JPH06163041A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH06163041A
JPH06163041A JP43A JP33565892A JPH06163041A JP H06163041 A JPH06163041 A JP H06163041A JP 43 A JP43 A JP 43A JP 33565892 A JP33565892 A JP 33565892A JP H06163041 A JPH06163041 A JP H06163041A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
crystallite
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Mikiaki Tadokoro
幹朗 田所
Mamoru Kimoto
衛 木本
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP43A priority Critical patent/JPH06163041A/en
Publication of JPH06163041A publication Critical patent/JPH06163041A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrode by which internal stress of hydrogen storage alloy powder becomes small and which is hard to be pulverized and has the long cycle service life. CONSTITUTION:In a hydrogen storage alloy electrode for a metal-hydride secondary battery formed integrally of hydrogen storage alloy, the hydrogen storage alloy is composed of hydrogen storage alloy powder where a value (a/b) of a ratio of major axis length (a) of crystallite to minor axis length (b) is not more than 2. Such hydrogen storage alloy powder can be obtained by a method of cooling rapidly mixture melted solution of a hydrogen storage allay component at cooling speed equal to or faster than 1X10<4> deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金電極に係
わり、詳しくはサイクル寿命の長い金属・水素化物二次
電池を得ることを目的とした、水素吸蔵合金粉末の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode, and more particularly to improvement of hydrogen storage alloy powder for obtaining a metal / hydride secondary battery having a long cycle life.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
正極に水酸化ニッケルなどの金属化合物を使用し、負極
に新素材の水素吸蔵合金を使用した金属・水素化物二次
電池が提案され、単位重量及び単位体積当たりのエネル
ギー密度が高く、高容量化が可能であることから、ニッ
ケル・カドミウム二次電池に代わる次世代のアルカリ蓄
電池として脚光を浴びつつある。
2. Description of the Related Art In recent years,
A metal / hydride secondary battery has been proposed in which a metal compound such as nickel hydroxide is used for the positive electrode and a new material hydrogen storage alloy is used for the negative electrode, which has a high energy density per unit weight and unit volume and high capacity. Therefore, it is in the spotlight as a next-generation alkaline storage battery that replaces the nickel-cadmium secondary battery.

【0003】従来、この金属・水素化物二次電池の負極
に使用される水素吸蔵合金は、合金成分金属を混合して
融解した後、一般に100°C/秒程度の冷却速度(冷
却速度は合金種及び製法によって若干異なる。)で凝固
させることにより作製されている。
Conventionally, the hydrogen storage alloy used for the negative electrode of this metal / hydride secondary battery is generally a cooling rate of about 100 ° C./second after the alloy component metals are mixed and melted. It is slightly different depending on the species and the manufacturing method).

【0004】しかしながら、上記した方法により得られ
る水素吸蔵合金を負極に使用した金属・水素化物二次電
池には、サイクル寿命が総じて短いという問題があっ
た。
However, the metal / hydride secondary battery using the hydrogen storage alloy obtained by the above method for the negative electrode has a problem that the cycle life is generally short.

【0005】そこで、鋭意研究した結果、本発明者ら
は、負極に使用する水素吸蔵合金の結晶子の形状とサイ
クル寿命との間に密接な関係が存在することを見い出し
た。
As a result of intensive studies, the present inventors have found that there is a close relationship between the shape of the crystallite of the hydrogen storage alloy used for the negative electrode and the cycle life.

【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、サイクル寿命の
長い金属・水素化物二次電池を得ることを可能にする水
素吸蔵合金電極を提供するにある。
The present invention has been made on the basis of such findings, and an object of the present invention is to provide a hydrogen storage alloy electrode which makes it possible to obtain a metal / hydride secondary battery having a long cycle life. It is in.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る金属・水素化物二次電池用の水素吸蔵合
金電極(以下、「本発明電極」と称する。)は、水素吸
蔵合金を一体化してなる金属・水素化物二次電池用の水
素吸蔵合金電極であって、前記水素吸蔵合金が結晶子の
長軸の長さaと短軸の長さbとの比の値(以下、便宜上
「縦横比」と称する。)a/bが2以下の水素吸蔵合金
粉末からなることを特徴とする。
A hydrogen storage alloy electrode for a metal / hydride secondary battery according to the present invention for achieving the above object (hereinafter referred to as "electrode of the present invention") is a hydrogen storage alloy. A hydrogen storage alloy electrode for a metal / hydride secondary battery, wherein the hydrogen storage alloy has a ratio of a major axis length a and a minor axis length b of a crystallite (hereinafter For convenience, it is referred to as "aspect ratio".) A / b is made of a hydrogen storage alloy powder having a value of 2 or less.

