JPH08101079A - Temperature measuring method for traveling object - Google Patents
Temperature measuring method for traveling objectInfo
- Publication number
- JPH08101079A JPH08101079A JP23648694A JP23648694A JPH08101079A JP H08101079 A JPH08101079 A JP H08101079A JP 23648694 A JP23648694 A JP 23648694A JP 23648694 A JP23648694 A JP 23648694A JP H08101079 A JPH08101079 A JP H08101079A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- measurement
- exp
- measuring
- measuring element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Radiation Pyrometers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、走行中の金属帯等の
走行物体の温度計測方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the temperature of a running object such as a metal belt while running.
【0002】[0002]
【従来の技術】走行中の物体の温度を計測する方法とし
ては、次のような方法がある。2. Description of the Related Art There are the following methods for measuring the temperature of a moving object.
【0003】(1)放射温度計測方式(従来技術) 走行中の物体が放射する放射熱(主に赤外線領域の電磁
波)を測定し、放射率の補正等のデータ処理を行い物体
の温度を計測する。この方法は、物体の温度を非接触で
計測できるのが特徴である。(1) Radiation temperature measurement method (prior art) Radiant heat (mainly electromagnetic waves in the infrared region) radiated by a moving object is measured, and data processing such as emissivity correction is performed to measure the temperature of the object. To do. This method is characterized in that the temperature of an object can be measured without contact.
【0004】(2)接触温度計測方式(従来技術) 走行中の物体に、測温抵抗体あるいは熱電対等を接触さ
せて、物体の温度を直接計測する。この方式は、測定対
象によっては比較的簡便で高精度な温度計測ができる。(2) Contact temperature measuring method (prior art) A temperature measuring resistor or a thermocouple is brought into contact with a moving object to directly measure the temperature of the object. This method is relatively simple and enables highly accurate temperature measurement depending on the measurement target.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来技
術については、次の問題点がある。まず、物体の表面
の状態により放射率が変化し、温度の補正が困難となる
という問題点がある。However, the prior art has the following problems. First, there is a problem that the emissivity changes depending on the state of the surface of the object, which makes it difficult to correct the temperature.
【0006】次に、背景光による外乱、即ち物体の背景
部分から温度計に入射してくる光による温度計測の誤差
が無視できない。また、物体表面での反射光による外乱
も測定誤差の原因となる。これらの対策として、物体の
周囲を十分に遮光する必要があるが、設備面から困難な
場合がある。Next, the disturbance due to the background light, that is, the error in the temperature measurement due to the light incident on the thermometer from the background portion of the object cannot be ignored. Further, the disturbance due to the reflected light on the object surface also causes a measurement error. As a countermeasure against these, it is necessary to sufficiently shield the surroundings of the object, but this may be difficult in terms of equipment.
【0007】また、比較的低温の物体については放射熱
自体が弱いため、検出感度が悪いという問題点がある。Further, there is a problem that the detection sensitivity is poor for an object having a relatively low temperature because the radiation heat itself is weak.
【0008】従来技術については、物体の走行を一旦
停止させて温度センサを接触させるのが最も簡単な方法
であるが、操業の安定性を損なったり能率低下につなが
る。また、停止させることにより、走行状態とは異なっ
た温度を計測するおそれがある。In the prior art, the simplest method is to temporarily stop the traveling of the object and bring it into contact with the temperature sensor, but this may impair the stability of the operation or reduce the efficiency. Further, by stopping, there is a possibility that a temperature different from the running state may be measured.
【0009】これを防ぐには、温度センサを物体に追随
させる機構を用いて、一定時間接触状態で測定すること
が考えられる。しかし、温度センサの応答速度は、測定
対象の温度にほぼ近い温度を示すまで一般に数秒程度か
かる。物品の移動速度が数m/s の通常の生産ラインで
は、温度センサをかなり長い距離にわたって追随させる
必要があり、このままでは実用的でない。In order to prevent this, it is possible to use a mechanism in which the temperature sensor follows an object and measure the temperature in a contact state for a certain period of time. However, the response speed of the temperature sensor generally takes about several seconds until it shows a temperature almost close to the temperature of the measurement target. In a normal production line where the moving speed of goods is a few m / s, the temperature sensor needs to follow a considerably long distance, which is not practical as it is.
