JPH06111817A - Metal/hydride secondary battery - Google Patents

Metal/hydride secondary battery

Info

Publication number
JPH06111817A
JPH06111817A JP4285274A JP28527492A JPH06111817A JP H06111817 A JPH06111817 A JP H06111817A JP 4285274 A JP4285274 A JP 4285274A JP 28527492 A JP28527492 A JP 28527492A JP H06111817 A JPH06111817 A JP H06111817A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
paste
electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4285274A
Other languages
Japanese (ja)
Inventor
Mikiaki Tadokoro
幹朗 田所
Mamoru Kimoto
衛 木本
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4285274A priority Critical patent/JPH06111817A/en
Publication of JPH06111817A publication Critical patent/JPH06111817A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a metal/hydride secondary battery excellent in both high initial electric discharging rate characteristic and cycle lifetime characteristic by using for a negative electrode a hydrogen storage alloy obtained by rapid cooling and heating treatment under predetermined conditions. CONSTITUTION:Alloy component metals are mixed together by each predetermined amount, followed by heating and melting in the inactive gas atmosphere, to be rapidly cooled at a cooling speed of 1000 deg.C/sec or higher, thus preparing a hydrogen storage alloy. Subsequently, the resultant hydrogen storage alloy is heated at 400-1000 deg.C for a predetermined time, and then, it is mechanically crushed in the inactive gas atmosphere, thereby obtaining hydrogen storage alloy powder having a given particle diameter. A binding agent and a conducting agent are mixed with the hydrogen storage alloy powder, followed by rolling, to thus obtain alloy paste. A predetermined quantity of the alloy paste is covered with a nickel mesh, followed by pressing, thereby manufacturing a paste electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属・水素化物二次電
池に係わり、特に、サイクル初期の高率放電特性(以
下、「初期高率放電特性」と称する。)及びサイクル寿
命特性を向上させることを目的とした、負極材料たる水
素吸蔵合金の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal / hydride secondary battery, and in particular, has improved high rate discharge characteristics at the beginning of the cycle (hereinafter referred to as "initial high rate discharge characteristics") and cycle life characteristics. The present invention relates to improvement of a hydrogen storage alloy as a negative electrode material for the purpose of

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
正極に水酸化ニッケルなどの金属化合物を使用し、負極
に新素材の水素吸蔵合金を使用した金属・水素化物二次
電池が、単位重量及び単位体積当たりのエネルギー密度
が他の系の電池に比し高く、高容量化が可能であること
から、脚光を浴びつつある。
2. Description of the Related Art In recent years,
Metal / hydride secondary batteries that use a metal compound such as nickel hydroxide for the positive electrode and a new material, a hydrogen storage alloy, for the negative electrode have a higher energy density per unit weight and unit volume than other types of batteries. However, it is in the limelight because it is high and the capacity can be increased.

【0003】従来、この金属・水素化物二次電池の負極
に使用される水素吸蔵合金は、合金成分金属を混合して
融解した後、一般に10〜100°C/秒の冷却速度
(冷却速度は合金種及び製法によって若干異なる。)で
凝固させることにより作製されている。而して、近年、
初期の放電特性を改善する目的で、100°C/秒以上
の冷却速度で急冷凝固させてなる水素吸蔵合金も作製さ
れている。このように急冷凝固させるのは、結晶粒(結
晶子)の向きが融解時の不規則状態に近い、すなわち粒
界が多数存在する合金結晶を得るためであり、これによ
り初期高率放電特性に優れた負極が得られる。
Conventionally, the hydrogen storage alloy used for the negative electrode of this metal-hydride secondary battery is generally 10 to 100 ° C./sec in cooling rate (cooling rate is after the alloy component metals are mixed and melted). It is produced by solidifying with a different alloy type and production method.). In recent years,
For the purpose of improving the initial discharge characteristics, a hydrogen storage alloy produced by rapid solidification at a cooling rate of 100 ° C./second or more is also produced. The reason for rapid solidification is to obtain an alloy crystal in which the orientation of crystal grains (crystallites) is close to an irregular state at the time of melting, that is, there are many grain boundaries. An excellent negative electrode can be obtained.

【0004】この理由は、粒界が多数存在する合金結晶
は、内部応力が大きいため、歪みが生じ易く、このため
クラック(割れ)が発生し易い状態にあり、クラックが
多数発生すると、反応面積が大きくなるとともに、活性
点(反応サイト)の数が増えるからである。
The reason for this is that an alloy crystal having a large number of grain boundaries has a large internal stress and is liable to be distorted. Therefore, cracks are likely to occur. This is because the number of active sites (reaction sites) increases with increasing.