【0008】図4に本発明における結晶子C1の縦横比
a/bが2以下である水素吸蔵合金の結晶構造を示し
(図示のものはa/b=1)、また図5に、従来使用さ
れていた結晶子C2の縦横比a/bが2よりおおきい水
素吸蔵合金の結晶構造を示す。
FIG. 4 shows a crystal structure of a hydrogen storage alloy having an aspect ratio a / b of the crystallite C1 of 2 or less in the present invention (a / b = 1 in the figure), and FIG. The crystallite C2 has a large aspect ratio a / b of 2 or more, and shows a crystal structure of a hydrogen storage alloy.

【0009】縦横比a/bが2以下の水素吸蔵合金は、
たとえば水素吸蔵合金成分の混合物の溶融液を104 °
C/秒以上の冷却速度で徐冷することにより得ることが
できる。
A hydrogen storage alloy having an aspect ratio a / b of 2 or less is
For example melt of a mixture of the hydrogen storage alloy component 10 4 °
It can be obtained by slow cooling at a cooling rate of C / sec or more.

【0010】本発明において水素吸蔵合金粉末の結晶子
(単結晶と見做せる微結晶)の縦横比a/bが2以下に
規制されるのは、充放電サイクルの進行に伴う水素吸蔵
合金粉末の微粉化による酸化劣化を抑制するためであ
る。
In the present invention, the aspect ratio a / b of the crystallites (microcrystals that can be regarded as a single crystal) of the hydrogen storage alloy powder is regulated to 2 or less because the hydrogen storage alloy powder is accompanied by the progress of charge / discharge cycles. This is for suppressing the oxidative deterioration due to the pulverization of.

【0011】因みに、従来の金属・水素化物二次電池の
水素吸蔵合金電極においては、結晶子の縦横比a/bが
3〜4程度の水素吸蔵合金粉末が使用されていた。
Incidentally, in a hydrogen storage alloy electrode of a conventional metal / hydride secondary battery, a hydrogen storage alloy powder having a crystallite aspect ratio a / b of about 3 to 4 has been used.

【0012】本発明における水素吸蔵合金としては、た
とえばLaNi5 、TiNi2 などの他、LaをMm
(ミッシュメタル:希土類金属の混合物)などで一部置
換したもの、NiをCo、Mn、Alなどで一部置換し
たものなどが挙げられるが、特にこれらに制限されな
い。
As the hydrogen storage alloy in the present invention, for example, LaNi 5 , TiNi 2, etc., as well as La containing Mm can be used.
Examples thereof include those partially substituted with (Misch metal: mixture of rare earth metals), those partially substituted with Ni by Co, Mn, Al, etc., but are not particularly limited thereto.

【0013】上述したように、本発明は、サイクル寿命
の長い金属・水素化物二次電池を得ることを可能にする
水素吸蔵合金電極を提供するべく、結晶子の縦横比a/
bが2以下の水素吸蔵合金粉末を使用することとした点
に特徴がある。それゆえ、本発明電極の作製に使用され
る結着剤や必要に応じて添加される導電剤など、電極を
構成する他の材料については、従来、水素吸蔵合金電極
用として実用され、或いは提案されている種々の材料を
制限なく使用することが可能である。
As described above, the present invention provides a hydrogen storage alloy electrode capable of obtaining a metal / hydride secondary battery having a long cycle life, in order to provide a crystallite aspect ratio a /.
A feature is that a hydrogen storage alloy powder having b of 2 or less is used. Therefore, other materials constituting the electrode, such as the binder used in the production of the electrode of the present invention and the conductive agent added as necessary, have hitherto been practically used or proposed for hydrogen storage alloy electrodes. It is possible to use the various materials mentioned without limitation.