【0010】また、物体の形状が帯、条のような連続物
体の場合は、その走行中にセンサを接触させて連続的に
温度を計測することができる。しかしこの場合、物体表
面との摩擦により、すり疵等の表面欠陥を生じる危険性
がある。センサについても磨耗が避けられず、また、鋼
板の形状不良等によりセンサが破損に至ることもある。Further, when the shape of the object is a continuous object such as a band or a strip, the temperature can be continuously measured by bringing the sensor into contact with the object while traveling. However, in this case, there is a risk of causing surface defects such as scratches due to friction with the surface of the object. Wear is unavoidable for the sensor as well, and the sensor may be damaged due to a defective shape of the steel plate.
【0011】この発明は、これらの問題点を解決し、操
業に外乱を与えることなく、走行中の物体の温度を比較
的低温でも精度良く計測できる方法を提供する。The present invention solves these problems and provides a method capable of accurately measuring the temperature of a running object without disturbing operation even at a relatively low temperature.
【0012】[0012]
【課題を解決するための手段】請求項1の発明は、温度
計測素子とそれより熱容量の大きな裏打ち材とを有する
温度検出ヘッドを、走行中の測定対象に追随させて接触
させ、温度計測素子の温度θ1(t)およびその初期値T0、
ならびに予め求めておいた係数K およびαにより表され
る次の式を用いて、測定対象の温度T を推定計算するこ
とを特徴とする走行物体の温度計測方法である。According to a first aspect of the present invention, a temperature measuring head having a temperature measuring element and a backing material having a larger heat capacity than the temperature measuring head is brought into contact with a running measurement object to make contact with the temperature measuring element. Temperature θ 1 (t) and its initial value T 0 ,
In addition, a temperature measuring method for a moving object is characterized in that the temperature T of a measurement target is estimated and calculated using the following equations represented by the coefficients K and α which are obtained in advance.
【0013】T=T0+(1/K)[ θ1(t)-T0]/[1-exp(αt)] 請求項2の発明は、測定対象の温度の推定計算について
は、温度計測素子の温度の初期値T0および等時間間隔で
順次サンプリングした値T1、T2、T3、ならびに予め求め
ておいた係数K により表される次の式を用いて、測定対
象の温度T を推定計算することを特徴とする請求項1記
載の走行物体の温度計測方法である。 T=T0+(1/K)[(T2 2-T1T3)/(2T2-T1-T3)-T0]T = T 0 + (1 / K) [θ 1 (t) -T 0 ] / [1-exp (αt)] In the invention of claim 2, the temperature of the object to be measured is estimated as follows. Using the initial value T 0 of the temperature of the measuring element, the values T 1 , T 2 , and T 3 sampled sequentially at equal time intervals, and the following equation represented by the coefficient K obtained in advance, The method for measuring the temperature of a moving object according to claim 1, wherein T is estimated and calculated. T = T 0 + (1 / K) [(T 2 2 -T 1 T 3 ) / (2T 2 -T 1 -T 3 ) -T 0 ]
【0014】[0014]
【作用】図1は、温度検出ヘッドの模式図(a)と熱伝
達のメカニズムを示すブロック図(b)である。図1a
において、1は、温度計測素子、2は裏打ち材、3は測
定対象をそれぞれ示す。また図1bにおいて、T は測定
対象3の温度、t は時間、θ1 、c1、h1は温度計測素子
1の温度、熱容量、測定対象との熱伝達率、θ2、c2、h
2は裏打ち材2の温度、熱容量、測定対象との熱伝達
率、h は温度計測素子1と裏打ち材2の間の熱伝達率を
それぞれ示す。FIG. 1 is a schematic diagram (a) of a temperature detecting head and a block diagram (b) showing the mechanism of heat transfer. Figure 1a
In the above, 1 is a temperature measuring element, 2 is a backing material, and 3 is an object to be measured. In FIG. 1b, T is the temperature of the object 3 to be measured, t is time, θ 1 , c 1 and h 1 are the temperature and heat capacity of the temperature measuring element 1, the heat transfer coefficient with the object to be measured, θ 2 , c 2 and h.