【0005】しかしながら、急冷凝固させて得た水素吸
蔵合金(以下、「急冷合金」と略称する。)をそのまま
負極に使用していた上記した従来の金属・水素化物二次
電池には、サイクル寿命が短いという問題があった。
However, the above-mentioned conventional metal / hydride secondary battery in which the hydrogen storage alloy obtained by rapid solidification (hereinafter abbreviated as "quenched alloy") is used as it is for the negative electrode has a cycle life. There was a problem that was short.

【0006】サイクル寿命が短くなる理由は、粒界が多
数存在する、すなわち合金を構成する結晶粒が微小な急
冷合金は、充放電サイクルを繰り返し行うと、微粉化し
て表面が酸化され易く、このため電極の接触抵抗や反応
抵抗が増大して充放電効率が低下するからである。
The reason why the cycle life is shortened is that a quenching alloy having a large number of grain boundaries, that is, a crystal grain that constitutes the alloy is minute, is easily pulverized and the surface thereof is oxidized when the charge / discharge cycle is repeated. Therefore, the contact resistance and reaction resistance of the electrodes increase, and the charge / discharge efficiency decreases.

【0007】以上の如く、従来の金属・水素化物二次電
池には、初期高率放電特性を改良するために急冷凝固し
て得た水素吸蔵合金電極を使用すると、微粉化してサイ
クル寿命特性が低下してしまい、一方サイクル寿命特性
を改良するために徐冷して得たクラックの少ない水素吸
蔵合金電極を使用すると、初期高率放電特性が低下して
しまうという二律背反的な問題があったのである。
As described above, in the conventional metal / hydride secondary battery, when the hydrogen storage alloy electrode obtained by rapid solidification for improving the initial high rate discharge characteristic is used, it becomes fine powder and the cycle life characteristic is improved. On the other hand, when using a hydrogen storage alloy electrode with few cracks obtained by slow cooling to improve cycle life characteristics, there was a trade-off problem that the initial high rate discharge characteristics deteriorate. is there.

【0008】本発明は、かかる問題を解決するべくなさ
れたものであって、その目的とするところは、初期高率
放電特性及びサイクル寿命特性のいずれにも優れた金属
・水素化物二次電池を提供するにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a metal / hydride secondary battery excellent in both initial high rate discharge characteristics and cycle life characteristics. To provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る金属・水素化物二次電池(以下、「本発
明電池」と称する。)は、水素吸蔵合金成分の混合物を
融解させ、1000°C/秒以上の冷却速度で急冷した
後、400〜1000°Cで加熱処理してなる水素吸蔵
合金が負極に使用されていることを特徴とする。
MEANS FOR SOLVING THE PROBLEMS A metal / hydride secondary battery according to the present invention (hereinafter, referred to as "invention battery") for achieving the above object is obtained by melting a mixture of hydrogen storage alloy components. A hydrogen storage alloy obtained by quenching at a cooling rate of 1000 ° C / sec or more and then heat-treating at 400 to 1000 ° C is used for the negative electrode.

【0010】水素吸蔵合金成分の混合物の溶融液の冷却
速度が1000°C/秒以上に規制されるのは、100
0°C/秒未満の速度で冷却した場合は、クラックの生
成が少な過ぎるために、反応面積が大きく、活性点の数
の多い水素吸蔵合金が得られず、高率放電特性に優れた
電池を得ることができないからである。
The cooling rate of the melt of the mixture of hydrogen storage alloy components is regulated to 1000 ° C./sec or more.
When cooled at a rate of less than 0 ° C / sec, a battery having a large reaction area and a hydrogen storage alloy with a large number of active points cannot be obtained because cracks are too few, and a high rate discharge characteristic is obtained. Because you can't get.

【0011】また、加熱処理温度が400〜1000°
Cの範囲に規制されるのは、400°C未満の温度で加
熱処理すると、固相内拡散が充分に起こらないために結
晶が充分に成長せず、このためサイクル寿命の長い電池
を得ることができず、一方1000°Cを越える温度で
加熱処理すると、水素吸蔵合金が部分的に再融解を起こ
すため偏析相が出現し充電時の水素吸蔵量が減少し、こ
のため容量の大きな電池を得ることができないからであ
る。
The heat treatment temperature is 400 to 1000 °.
The range of C is regulated by heat treatment at a temperature of less than 400 ° C, so that the crystals do not grow sufficiently because the diffusion in the solid phase does not occur sufficiently, so that a battery with a long cycle life can be obtained. On the other hand, if heat treatment is performed at a temperature higher than 1000 ° C, the hydrogen storage alloy partially remelts and a segregation phase appears to reduce the hydrogen storage capacity during charging. Because you cannot get it.