【0014】[0014]

【作用】本発明における水素吸蔵合金粉末は、従来使用
されていた水素吸蔵合金粉末に比べて、結晶子の縦横比
a/bが小さいため、クラック発生の原因となる内部応
力が小さい。このため、充放電サイクルを繰り返し行っ
ても、クラックが発生しにくく、微粉化しにくい。
The hydrogen storage alloy powder according to the present invention has a smaller crystallite aspect ratio a / b than the conventionally used hydrogen storage alloy powder, and therefore has a small internal stress which causes cracks. Therefore, even if the charge / discharge cycle is repeated, cracks are less likely to occur and the powder is less likely to be pulverized.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0016】(製造例1〜6)Mm、Ni、Co、Al
及びMnの各合金成分金属(市販の純度99.9%以上
の金属単体)を所定量秤量して混合し、不活性ガス(ア
ルゴン)雰囲気の高周波溶解炉で、誘導加熱して融解さ
せた後、種々の冷却速度(1×102 、1×103 、3
×103 、1×104 、1×105 、1×106 °C/
秒)で冷却し、粉砕して組成式MmNi3.2 CoAl
0.3 Mn0.5 で表される水素吸蔵合金粉末A1〜A6を
作製した。なお、1×102 °C/秒の冷却において
は、鋳込時の鋳型の厚みを変えることにより、また1×
103 °C/秒以上の冷却においては、ロール法におけ
るロールの回転数を変えることにより、冷却速度を調節
した。
(Production Examples 1 to 6) Mm, Ni, Co, Al
And Mn alloy component metals (commercial pure metal having a purity of 99.9% or more) are weighed and mixed in a predetermined amount, and after induction heating and melting in a high-frequency melting furnace in an inert gas (argon) atmosphere. , Various cooling rates (1 × 10 2 , 1 × 10 3 , 3
× 10 3 , 1 × 10 4 , 1 × 10 5 , 1 × 10 6 ° C /
Second), pulverized and then compositional formula MmNi 3.2 CoAl
Hydrogen storage alloy powders A1 to A6 represented by 0.3 Mn 0.5 were produced. In addition, in the case of cooling at 1 × 10 2 ° C / sec, by changing the thickness of the casting mold,
In cooling at 10 3 ° C / sec or more, the cooling rate was adjusted by changing the rotation number of the roll in the roll method.

【0017】(冷却速度と縦横比a/bとの関係)製造
例1〜6で作製した水素吸蔵合金粉末A1〜A6につい
て、作製時の冷却速度と結晶子の縦横比a/bとの関係
を調べた。なお、結晶子の縦横比a/bは、合金断面を
化学エッチングした後、SEM(走査型電子顕微鏡)に
て、無作為に50個の結晶子を選び、その平均値として
求めた。結果を図1に示す。
(Relationship between Cooling Rate and Aspect Ratio a / b) For the hydrogen storage alloy powders A1 to A6 produced in Production Examples 1 to 6, the relationship between the cooling rate during production and the crystallite aspect ratio a / b. I checked. The aspect ratio a / b of crystallites was determined as an average value by randomly selecting 50 crystallites by SEM (scanning electron microscope) after chemically etching the alloy cross section. The results are shown in Fig. 1.

【0018】図1は、冷却速度と結晶子の縦横比a/b
との関係を、縦軸に結晶子の縦横比a/bを、また横軸
に冷却速度(°C/秒)をとって示したグラフであり、
同図より冷却速度を1×104 °C/秒以上にした場合
に、結晶子の縦横比a/bが2以下となることが分か
る。
FIG. 1 shows the cooling rate and the crystallite aspect ratio a / b.
Is a graph in which the vertical axis represents the crystallite aspect ratio a / b, and the horizontal axis represents the cooling rate (° C / sec).
From the figure, it can be seen that the aspect ratio a / b of the crystallite becomes 2 or less when the cooling rate is set to 1 × 10 4 ° C / sec or more.

【0019】(結晶子の縦横比とサイクル寿命との関
係)製造例1〜6で作製した水素吸蔵合金粉末A1〜A
6を使用して、次のようにして水素吸蔵合金電極E1〜
E6を作製した。
(Relationship between Aspect Ratio of Crystallite and Cycle Life) Hydrogen storage alloy powders A1 to A produced in Production Examples 1 to 6.
6, hydrogen storage alloy electrodes E1 to
E6 was produced.

【0020】すなわち、先ず各水素吸蔵合金粉末1g
に、結着剤としてのポリテトラフルオロエチレン(PT
FE)0.2g及び導電剤としてのカルボニルニッケル
1.2gを混合し、圧延して合金ペーストを得た。
That is, first, 1 g of each hydrogen storage alloy powder
In addition, polytetrafluoroethylene (PT
0.2 g of FE) and 1.2 g of carbonyl nickel as a conductive agent were mixed and rolled to obtain an alloy paste.

【0021】次いで、この合金ペーストの所定量をニッ
ケルメッシュで包み、プレス加工して、直径20mmの
円板状の水素吸蔵合金電極(ペースト電極)E1〜E6
を作製した。
Then, a predetermined amount of this alloy paste is wrapped with nickel mesh and pressed to form disk-shaped hydrogen storage alloy electrodes (paste electrodes) E1 to E6 having a diameter of 20 mm.
Was produced.