2 indicates the temperature and heat capacity of the backing material 2, the heat transfer coefficient with the object to be measured, and h indicates the heat transfer coefficient between the temperature measuring element 1 and the backing material 2, respectively.
【0015】これらの温度の挙動は、次の微分方程式で
記述される。 c1・d θ1/dt= -h1(θ1-T) -h(θ1-θ2) (1) c2・d θ2/dt= -h2(θ2-T) -h(θ2-θ1) (2) これをラプラス変換を用いて解く。上記の式は次のよう
に表される(演算子:s )。The behavior of these temperatures is described by the following differential equation. c 1・ d θ 1 / dt = -h 1 (θ 1 -T) -h (θ 1 -θ 2 ) (1) c 2・ d θ 2 / dt = -h 2 (θ 2 -T) -h (θ 2 -θ 1 ) (2) Solve this using the Laplace transform. The above formula is expressed as follows (operator: s).
【0016】(c1s+h1+h)( θ1-T)=h( θ2-T) (3) (c2s+h2+h)( θ2-T)=h( θ1-T) (4) これらの式から( θ2-T)を消去すると、 [(c2s+h2+h)(c1s+h1+h)-h2](θ1-T)=0 (5) となる。初期条件を、 θ1(0)=T0 、 θ2(0)=T0 とすると、式(5) の解として、 θ1(t)-T=(T0-T)[K exp(αt)+(1-K)exp(βt)] (6) が得られる。但し、K は係数、α、βは次に示す特性方
程式(変数 s)の根である。なお、測定開始時において
t=0 とする。(C 1 s + h 1 + h) (θ 1 -T) = h (θ 2 -T) (3) (c 2 s + h 2 + h) (θ 2 -T) = h (θ 1 -T) (4) Eliminating (θ 2 -T) from these equations, [(c 2 s + h 2 + h) (c 1 s + h 1 + h) -h 2 ] (θ 1- T) = 0 (5). If the initial conditions are θ 1 (0) = T 0 and θ 2 (0) = T 0 , the solution of Equation (5) is θ 1 (t) -T = (T 0 -T) [K exp ( αt) + (1-K) exp (βt)] (6) is obtained. However, K is a coefficient and α and β are the roots of the characteristic equation (variable s) shown below. At the start of measurement
Let t = 0.
【0017】(c2s+h2+h)(c1s+h1+h)-h2=0 (7) ここで、α、βの大きさを見積もる。温度計測素子と裏
打ち材との熱伝達係数h は、測定対象と温度計測素子又
は裏打ち材との熱伝達係数h1、h2と比べて小さいので無
視すると、式 (7)の h2 の項が無視できるので、α、β
は-(h1+h)/c1、-(h2+h)/c2となる。ここでは、 α=-(h1+h)/c1 、 β=-(h2+h)/c2 とする。(C 2 s + h 2 + h) (c 1 s + h 1 + h) -h 2 = 0 (7) Here, the sizes of α and β are estimated. The heat transfer coefficient h between the temperature measuring element and the backing material is smaller than the heat transfer coefficients h 1 and h 2 between the measurement target and the temperature measuring element or the backing material, so if neglected, the term h 2 in Eq. (7) can be ignored. Can be ignored, so α, β
Becomes-(h 1 + h) / c 1 and-(h 2 + h) / c 2 . Here, α =-(h 1 + h) / c 1 and β =-(h 2 + h) / c 2 .