【0012】加熱処理時間は、水素吸蔵合金の種類によ
って異なるが、通常2時間ほど加熱処理すれば充分であ
る。加熱処理時間が2時間未満の場合は、サイクル寿命
が短くなる傾向がある。なお、加熱処理後の水素吸蔵合
金の冷却は徐冷により行う。したがって、本発明におけ
る加熱処理はアニーリングの一種である。
The heat treatment time varies depending on the type of the hydrogen storage alloy, but it is usually sufficient to perform the heat treatment for about 2 hours. If the heat treatment time is less than 2 hours, the cycle life tends to be shortened. Note that cooling of the hydrogen storage alloy after the heat treatment is performed by slow cooling. Therefore, the heat treatment in the present invention is a kind of annealing.

【0013】本発明における水素吸蔵合金としては、た
とえばLaNi5 、TiNi2 などの他、LaをMm
(ミッシュメタル:希土類金属の混合物)などで一部置
換したもの、NiをCo、Mn、Alなどで一部置換し
たものなどが挙げられるが、特にこれらに限定されな
い。
As the hydrogen storage alloy in the present invention, for example, LaNi 5 , TiNi 2 and the like, La is Mm.
(Misch metal: mixture of rare earth metals) and the like, those partially substituted with Ni, Co, Mn, Al, etc. may be mentioned, but not limited thereto.

【0014】上述したように、本発明は、初期高率放電
特性及びサイクル寿命特性の双方に優れた金属・水素化
物二次電池を得るべく、所定の冷却速度で急冷した後、
所定の温度で加熱処理(アニーリング)して得た水素吸
蔵合金を負極材料として使用した点に最大の特徴を有す
る。それゆえ、本発明電池における正極、セパレータ、
電解液など、電池を構成する他の部材については、従
来、金属・水素化物二次電池用として実用され、或いは
提案されている種々の材料を制限なく使用することが可
能である。
As described above, according to the present invention, in order to obtain a metal / hydride secondary battery excellent in both initial high rate discharge characteristics and cycle life characteristics, after rapid cooling at a predetermined cooling rate,
The greatest feature is that a hydrogen storage alloy obtained by heat treatment (annealing) at a predetermined temperature is used as a negative electrode material. Therefore, the positive electrode in the battery of the present invention, the separator,
For other members constituting the battery such as the electrolytic solution, various materials that have been practically used or proposed for the metal / hydride secondary battery can be used without limitation.

【0015】たとえば、本発明をニッケル・水素化物二
次電池に適用する場合は、ニッケル・カドミウム二次電
池において使用されている正極、セパレータ、電解液と
それぞれ同じ材料を使用することができる。
For example, when the present invention is applied to a nickel / hydride secondary battery, the same materials as the positive electrode, the separator and the electrolytic solution used in the nickel / cadmium secondary battery can be used.

【0016】すなわち、正極としては焼結式ニッケル極
を、セパレータとしてはポリプロピレン不織布を、また
アルカリ電解液としては30重量%水酸化カリウム水溶
液を、それぞれ好適に使用することができるが、特に制
限されない。
That is, a sintered nickel electrode can be suitably used as the positive electrode, a polypropylene non-woven fabric as the separator, and a 30 wt% potassium hydroxide aqueous solution can be suitably used as the alkaline electrolyte, but there is no particular limitation. .

【0017】[0017]

【作用】本発明電池の負極に使用される水素吸蔵合金
は、所定の冷却速度で急冷されて得られたものであるの
で、クラックが多数存在しており、そのため反応面積が
大きく、活性点の数も多い。
Since the hydrogen storage alloy used for the negative electrode of the battery of the present invention is obtained by being rapidly cooled at a predetermined cooling rate, it has a large number of cracks, which results in a large reaction area and a large number of active sites. There are also many.