【0022】このようにして作製した水素吸蔵合金電極
E1〜E6を負極に使用して試験セルを組み立て、各試
験セルのサイクル寿命を調べた。
Test cells were assembled using the hydrogen storage alloy electrodes E1 to E6 thus produced as negative electrodes, and the cycle life of each test cell was examined.

【0023】図2は、組み立てた試験セルの模式的斜視
図であり、図示の試験セル1は、円板状のペースト電極
(試験合金電極)2、円筒状の焼結式ニッケル極3、絶
縁性の密閉容器4などからなる。
FIG. 2 is a schematic perspective view of the assembled test cell. The illustrated test cell 1 includes a disk-shaped paste electrode (test alloy electrode) 2, a cylindrical sintered nickel electrode 3, and an insulation. It is composed of a hermetically sealed container 4 and the like.

【0024】焼結式ニッケル極3は、密閉容器4の上面
6に接続された正極リード5にて保持されており、また
ペースト電極2は焼結式ニッケル極3の円筒内略中央に
垂直に位置するように、密閉容器4の上面6に取りつけ
られた負極リード7にて保持されている。
The sintered nickel electrode 3 is held by a positive electrode lead 5 connected to the upper surface 6 of the hermetically sealed container 4, and the paste electrode 2 is perpendicular to the substantially center of the sintered nickel electrode 3 in the cylinder. It is held by a negative electrode lead 7 attached to the upper surface 6 of the closed container 4 so as to be positioned.

【0025】正極リード5及び負極リード7の各端部
は、密閉容器4の上面6を貫通して外部に露出し、それ
ぞれ正極端子5a及び負極端子7aに接続されている。
Each end of the positive electrode lead 5 and the negative electrode lead 7 penetrates the upper surface 6 of the closed container 4 and is exposed to the outside, and is connected to the positive electrode terminal 5a and the negative electrode terminal 7a, respectively.

【0026】ペースト電極2及び焼結式ニッケル極3は
密閉容器4に入れられたアルカリ電解液(30重量%水
酸化カリウム水溶液;図示せず)中に浸漬されており、
アルカリ電解液の上方空間にはチッ素ガスが充填されて
ペースト電極2に所定の圧力がかかるようにされてい
る。
The paste electrode 2 and the sintered nickel electrode 3 are immersed in an alkaline electrolyte (30% by weight potassium hydroxide aqueous solution; not shown) contained in a closed container 4,
The space above the alkaline electrolyte is filled with nitrogen gas so that a predetermined pressure is applied to the paste electrode 2.

【0027】また、密閉容器4の上面6の中央部には、
密閉容器4の内圧が所定圧以上に上昇するのを防止する
ために、圧力計8及びリリーフバルブ(逃し弁)9を備
えるリリーフ管10が挿通されている。
Further, in the central portion of the upper surface 6 of the closed container 4,
In order to prevent the internal pressure of the closed container 4 from rising above a predetermined pressure, a pressure gauge 8 and a relief pipe 10 having a relief valve 9 are inserted.

【0028】サイクル寿命は、常温(25°C)下、5
0mA/gで8時間充電して1時間休止した後、50m
A/gで放電終止電圧1.0Vまで放電して1時間休止
する工程を1サイクルとする充放電サイクル試験を行
い、初期容量の50%に容量低下するまでのサイクル数
(回)で評価した。結果を図3に示す。
The cycle life is 5 at room temperature (25 ° C).
50m after charging at 0mA / g for 8 hours and resting for 1 hour
A charging / discharging cycle test in which one cycle includes a step of discharging at A / g to a discharge final voltage of 1.0 V and resting for 1 hour was evaluated by the number of cycles (times) until the capacity decreased to 50% of the initial capacity. . The results are shown in Fig. 3.

【0029】図3は、各試験セルのサイクル寿命特性
を、縦軸にサイクル数(回)を、また横軸に結晶子の縦
横比a/bをとって示したグラフであり、同図より、結
晶子の縦横比a/bが2以下の場合は、結晶子の縦横比
a/bが3〜4の場合(従来のセルに相当)に比べて、
格段サイクル寿命が長くなることが分かる。
FIG. 3 is a graph showing the cycle life characteristics of each test cell, with the vertical axis representing the number of cycles (times) and the horizontal axis representing the crystallite aspect ratio a / b. When the aspect ratio a / b of the crystallite is 2 or less, compared with the case where the aspect ratio a / b of the crystallite is 3 to 4 (corresponding to a conventional cell),
It can be seen that the cycle life is significantly longer.