【0018】温度計測素子の熱容量c1は裏打ち材の熱容
量c2よりはるかに小さく、測定対象と温度計測素子の熱
伝達係数h1は、測定対象と裏打ち材との熱伝達係数h2よ
りはるかに大きいので、αはβより絶対値がはるかに大
きくなり、式で表すと|α|>>|β|となる。The heat capacity c 1 of the temperature measuring element is much smaller than the heat capacity c 2 of the backing material, and the heat transfer coefficient h 1 of the measuring object and the temperature measuring element is much larger than the heat transfer coefficient h 2 of the measuring object and the backing material. Since α is larger than β, the absolute value of α is much larger than β, which is expressed as | α | >> | β |.
【0019】次に、式(6) のT を移項し右辺を変形する
と式(6) は、 θ1(t)=T0+(T-T0) ×[K (1-exp(αt))+(1-K)(1-exp(βt))] (8) となる。この式を見ると、温度計測素子の温度θ1(t)の
応答特性は、短い時定数-1/αと長い時定数 -1/βを持
つ2つの一次遅れ系からなる複合系となっていることが
わかる。Next, by transposing T in equation (6) and transforming the right side, equation (6) yields θ 1 (t) = T 0 + (TT 0 ) × [K (1-exp (αt)) + (1-K) (1-exp (βt))] (8). Looking at this equation, the response characteristic of the temperature θ 1 (t) of the temperature measuring element is a composite system consisting of two first-order lag systems with a short time constant −1 / α and a long time constant −1 / β. You can see that
【0020】式(8) においては、αt の絶対値が小さい
領域(1 前後以下)ではβt の絶対値は1 よりはるかに
小さくなり、exp(βt)はほぼ1 に等しくなる。そこで、
式(8) 右辺の[ ] 内の第2 項はほぼ0 となるのでこれを
無視すると、式(8) はαt の絶対値が小さい領域では近
似的に、 θ1(t)=T0+(T-T0) K [1-exp(αt)] (9) と表すことができる。この式は、温度計測素子の指示温
度を指数関数で近似した式である。In the equation (8), the absolute value of βt becomes much smaller than 1 in the region where the absolute value of αt is small (around 1 or less), and exp (βt) becomes almost equal to 1. Therefore,
The second term in [] on the right-hand side of Eq. (8) is almost 0, so if we neglect this, Eq. (8) approximates θ 1 (t) = T 0 + in the region where the absolute value of αt is small. It can be expressed as (TT 0 ) K [1-exp (αt)] (9). This formula is a formula in which the indicated temperature of the temperature measuring element is approximated by an exponential function.
【0021】式(9)より、測定対象の温度T は温度計測
素子の指示温度θ1(t)により、次のように表される。 T=T0+(1/K)[ θ1(t)-T0]/[1-exp(αt)] (10) この式により測定対象の温度T を算出することができ
る。ここで、係数K 、αの値は、実験により重回帰分析
等で求めておく。From the equation (9), the temperature T of the object to be measured is expressed as follows by the indicated temperature θ 1 (t) of the temperature measuring element. T = T 0 + (1 / K) [θ 1 (t) -T 0 ] / [1-exp (αt)] (10) The temperature T of the measurement object can be calculated by this formula. Here, the values of the coefficients K and α are obtained by multiple regression analysis or the like by an experiment.
【0022】更に、この式のαの値を実際に求めるのは
面倒なので種々検討した結果、次のようにするとαの値
を求める必要がないことがわかった。そのためには、一
定のサンプリング間隔で、時刻t1、t2、t3におけるθ
1(t)の値を測定する。これらの値をT1、T2、T3とする
と、これらの値と測定対象の温度T の間に次の関係があ
ることを見出した。Further, since it is troublesome to actually obtain the value of α in this equation, as a result of various studies, it has been found that it is not necessary to obtain the value of α by the following. To do this, at constant sampling intervals, θ at times t 1 , t 2 , and t 3
Measure the value of 1 (t). Given that these values are T 1 , T 2 and T 3 , it was found that there is the following relationship between these values and the temperature T of the measurement object.