【0018】また、本発明電池における水素吸蔵合金
は、上記急冷後に、さらに所定の温度で加熱処理されて
得られたものであるので、大きな結晶粒の粒界のみが存
在し、小さな結晶粒の粒界は殆ど存在しない。このた
め、サイクル数を重ねても水素吸蔵合金の微粉化が進行
しにくく、接触抵抗や反応抵抗が上昇しにくい。
Further, since the hydrogen storage alloy in the battery of the present invention is obtained by being further heat-treated at a predetermined temperature after the above-mentioned rapid cooling, only grain boundaries of large crystal grains exist and small crystal grains are present. There are almost no grain boundaries. Therefore, even if the number of cycles is increased, it is difficult for the hydrogen-absorbing alloy to be pulverized, and contact resistance and reaction resistance are less likely to increase.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0020】(製造例1)Mm、Ni、Co、Al及び
Mnの各合金成分金属(市販の純度99.9%以上の金
属単体)を所定量秤量して混合し、不活性ガス(アルゴ
ン)雰囲気のアーク炉内の銅製ルツボに入れ、加熱して
融解させた後、ロール法にて1×105 °C/秒の冷却
速度で急冷して組成式MmNi3.2 CoAl0.4 Mn
0.4 で表される水素吸蔵合金を作製した。
(Production Example 1) A predetermined amount of each alloy component metal of Mm, Ni, Co, Al, and Mn (commercial pure metal having a purity of 99.9% or more) was weighed and mixed, and an inert gas (argon) was used. The composition formula MmNi 3.2 CoAl 0.4 Mn was put into a copper crucible in an arc furnace in an atmosphere, heated and melted, and then rapidly cooled at a cooling rate of 1 × 10 5 ° C / sec by a roll method.
A hydrogen storage alloy represented by 0.4 was produced.

【0021】次いで、上記水素吸蔵合金を、さらに10
00°Cで8時間加熱処理(アニール)した後、不活性
ガス(アルゴン)中で機械的に粉砕して、平均粒径15
0μmの水素吸蔵合金粉末を得た。
Next, the hydrogen storage alloy is further added with 10
After heat treatment (annealing) at 00 ° C for 8 hours, mechanically pulverize in an inert gas (argon) to obtain an average particle size of 15
0 μm of hydrogen storage alloy powder was obtained.

【0022】この水素吸蔵合金粉末1gに、結着剤とし
てのポリテトラフルオロエチレン(PTFE)0.2g
及び導電剤としてのカルボニルニッケル1.2gを混合
し、圧延して合金ペーストを得た。
To 1 g of this hydrogen storage alloy powder, 0.2 g of polytetrafluoroethylene (PTFE) as a binder
And 1.2 g of carbonyl nickel as a conductive agent were mixed and rolled to obtain an alloy paste.

【0023】この合金ペーストの所定量をニッケルメッ
シュで包み、プレス加工して、直径20mmの円板状の
ペースト電極PE1を作製した。
A predetermined amount of this alloy paste was wrapped in nickel mesh and pressed to produce a disk-shaped paste electrode PE1 having a diameter of 20 mm.

【0024】(製造例2)冷却速度を1×105 °C/
秒に代えて1×104 °C/秒としたこと以外は製造例
1と同様にして、ペースト電極PE2を作製した。
(Production Example 2) The cooling rate was 1 × 10 5 ° C /
A paste electrode PE2 was produced in the same manner as in Production Example 1 except that the time was changed to 1 × 10 4 ° C / sec.

【0025】(製造例3)冷却速度を1×105 °C/
秒に代えて1×103 °C/秒としたこと以外は製造例
1と同様にして、ペースト電極PE3を作製した。
(Production Example 3) Cooling rate was 1 × 10 5 ° C /
A paste electrode PE3 was produced in the same manner as in Production Example 1 except that the time was changed to 1 × 10 3 ° C / sec.

【0026】(製造例4)冷却速度を1×105 °C/
秒に代えて1×102 °C/秒としたこと以外は製造例
1と同様にして、ペースト電極PE4を作製した。
(Production Example 4) The cooling rate was 1 × 10 5 ° C /
A paste electrode PE4 was produced in the same manner as in Production Example 1 except that the time was changed to 1 × 10 2 ° C / sec.

【0027】(製造例5)冷却速度を1×105 °C/
秒に代えて10°C/秒としたこと以外は製造例1と同
様にして、ペースト電極PE5を作製した。
(Production Example 5) The cooling rate was 1 × 10 5 ° C /
A paste electrode PE5 was produced in the same manner as in Production Example 1 except that the temperature was changed to 10 ° C / sec instead of sec.

【0028】(製造例6)冷却速度を1×105 °C/
秒に代えて1°C/秒としたこと以外は製造例1と同様
にして、ペースト電極PE6を作製した。
(Production Example 6) The cooling rate was 1 × 10 5 ° C /
A paste electrode PE6 was produced in the same manner as in Production Example 1 except that 1 ° C / sec was used instead of sec.

【0029】(初期高率放電特性)製造例1〜6で作製
したペースト電極PE1〜PE6の初期高率放電特性
を、試験セルを組み立てて調べた。
(Initial High Rate Discharge Characteristics) The initial high rate discharge characteristics of the paste electrodes PE1 to PE6 produced in Production Examples 1 to 6 were examined by assembling test cells.