【0030】[0030]

【発明の効果】本発明電極は、水素吸蔵合金粉末の内部
応力が小さく微粉化しにくいので、サイクル寿命が長い
など、本発明は優れた特有の効果を奏する。
EFFECTS OF THE INVENTION Since the hydrogen storage alloy powder of the present invention has a small internal stress and is difficult to be pulverized, the present invention has excellent unique effects such as a long cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷却速度と結晶子の縦横比a/bとの関係を示
すグラフである。
FIG. 1 is a graph showing a relationship between a cooling rate and a crystallite aspect ratio a / b.

【図2】実施例で組み立てた試験セルの模式的斜視図で
ある。
FIG. 2 is a schematic perspective view of a test cell assembled in an example.

【図3】結晶子の縦横比a/bとサイクル寿命との関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the crystallite aspect ratio a / b and the cycle life.

【図4】本発明における水素吸蔵合金の結晶構造を模式
的に示す部分拡大断面図である。
FIG. 4 is a partially enlarged sectional view schematically showing a crystal structure of a hydrogen storage alloy according to the present invention.

【図5】従来使用されていた水素吸蔵合金の結晶構造を
模式的に示す部分拡大断面図である。
FIG. 5 is a partially enlarged cross-sectional view schematically showing a crystal structure of a hydrogen storage alloy that has been conventionally used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金を一体化してなる金属・水素
化物二次電池用の水素吸蔵合金電極であって、前記水素
吸蔵合金が結晶子の長軸の長さaと短軸の長さbとの比
の値a/bが2以下の水素吸蔵合金粉末からなることを
特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode for a metal / hydride secondary battery, which is formed by integrating a hydrogen storage alloy, wherein the hydrogen storage alloy has a major axis length a and a minor axis length of a crystallite. A hydrogen storage alloy electrode comprising a hydrogen storage alloy powder having a ratio value a / b of 2 or less.
【請求項2】前記水素吸蔵合金粉末は、水素吸蔵合金成
分の混合物の溶融液を1×104 °C/秒以上の冷却速
度で急冷したのち粉砕して得たものである請求項1記載
の水素吸蔵合金電極。
2. The hydrogen storage alloy powder is obtained by rapidly cooling a melt of a mixture of hydrogen storage alloy components at a cooling rate of 1 × 10 4 ° C / sec or more and then pulverizing the melt. Hydrogen storage alloy electrode.
JP43A 1992-11-19 1992-11-19 Hydrogen storage alloy electrode Pending JPH06163041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163041A (en) 1992-11-19 1992-11-19 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163041A (en) 1992-11-19 1992-11-19 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH06163041A true JPH06163041A (en) 1994-06-10

Family

ID=18291069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06163041A (en) 1992-11-19 1992-11-19 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH06163041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973216A1 (en) * 1998-07-16 2000-01-19 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy powder and negative electrodes formed thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973216A1 (en) * 1998-07-16 2000-01-19 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy powder and negative electrodes formed thereof

Similar Documents

Publication Publication Date Title
JPH06231763A (en) Hydrogen storage alloy for alkaline storage battery
JP3604156B2 (en) Electrochemical battery
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JP3301792B2 (en) Hydrogen storage alloy electrode
JPH06163041A (en) Hydrogen storage alloy electrode
JP2001240927A (en) Hydrogen storage alloy for negative electrode of battery capable of increasing service capacity and improving low temperature high ratio service capacity by small number of charging and discharging times by high ratio initial activating treatment
JP3432847B2 (en) Hydrogen storage alloy electrode
JP3291356B2 (en) Hydrogen storage alloy electrode
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH07320730A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP3432866B2 (en) Hydrogen storage alloy electrodes for alkaline storage batteries
JPH06111815A (en) Hydrogen storage alloy electrode
JPH05211063A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH06163042A (en) Metal-hydride secondary battery
JPH06310140A (en) Hydrogen storage alloy electrode
JPH0629017A (en) Manufacture of hydrogen storage alloy electrode
JPH06111817A (en) Metal/hydride secondary battery
JPH08287908A (en) Hydrogen storage alloy electrode
JPH0765832A (en) Hydrogen storage alloy electrode for metal-hydride secondary battery
JPH0629040A (en) Nickel-hydrogen battery
JPH0750163A (en) Hydrogen storage alloy electrode and manufacture thereof