【0023】まず、時刻t1、t2、t3は等間隔であるか
ら、 exp[α(t3-t2)]=exp[ α(t2-t1)] である。これを分数で書くと、 exp(αt3)/exp(αt2)=exp(αt2)/exp(αt1) となり、移項すると、 exp(αt2)2=exp( αt1)exp( αt3) (11) となる。First, since the times t 1 , t 2 and t 3 are evenly spaced, exp [α (t 3 -t 2 )] = exp [α (t 2 -t 1 )]. If we write this in fractions, we get exp (αt 3 ) / exp (αt 2 ) = exp (αt 2 ) / exp (αt 1 ), and if we transpose, exp (αt 2 ) 2 = exp (αt 1 ) exp (αt 3 ) It becomes (11).
【0024】次に、式(10)を変形すると exp(αt)=1-[θ1(t)-T0]/[(T-T0)K] (10') となる。この式(10') のθ1(t)の値を時刻t1、t2、t3に
おける値T1、T2、T3で置き換えて、式(11)に代入する
と、式(11)は [1-(T2-T0)/K(T-T0)]2 =[1-(T1-T0)/K(T-T0)] ×[1-(T3-T0)/K(T-T0)] (11') となる。式を展開し、両辺にK(T-T0)2を掛けて整理する
と、 2K(T-T0)(T2-T0)+(T2-T0)2 =K(T-T0)[(T1-T0)+(T3-T0)] +(T1-T0)(T3-T0) 移項してK(T-T0) について解くと、 K(T-T0)=[(T2-T0)2-(T1-T0)(T3-T0)]/[2(T2-T0)-(T1-T0)-(T3-T0)] =[T2 2-T1T3-2T2T0+(T1+T3)T0]/[2T2-T1-T3] =[T2 2-T1T3]/[2T2-T1-T3] -T0 更に、移項してT とT0を左辺に集めると、 K( T-T0)+T0= (T2 2-T1T3)/( 2T2-T1-T3) (12) となる。測定対象の温度T は、式(12)をT について解い
て、次のように表される。 T=T0+(1/K)[(T2 2-T1T3)/(2T2-T1-T3)-T0] (13) これより、測定装置の温度の初期値T0と Kの値がわかれ
ば、サンプリング値T1、T2、T3から測定対象の温度T を
求めることができる。ここで、 Kの値は計算で求めても
よいが、一般には、実機について測定対象の温度の実測
値と合うように決めておけばよい。Next, the equation (10) is transformed into exp (αt) = 1- [θ 1 (t) -T 0 ] / [(TT 0 ) K] (10 '). Substituting the value of θ 1 (t) in equation (10 ′) with the values T 1 , T 2 , and T 3 at times t 1 , t 2 , and t 3 and substituting into equation (11), equation (11) Is [1- (T 2 -T 0 ) / K (TT 0 )] 2 = [1- (T 1 -T 0 ) / K (TT 0 )] × [1- (T 3 -T 0 ) / K (TT 0 )] becomes (11 '). Expanding the equation and multiplying both sides by K (TT 0 ) 2 and rearranging, 2K (TT 0 ) (T 2 -T 0 ) + (T 2 -T 0 ) 2 = K (TT 0 ) [(T 1 If -T 0) + (T 3 -T 0)] + (T 1 -T 0) (T 3 -T 0) transposed to solve for K (TT 0) to, K (TT 0) = [ (T 2 -T 0 ) 2- (T 1 -T 0 ) (T 3 -T 0 )] / [2 (T 2 -T 0 )-(T 1 -T 0 )-(T 3 -T 0 )] = [ T 2 2 -T 1 T 3 -2T 2 T 0 + (T 1 + T 3 ) T 0 ] / [2T 2 -T 1 -T 3 ] = [T 2 2 -T 1 T 3 ] / [2T 2 -T 1 -T 3 ] -T 0 Furthermore, by transposing and collecting T and T 0 on the left side, K (TT 0 ) + T 0 = (T 2 2 -T 1 T 3 ) / (2T 2 -T 1 -T 3 ) (12). The temperature T to be measured is expressed as follows by solving the equation (12) for T. T = T 0 + (1 / K) [(T 2 2 -T 1 T 3 ) / (2T 2 -T 1 -T 3 ) -T 0 ] (13) From this, the initial value of the temperature of the measuring device T If the values of 0 and K are known, the temperature T of the measurement target can be obtained from the sampling values T 1 , T 2 , and T 3 . Here, the value of K may be obtained by calculation, but in general, it may be determined so as to match the measured value of the temperature of the measurement target for the actual machine.