【0030】図1は、組み立てた試験セルの模式的斜視
図であり、図示の試験セル1は、円板状のペースト電極
(試験合金電極)2、円筒状の焼結式ニッケル極3、絶
縁性の密閉容器4などからなる。
FIG. 1 is a schematic perspective view of the assembled test cell. The illustrated test cell 1 includes a disk-shaped paste electrode (test alloy electrode) 2, a cylindrical sintered nickel electrode 3, and an insulation. It is composed of a hermetically sealed container 4 and the like.

【0031】焼結式ニッケル極3は、密閉容器4の上面
6に接続された正極リード5により保持されており、ま
たペースト電極2は焼結式ニッケル極3の円筒内略中央
に垂直に位置するように、密閉容器4の上面6に接続さ
れた負極リード7により保持されている。
The sintered nickel electrode 3 is held by a positive electrode lead 5 connected to the upper surface 6 of the hermetically sealed container 4, and the paste electrode 2 is positioned perpendicular to the substantially center of the sintered nickel electrode 3 in the cylinder. Thus, it is held by the negative electrode lead 7 connected to the upper surface 6 of the closed container 4.

【0032】正極リード5及び負極リード7の各端部
は、密閉容器4の上面6を貫通して外部に露出し、それ
ぞれ正極端子5a及び負極端子7aに接続されている。
Each end of the positive electrode lead 5 and the negative electrode lead 7 penetrates the upper surface 6 of the closed container 4 and is exposed to the outside, and is connected to the positive electrode terminal 5a and the negative electrode terminal 7a, respectively.

【0033】ペースト電極2及び焼結式ニッケル極3は
密閉容器4に入れられたアルカリ電解液(30重量%水
酸化カリウム水溶液;図示せず)中に浸漬されており、
アルカリ電解液の上方空間部にはチッ素ガスが充填され
てペースト電極2に所定の圧力がかかるようにされてい
る。
The paste electrode 2 and the sintered nickel electrode 3 are immersed in an alkaline electrolyte (30% by weight potassium hydroxide aqueous solution; not shown) contained in a closed container 4,
The upper space of the alkaline electrolyte is filled with nitrogen gas so that a predetermined pressure is applied to the paste electrode 2.

【0034】また、密閉容器4の上面6の中央部には、
密閉容器4の内圧が所定圧以上に上昇するのを防止する
ために、ブルドン管(圧力計)8及びリリーフバルブ
(逃し弁)9を備えるリリーフ管10が装着されてい
る。
Further, in the central portion of the upper surface 6 of the closed container 4,
In order to prevent the internal pressure of the closed container 4 from rising above a predetermined pressure, a relief tube 10 including a Bourdon tube (pressure gauge) 8 and a relief valve (relief valve) 9 is attached.

【0035】上記試験セルによるペースト電極PE1〜
PE6の初期高率放電特性の試験結果を図2に示すグラ
フに、左縦軸に容量比率P(%)を、また横軸に冷却速
度(°C/秒)をとって、○符号でプロットして示す。
容量比率P(%)は下式(1)により算出される値であ
り、高率放電特性の良否を評価する尺度となる値であ
る。
Paste electrodes PE1 to PE1 according to the above test cell
The test results of the initial high rate discharge characteristics of PE6 are plotted on the graph shown in FIG. 2 with the capacity ratio P (%) on the left ordinate and the cooling rate (° C / sec) on the abscissa and plotted with a circle symbol. And show it.
The capacity ratio P (%) is a value calculated by the following equation (1), and is a value serving as a scale for evaluating the quality of the high rate discharge characteristic.

【0036】 P=(C1/C2)×100 (1) ここに、C1は電流密度50mA/gで8時間充電した
後、電流密度200mA/gで1.0V(放電終止電
圧)まで放電したときのサイクル初期の高率放電容量で
あり、またC2は電流密度50mA/gで8時間充電し
た後、電流密度50mA/gで1.0V(放電終止電
圧)まで放電したときのサイクル初期の放電容量であ
る。
P = (C1 / C2) × 100 (1) where C1 is charged at a current density of 50 mA / g for 8 hours and then discharged at a current density of 200 mA / g to 1.0 V (discharge end voltage). Is a high rate discharge capacity at the beginning of the cycle, and C2 is a discharge capacity at the beginning of the cycle when the battery is charged at a current density of 50 mA / g for 8 hours and then discharged to 1.0 V (discharge end voltage) at a current density of 50 mA / g. Is.

