diagram showing an outline of a test cell used for measuring the activation degree of a hydrogen storage alloy.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 界面活性剤が添加された界面活性剤含有
水溶液に水素吸蔵合金を浸漬して保存することを特徴と
するアルカリ蓄電池用水素吸蔵合金の保存方法。
1. A method of storing a hydrogen storage alloy for an alkaline storage battery, which comprises immersing and storing the hydrogen storage alloy in a surfactant-containing aqueous solution containing a surfactant.
【請求項2】 前記界面活性剤含有水溶液の界面活性剤
含有量が、浸漬する水素吸蔵合金の重量に対し1〜10
4 ppmであることを特徴とする請求項1記載ののアル
カリ蓄電池用水素吸蔵合金の保存方法。
2. The surfactant content of the surfactant-containing aqueous solution is 1 to 10 with respect to the weight of the hydrogen storage alloy to be immersed.
The method for storing a hydrogen storage alloy for alkaline storage batteries according to claim 1, wherein the storage capacity is 4 ppm.
【請求項3】 前記界面活性剤が、アニオン系界面活性
剤であることを特徴とする請求項1乃至請求項2記載の
アルカリ蓄電池用水素吸蔵合金の保存方法。
3. The method for storing a hydrogen storage alloy for alkaline storage batteries according to claim 1, wherein the surfactant is an anionic surfactant.
JP6237960A 1994-09-30 1994-09-30 Storage method for hydrogen storage alloy for alkaline storage battery Pending JPH08102320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6237960A JPH08102320A (en) 1994-09-30 1994-09-30 Storage method for hydrogen storage alloy for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6237960A JPH08102320A (en) 1994-09-30 1994-09-30 Storage method for hydrogen storage alloy for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH08102320A true JPH08102320A (en) 1996-04-16

Family

ID=17023022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6237960A Pending JPH08102320A (en) 1994-09-30 1994-09-30 Storage method for hydrogen storage alloy for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH08102320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323444C (en) * 2005-08-30 2007-06-27 包头稀土研究院 Method for improving magnesium-based hydrogen-storage electrode capacity attenuation for nickel-hydrogen battery
EP2224518A1 (en) * 2009-02-12 2010-09-01 SANYO Electric Co., Ltd. Negative electrode for alkaline storage battery, method for the fabrication thereof, and alkaline storage battery using the same
JP2018104811A (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Production method of hydrogen storage alloy powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323444C (en) * 2005-08-30 2007-06-27 包头稀土研究院 Method for improving magnesium-based hydrogen-storage electrode capacity attenuation for nickel-hydrogen battery
EP2224518A1 (en) * 2009-02-12 2010-09-01 SANYO Electric Co., Ltd. Negative electrode for alkaline storage battery, method for the fabrication thereof, and alkaline storage battery using the same
US8563170B2 (en) 2009-02-12 2013-10-22 Sanyo Electric Co., Ltd. Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
JP2018104811A (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Production method of hydrogen storage alloy powder

Similar Documents

Publication Publication Date Title
AU604518B2 (en) Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell
EP1075032B1 (en) Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
JPH08102320A (en) Storage method for hydrogen storage alloy for alkaline storage battery
JPH0479474B2 (en)
JP3423087B2 (en) Preservation method of hydrogen storage alloy for alkaline storage battery
JPS6164076A (en) Electrochemical battery
JP3548004B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP3301792B2 (en) Hydrogen storage alloy electrode
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JPH07153460A (en) Manufacture of metal hydride electrode
JP3163007B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP3155202B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3163005B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP3291356B2 (en) Hydrogen storage alloy electrode
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JPS6193558A (en) Negative electrode collection body for alkaline battery
JPH05225974A (en) Hydrogen storage alloy electrode
JPH05156395A (en) Hydrogen storage alloy excellent in corrosion resistance and negative electrode for secondary battery using it
JPH0750163A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH06163041A (en) Hydrogen storage alloy electrode
JPH06111815A (en) Hydrogen storage alloy electrode
JPH05211063A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0831414A (en) Hydrogen storage alloy for alkaline storage battery and manufacture thereof