【0025】[0025]
【実施例】図2は、温度検出装置の例を示す。図中、1
は温度計測素子として用いたサーミスタ素子、2は裏打
ち材、11はリード線、24はホルダ、25は錘、10
は温度検出ヘッド、20は温度検出器、30は演算装置
をそれぞれ示す。ここで、錘25は走行中の板と安定し
た接触圧を確保するために用いているが、これはバネ、
各種シリンダ等、適宜用いることができる。また、演算
装置は、通常のパソコンとインタフェースで構成してあ
る。FIG. 2 shows an example of a temperature detecting device. In the figure, 1
Is a thermistor element used as a temperature measuring element, 2 is a backing material, 11 is a lead wire, 24 is a holder, 25 is a weight, 10
Is a temperature detection head, 20 is a temperature detector, and 30 is an arithmetic unit. Here, the weight 25 is used to secure a stable contact pressure with the running plate.
Various cylinders and the like can be appropriately used. The arithmetic unit is composed of an ordinary personal computer and an interface.
【0026】サーミスタ素子1により検出された温度出
力は、温度検出器20で温度に変換され温度信号とな
り、演算装置30に送られる。演算装置30では、ま
ず、温度信号を所定の時間間隔でサンプリングし、温度
測定用データとする。一連のサンプリングが終了する
と、演算装置30は、式(12)によりサンプリングされた
データから物体の温度を演算して求める。The temperature output detected by the thermistor element 1 is converted into a temperature by the temperature detector 20 and becomes a temperature signal, which is sent to the arithmetic unit 30. In the arithmetic unit 30, first, the temperature signal is sampled at a predetermined time interval and used as temperature measurement data. When a series of sampling is completed, the arithmetic unit 30 calculates and obtains the temperature of the object from the data sampled by the equation (12).
【0027】図3は、この温度検出装置を用いてカラー
鋼板の温度を測定した結果を示す温度計測記録図であ
る。図より、温度検出ヘッドをカラー鋼板に接触する
と、温度出力接触後2 〜3 秒までの間に急上昇してい
る。この部分については、解析すると時定数約0.7 秒の
一次遅れの特性が支配的である。その後、かなり緩やか
に上昇しているが、これは極めて長い時定数で測定対象
の温度に漸近していることになる。FIG. 3 is a temperature measurement recording chart showing the result of measuring the temperature of the color steel sheet using this temperature detecting device. From the figure, when the temperature detection head contacts the color steel plate, the temperature rises rapidly within 2 to 3 seconds after the temperature output contact. When this part is analyzed, the characteristic of the first-order lag of about 0.7 seconds is dominant. After that, it rises fairly slowly, but this is an asymptotic approach to the temperature to be measured with an extremely long time constant.
【0028】温度検出ヘッドをカラー鋼板に接触後、0.
1 秒 0.2秒 0.3秒でサンプリングし、式(12)により演算
して、カラー鋼板の温度の実測値と比較すると、式(12)
中の係数K を0.77とすると実測値との良い一致が見られ
た。このように、発明の方法により、0.5 秒程度の短時
間接触させるだけで、比較的低温の走行中の鋼板の温度
を、操業に外乱を与えずに精度良く計測できる。After contacting the temperature detecting head with the color steel sheet,
1 second 0.2 seconds 0.3 seconds sampled, calculated by equation (12), and compared with the measured value of the temperature of the color steel plate, equation (12)
When the coefficient K in the table was set to 0.77, good agreement with the measured value was found. As described above, according to the method of the present invention, the temperature of the steel sheet during traveling at a relatively low temperature can be accurately measured without causing any disturbance to the operation by simply bringing the steel sheets into contact with each other for a short time of about 0.5 seconds.