【0037】(サイクル寿命特性)製造例1〜6で作製
した各ペースト電極のサイクル寿命特性を、先の図1に
示す試験セルを使用して調べた。結果を先の図2に示す
グラフに、左縦軸に容量維持率M(%)を、また横軸に
冷却速度(°C/秒)をとって、△符号でプロットして
示す。容量維持率M(%)は下式(2)により算出され
る値であり、サイクル寿命特性を評価する尺度となる値
である。
(Cycle Life Characteristics) The cycle life characteristics of each paste electrode produced in Production Examples 1 to 6 were examined using the test cell shown in FIG. The results are shown in the graph shown in FIG. 2 above, where the capacity retention rate M (%) is plotted on the left ordinate and the cooling rate (° C / sec) is plotted on the abscissa, and is plotted by the Δ symbol. The capacity retention rate M (%) is a value calculated by the following equation (2), and is a value that serves as a scale for evaluating cycle life characteristics.

【0038】 M=(C3/C2)×100 (2) ここに、C2は前出のC2と同義であり、またC3は電
流密度50mA/gで8時間充電した後、電流密度50
mA/gで1.0V(放電終止電圧)まで放電する工程
を1サイクルとするサイクル試験における500サイク
ル目の放電容量である。
M = (C3 / C2) × 100 (2) Here, C2 has the same meaning as C2 described above, and C3 has a current density of 50 mA after being charged at a current density of 50 mA / g for 8 hours.
It is the discharge capacity at the 500th cycle in the cycle test in which the step of discharging to 1.0 V (discharge end voltage) at mA / g is one cycle.

【0039】図2より、冷却速度が1000°C以上で
あるペースト電極PE1〜PE3を負極に使用した試験
セルは、冷却速度が100°C以下であるペースト電極
PE4〜PE6を負極に使用した試験セルに比し、容量
比率Pが大きく高率放電特性に優れていることが分か
る。また、冷却速度は容量維持率Mに殆ど影響を及ぼさ
ないことも分かる。
From FIG. 2, the test cell using the paste electrodes PE1 to PE3 having a cooling rate of 1000 ° C. or higher as the negative electrode was tested using the paste electrodes PE4 to PE6 having a cooling rate of 100 ° C. or lower as the negative electrode. It can be seen that the capacity ratio P is large and the high rate discharge characteristics are excellent as compared with the cell. It can also be seen that the cooling rate has almost no effect on the capacity retention rate M.

【0040】(製造例7)冷却速度を1×105 °C/
秒に代えて1×104 °C/秒としたこと以外は製造例
1と同様にして、ペースト電極PE7を作製した。
(Production Example 7) The cooling rate was 1 × 10 5 ° C /
A paste electrode PE7 was produced in the same manner as in Production Example 1 except that the time was changed to 1 × 10 4 ° C / sec.

【0041】(製造例8)加熱処理温度を1000°C
に代えて800°Cとしたこと以外は製造例7と同様に
して、ペースト電極PE8を作製した。
(Production Example 8) The heat treatment temperature is 1000 ° C.
A paste electrode PE8 was produced in the same manner as in Production Example 7 except that the temperature was changed to 800 ° C.

【0042】(製造例9)加熱処理温度を1000°C
に代えて600°Cとしたこと以外は製造例7と同様に
して、ペースト電極PE9を作製した。
(Production Example 9) The heat treatment temperature is 1000 ° C.
A paste electrode PE9 was produced in the same manner as in Production Example 7 except that the temperature was changed to 600 ° C.

【0043】(製造例10)加熱処理温度を1000°
Cに代えて400°Cとしたこと以外は製造例7と同様
にして、ペースト電極PE10を作製した。
(Production Example 10) The heat treatment temperature was 1000 °.
A paste electrode PE10 was produced in the same manner as in Production Example 7 except that 400 ° C. was used instead of C.

【0044】(製造例11)加熱処理温度を1000°
Cに代えて200°Cとしたこと以外は製造例7と同様
にして、ペースト電極PE11を作製した。
(Production Example 11) The heat treatment temperature was 1000 °.
A paste electrode PE11 was produced in the same manner as in Production Example 7 except that C was changed to 200 ° C.

【0045】(初期高率放電特性及びサイクル寿命特
性)製造例7〜11で作製したペースト電極PE7〜P
E11の初期高率放電特性及びサイクル寿命特性を、先
の試験セルを使用して同じ方法により調べた。結果を図
3に示す。
(Initial high rate discharge characteristics and cycle life characteristics) Paste electrodes PE7 to PE manufactured in Production Examples 7 to 11
The initial high rate discharge characteristics and cycle life characteristics of E11 were investigated by the same method using the above test cell. The results are shown in Fig. 3.

【0046】図3は、左縦軸に容量比率P(%)を、右
縦軸に容量維持率M(%)を、また横軸に加熱処理温度
(°C)をとって、加熱処理温度と容量比率Pとの関係
を○符号でプロットし、また加熱処理温度と容量維持率
Mとの関係を△符号でプロットして示したグラフであ
る。
In FIG. 3, the left vertical axis represents the capacity ratio P (%), the right vertical axis represents the capacity maintenance ratio M (%), and the horizontal axis represents the heat treatment temperature (° C). 2 is a graph in which the relationship between the heat treatment temperature and the capacity retention rate M is plotted by the Δ symbol.

【0047】図3より、加熱処理温度が400〜100
0°Cであるペースト電極PE7〜PE10を負極に使
用した試験セルは、加熱処理温度が200°Cであるペ
ースト電極PE11を負極に使用した試験セルに比し、
容量維持率Mが大きくサイクル寿命特性に優れているこ
とが分かる。また、加熱処理温度は容量比率Pに殆ど影
響を及ぼさないことも分かる。
From FIG. 3, the heat treatment temperature is 400 to 100.
The test cell using the paste electrodes PE7 to PE10 at 0 ° C for the negative electrode has a heat treatment temperature of 200 ° C as compared to the test cell using the paste electrode PE11 for the negative electrode.
It can be seen that the capacity retention rate M is large and the cycle life characteristics are excellent. It can also be seen that the heat treatment temperature has almost no effect on the capacity ratio P.

【0048】(製造例12)急冷後に加熱処理をしなか
ったこと以外は製造例1と同様にして、ペースト電極P
E12を作製した。
(Manufacturing Example 12) The paste electrode P was manufactured in the same manner as in Manufacturing Example 1 except that the heat treatment was not performed after the rapid cooling.
E12 was produced.

【0049】(製造例13)急冷後に加熱処理をしなか
ったこと以外は製造例2と同様にして、ペースト電極P
E13を作製した。
(Manufacturing Example 13) A paste electrode P was manufactured in the same manner as in Manufacturing Example 2 except that no heat treatment was performed after the rapid cooling.
E13 was produced.

【0050】(製造例14)急冷後に加熱処理をしなか
ったこと以外は製造例3と同様にして、ペースト電極P
E14を作製した。
(Manufacturing Example 14) The paste electrode P was manufactured in the same manner as in Manufacturing Example 3 except that the heat treatment was not performed after the rapid cooling.
E14 was produced.

【0051】(製造例15)急冷後に加熱処理をしなか
ったこと以外は製造例4と同様にして、ペースト電極P
E15を作製した。
(Manufacturing Example 15) The paste electrode P was manufactured in the same manner as in Manufacturing Example 4 except that no heat treatment was performed after the rapid cooling.
E15 was produced.

【0052】(製造例16)急冷後に加熱処理をしなか
ったこと以外は製造例5と同様にして、ペースト電極P
E16を作製した。
(Manufacturing Example 16) The paste electrode P was manufactured in the same manner as in Manufacturing Example 5 except that the heat treatment was not performed after the rapid cooling.
E16 was produced.

【0053】(製造例17)急冷後に加熱処理をしなか
ったこと以外は製造例6と同様にして、ペースト電極P
E17を作製した。
(Manufacturing Example 17) A paste electrode P was manufactured in the same manner as in Manufacturing Example 6 except that no heat treatment was performed after the rapid cooling.
E17 was produced.

【0054】(初期高率放電特性及びサイクル寿命特
性)製造例12〜17で作製したペースト電極PE12
〜PE17の初期高率放電特性及びサイクル寿命特性
を、先の試験セルを使用して同じ方法により調べた。結
果を図2と同じ座標系のグラフを示す図4に示す。
(Initial high rate discharge characteristics and cycle life characteristics) Paste electrode PE12 produced in Production Examples 12 to 17
~ PE17 initial high rate discharge characteristics and cycle life characteristics were investigated by the same method using the above test cell. The results are shown in FIG. 4, which shows a graph in the same coordinate system as in FIG.

【0055】図4より、急冷後に加熱処理しなかった水
素吸蔵合金を使用したペースト電極PE12〜PE1
4、PE16及びPE17を負極に使用した試験セル
は、容量比率P又は容量維持率Mのいずれかが極端に小
さく、高率放電特性又はサイクル寿命特性のいずれかに
劣っていることが分かる。
From FIG. 4, paste electrodes PE12 to PE1 using a hydrogen storage alloy that has not been heat-treated after being rapidly cooled.
It can be seen that the test cells using 4, PE16 and PE17 as the negative electrode have extremely small capacity ratio P or capacity maintenance ratio M and are inferior to either high rate discharge characteristics or cycle life characteristics.