【0029】なお、温度計測素子と裏打ち材の間の熱伝
達率h がほぼ0 であれば、指示温度θ1 に及ぼす裏打ち
材の影響はなくなる。その場合指示温度は測定対象との
熱伝達のみにより決まるので、式(11)の係数K は1 とな
る。すると、測定対象の温度T は、次の式で表されるこ
とになる。 T= (T2 2-T1T3)/(2T2-T1-T3) (12) この式は、装置定数によらず推定計算できるという利点
がある。If the heat transfer coefficient h between the temperature measuring element and the backing material is almost 0, the influence of the backing material on the indicated temperature θ 1 disappears. In this case, the indicated temperature is determined only by heat transfer with the measurement target, so the coefficient K in equation (11) is 1. Then, the temperature T of the measurement target is expressed by the following equation. T = (T 2 2 -T 1 T 3 ) / (2T 2 -T 1 -T 3 ) (12) This formula has an advantage that it can be estimated and calculated regardless of the device constant.
【0030】[0030]
【発明の効果】この発明では、測定対象に温度計測素子
を短時間接触するだけで計測できるので、比較的低温の
走行物体の温度を、操業に外乱を与えずに精度良く測定
することができる。According to the present invention, it is possible to measure the temperature of a traveling object having a relatively low temperature with high accuracy without disturbing the operation because the temperature measuring element can be measured only by bringing the temperature measuring element into contact with the object for a short time. .
【図1】(a)温度検出ヘッドの模式図、(b)熱伝達
のメカニズムを示すブロック図。1A is a schematic diagram of a temperature detection head, and FIG. 1B is a block diagram showing a heat transfer mechanism.
【図2】温度検出装置の1実施例を示す図。FIG. 2 is a diagram showing an embodiment of a temperature detecting device.
【図3】実施例の温度検出装置を用いた結果を示す温度
計測記録図。FIG. 3 is a temperature measurement recording diagram showing a result of using the temperature detection device of the embodiment.
1 温度測定素子 2 裏打ち材 3 測定対象 10 温度検出ヘッド T 測定対象の温度 θ1 温度計測素子の温度 T0 温度計測素子の温度の初期値 T1、T2、T3 温度計測素子の温度のサンプリング値1 temperature measurement element 2 backing material 3 measurement target 10 temperature detection head T temperature of measurement target θ 1 temperature of temperature measurement element T 0 initial value of temperature of temperature measurement element T 1 , T 2 , T 3 of temperature of temperature measurement element Sampling value
Claims (2)
裏打ち材とを有する温度検出ヘッドを、走行中の測定対
象に追随させて接触させ、温度計測素子の温度θ1(t)お
よびその初期値T0、ならびに予め求めておいた係数K お
よびαにより表される次の式を用いて、測定対象の温度
T を推定計算することを特徴とする走行物体の温度計測
方法。 T=T0+(1/K)[ θ1(t)-T0]/[1-exp(αt)] 但し、tは測定開始からの時間とする。1. A temperature detection head having a temperature measurement element and a backing material having a larger heat capacity than that of the temperature measurement head is brought into contact with a running measurement target to make contact with the temperature measurement element temperature θ 1 (t) and its initial value. The temperature of the object to be measured is calculated using the following equation expressed by T 0 and the coefficients K and α obtained in advance.
A method for measuring the temperature of a moving object, characterized by estimating and calculating T. T = T 0 + (1 / K) [θ 1 (t) -T 0 ] / [1-exp (αt)] where t is the time from the start of measurement.