【0056】また、ペースト電極PE15を負極に使用
した試験セルは、高率放電特性及びサイクル寿命特性が
同程度であるが、冷却速度及び加熱処理温度をともに本
発明の規制範囲内に設定して作製したペースト電極PE
1、PE2、PE3、PE7、PE8、PE9、PE1
0を負極に使用した試験セルに比し、高率放電特性及び
サイクル寿命特性が総じて劣っていることが分かる。
The test cell using the paste electrode PE15 as the negative electrode has the same high rate discharge characteristics and cycle life characteristics, but the cooling rate and the heat treatment temperature are both set within the regulation range of the present invention. Produced paste electrode PE
1, PE2, PE3, PE7, PE8, PE9, PE1
It can be seen that the high-rate discharge characteristics and the cycle life characteristics are generally inferior to the test cell in which 0 was used as the negative electrode.

【0057】[0057]

【発明の効果】本発明電池においては、所定の条件で急
冷及び加熱処理して得た水素吸蔵合金が負極に使用され
ているので、初期高率放電特性及びサイクル寿命特性の
いずれにも優れるなど、本発明は優れた特有の効果を奏
する。
In the battery of the present invention, the hydrogen storage alloy obtained by quenching and heat treatment under predetermined conditions is used for the negative electrode, so that it has excellent initial high rate discharge characteristics and cycle life characteristics. The present invention has excellent unique effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で組み立てた試験セルの模式的斜視図で
ある。
FIG. 1 is a schematic perspective view of a test cell assembled in an example.

【図2】製造例1〜6で組み立てた試験セルについての
冷却速度と容量比率との関係及び冷却速度と容量維持率
との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the cooling rate and the capacity ratio and the relationship between the cooling rate and the capacity retention rate for the test cells assembled in Production Examples 1 to 6.

【図3】製造例7〜11で組み立てた試験セルについて
の加熱処理温度と容量比率との関係及び加熱処理温度と
容量維持率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the heat treatment temperature and the capacity ratio and the relationship between the heat treatment temperature and the capacity retention rate for the test cells assembled in Production Examples 7 to 11.

【図4】製造例12〜17で組み立てた試験セルについ
ての冷却速度と容量比率との関係及び冷却速度と容量維
持率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the cooling rate and the capacity ratio and the relationship between the cooling rate and the capacity retention rate for the test cells assembled in Production Examples 12 to 17.

【符号の説明】[Explanation of symbols]

1 試験セル(金属・水素化物二次電池) 2 ペースト電極(水素吸蔵合金電極;水素化物負極) 3 焼結式ニッケル極(金属正極) 1 Test cell (metal / hydride secondary battery) 2 Paste electrode (hydrogen storage alloy electrode; hydride negative electrode) 3 Sintered nickel electrode (metal positive electrode)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金成分の混合物を融解させ、1
000°C/秒以上の冷却速度で急冷した後、400〜
1000°Cで加熱処理してなる水素吸蔵合金が負極に
使用されていることを特徴とする金属・水素化物二次電
池。
1. A method of melting a mixture of hydrogen storage alloy components,
After quenching at a cooling rate of 000 ° C / sec or more, 400 ~
A metal / hydride secondary battery in which a hydrogen storage alloy obtained by heat treatment at 1000 ° C. is used for a negative electrode.
JP4285274A 1992-09-30 1992-09-30 Metal/hydride secondary battery Pending JPH06111817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4285274A JPH06111817A (en) 1992-09-30 1992-09-30 Metal/hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4285274A JPH06111817A (en) 1992-09-30 1992-09-30 Metal/hydride secondary battery

Publications (1)

Publication Number Publication Date
JPH06111817A true JPH06111817A (en) 1994-04-22

Family

ID=17689390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4285274A Pending JPH06111817A (en) 1992-09-30 1992-09-30 Metal/hydride secondary battery

Country Status (1)

Country Link
JP (1) JPH06111817A (en)

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
EP0609609B1 (en) Method for manufacturing a hydrogen-absorbing alloy for a negative electrode
US6444362B2 (en) Hydrogen absorbing alloy powder and process for producing same
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
EP0739990A1 (en) Hydrogen storage alloy and electrode therefrom
JPH06111817A (en) Metal/hydride secondary battery
JP3301792B2 (en) Hydrogen storage alloy electrode
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JPH1125964A (en) Alkaline storage battery
JPH05156382A (en) Manufacture of hydrogen storage alloy for alkali storage battery
EP0550153B1 (en) Hydrogen-absorbing alloy electrode and its manufacturing method
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH06111815A (en) Hydrogen storage alloy electrode
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3291356B2 (en) Hydrogen storage alloy electrode
JPH0949034A (en) Production of hydrogen storage alloy
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JPH0265060A (en) Hydrogen storage electrode
JPH07320730A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JP3306154B2 (en) Hydrogen storage alloy and method for producing the same
JPH0949039A (en) Production of hydrogen storage alloy particles