温度計測素子の温度の初期値T0および等時間間隔で順次
サンプリングした値T1、T2、T3、ならびに予め求めてお
いた係数K により表される次の式を用いて、測定対象の
温度T を推定計算することを特徴とする請求項1記載の
走行物体の温度計測方法。 T=T0+(1/K)[(T2 2-T1T3)/(2T2-T1-T3)-T0]2. Regarding the estimation calculation of the temperature of the measurement target,
The initial value T 0 of the temperature of the temperature measuring element and the values T 1 , T 2 , T 3 sequentially sampled at equal time intervals, and the following equation represented by the coefficient K obtained in advance are used to measure the The temperature measuring method for a traveling object according to claim 1, wherein the temperature T is estimated and calculated. T = T 0 + (1 / K) [(T 2 2 -T 1 T 3 ) / (2T 2 -T 1 -T 3 ) -T 0 ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23648694A JPH08101079A (en) | 1994-09-30 | 1994-09-30 | Temperature measuring method for traveling object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23648694A JPH08101079A (en) | 1994-09-30 | 1994-09-30 | Temperature measuring method for traveling object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08101079A true JPH08101079A (en) | 1996-04-16 |
Family
ID=17001450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23648694A Withdrawn JPH08101079A (en) | 1994-09-30 | 1994-09-30 | Temperature measuring method for traveling object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08101079A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005291882A (en) * | 2004-03-31 | 2005-10-20 | Mitsubishi Heavy Ind Ltd | State detecting device for radioactive material container, and state detection method of the radioactive material container |
JP2005308419A (en) * | 2004-04-16 | 2005-11-04 | Mitsubishi Heavy Ind Ltd | Condition detector for radiation substance container |
-
1994
- 1994-09-30 JP JP23648694A patent/JPH08101079A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005291882A (en) * | 2004-03-31 | 2005-10-20 | Mitsubishi Heavy Ind Ltd | State detecting device for radioactive material container, and state detection method of the radioactive material container |
JP2005308419A (en) * | 2004-04-16 | 2005-11-04 | Mitsubishi Heavy Ind Ltd | Condition detector for radiation substance container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4881823A (en) | Radiation thermometry | |
ES2165675T3 (en) | A PRECISE DEVICE FOR MEASURING TEMPERATURE AT HIGH SPEED. | |
Groover et al. | A continuing study in the determination of temperatures in metal cutting using remote thermocouples | |
JP2769225B2 (en) | Prediction method of heat streak occurrence and temperature sensor roll | |
JPH08101079A (en) | Temperature measuring method for traveling object | |
JPH0376694B2 (en) | ||
Shi et al. | Effect on the spectral emissivity of SPHC steel by surface oxidization | |
CN106679818B (en) | Device and method for measuring temperature distribution of smooth surface | |
JP3328408B2 (en) | Surface temperature measurement method | |
JP3537625B2 (en) | Method and apparatus for measuring solidified shell thickness in continuous casting | |
JPH02311748A (en) | Method for measuring heat change | |
JP4209285B2 (en) | Temperature detection method and temperature detector | |
SU855464A1 (en) | Method of determination of solid body thermal conductivity | |
JPH034855B2 (en) | ||
JPS581729B2 (en) | Method for estimating internal temperature of hot steel ingot | |
AU685840B2 (en) | Determination of coating thickness and temperature of thinly coated substrates | |
JPS63140036A (en) | Method for identifying overall heat absorptivity of continuous heating furnace | |
JPH0899111A (en) | Method for predicting rolling temperature of material to be rolled | |
JPS6129446B2 (en) | ||
SU1056016A1 (en) | Method of measuring convective heat transfer in objects | |
JPH0843212A (en) | Method and instrument for measuring temperature by multicolor radiation thermometer | |
JPH04354827A (en) | Method for estimating temperature distribution in plate thickness direction in stopping cooling | |
Hager Jr | Thermocouple probe for surface‐temperature measurement | |
KR20230101914A (en) | Estimation of the temperature of steel products | |
JPS639829A (en) | Electronic clinical thermometer capable of short-time measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020115 |