JPS6129446B2 - - Google Patents

Info

Publication number
JPS6129446B2
JPS6129446B2 JP15255478A JP15255478A JPS6129446B2 JP S6129446 B2 JPS6129446 B2 JP S6129446B2 JP 15255478 A JP15255478 A JP 15255478A JP 15255478 A JP15255478 A JP 15255478A JP S6129446 B2 JPS6129446 B2 JP S6129446B2
Authority
JP
Japan
Prior art keywords
temperature
time
sensing element
measured
thermal equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15255478A
Other languages
Japanese (ja)
Other versions
JPS5578220A (en
Inventor
Yukito Abe
Takahiro Usuha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15255478A priority Critical patent/JPS5578220A/en
Publication of JPS5578220A publication Critical patent/JPS5578220A/en
Publication of JPS6129446B2 publication Critical patent/JPS6129446B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、感温素子と被測定体との熱平衡温
度を熱平衡以前に予測して被測定体の温度を測定
する方法に関する。 サーミスタなどの感温素子を用いた電子温度計
が体温計などに用いられている。しかし感温素子
は一般に熱時定数を有するため、瞬時に被測定体
の温度を測定することは不可能である。従つて、
一般には感温素子を被測定体に接触させてから、
両者が熱平衡に達するのを待つて温度を測定する
方法をとつていたが、熱平衡に達するには通常5
分間程度の時間を要することから、短時間で測定
できないという欠点があつた。 そこで、感温素子と被測定体との熱平衡温度を
熱平衡以前に予測して、被測定体の温度を測定す
る方法が考えられている。これには熱平衡以前の
特定時刻における感温素子検出温度に、この温度
と熱平衡温度との温度差に相当する一定値を上乗
せする方法や、感温素子検出温度の熱平衡以前の
複数時刻におけるデータから演算により熱平衡温
度を予測する方法がある。ところが、前者の方法
は感温素子の初期温度の影響を受け易く、しかも
上記温度差が個人によつて変るため、正確な測定
は到底期待できない。一方、後者の方法は感温素
子の熱時定数が一定であればよいが、実際にはこ
の熱時定数は被測定体の熱時定数によつて異なる
ため、個人によつてまた測定部位によつて測定誤
差が出るという欠点があつた。 この発明は上記した点に鑑みてなされたもの
で、その目的は被測定体の相違や測定部位の変化
による誤差を生ずることなく、熱平衡以前に熱平
衡温度を予測して、体温などを迅速かつ正確に測
定することができ、且つ温度上昇曲線の分類デー
タを記憶するメモリの容量の低減をはかり得る温
度測定方法を提供することにある。 以下、この発明を詳細に説明する。 サーミスタなどの感温素子を被測定体、例えば
人体に接触させると、図に示すように感温素子の
検出温度Tは時間tと共に指数関数的に上昇し、
最終的に熱平衡温度Tuに達する。この温度上昇
曲線は被測定体の相違、例えば個人、個人によつ
て変化し、また同じ被測定体であつても感温素子
を接触させる測定部位によつて変化する。従つ
て、前述した従来の上乗せする方法や、演算によ
り熱平衡温度を求める方法では、個人あるいは測
定部位の違いによつて測定誤差を生じる。 この欠点を解決するには、予め感温素子検出温
度の温度上昇曲線を多量に記憶しておき、測定毎
に温度上昇曲線を求めて記憶されている曲線群の
どれに最も似ているかを調べ、それに基づいて熱
平衡前に熱平衡温度を予測するようにすればよ
い。しかし過去の温度曲線の例を多数(例えば
100例ないし数百例)記憶するのでは、メモリの
記憶容量が膨大となり到底実用できない。そこで
温度上昇曲線の記憶に際して、パターン認識装置
で行なわれているように、曲線を特徴別に分類し
て記憶する方法が考えられる。その場合、文字や
図形などとは異なり、温度上昇曲線から抽出する
特徴として何を採用するかが問題となる。 この発明は、感温素子検出温度の温度上昇曲線
を特徴別に分類するために、その曲線の熱平衡に
達する以前の部分を複数時間区分に区分けし、そ
の区分けされた各時間区分における温度変化量の
組合せを特徴として採用するものである。すなわ
ち、種々の温度上昇曲線の特徴をその複数に区分
けされた各時間区分における温度変化量の組合せ
により抽出し、特徴別に分類を行なつてその分類
データを記憶しておく。このようにすれば、メモ
リとしては温度上昇曲線そのものを記憶する場合
に比べ格段に小容量のものでよい。 但し、実際には温度上昇曲線の特徴のみ分つて
も熱平衡温度は予測できないので、温度上昇曲線
の特徴を抽出した時の最終時間区分の終了時刻に
おける感温素子検出温度の熱平衡温度に対する温
度差を求め、これを分類データと対応付けて記憶
しておく。 そして実際の測定に際しては、感温素子検出温
度の温度上昇曲線の特徴を同様に抽出して、記憶
されている温度上昇曲線の分類データのどれと対
応するかを判定し、その分類データに対応する前
記温度差値を、温度上昇曲線の特徴抽出時の最終
時間区分の終了時刻における感温素子検出温度に
加えることにより熱平衡温度を予測し被測定体の
温度を測定する。 なお、温度上昇曲線を複数に区分けする際の各
時間区分の時間長は一定でもよいが、温度上昇曲
線は徐々に傾斜が緩やかになるので、上記時間長
を時間経過と共に増加させる方が測定時間の短縮
と、曲線の特徴をより正確にらえる上で望まし
い。 また、温度上昇曲線の特徴別に得た分類データ
は、各温度変化量そのものの組合せを示したデー
タでもよいが、温度変化量を単一または複数の閾
値により比較判定して分類して得たものでもよ
い。このようにすればメモリの容量は一層少なく
て済む。 次にこの発明を実施例により具体的に説明す
る。図に示すように、まず感温素子検出温度Tが
一定基準値Tsを越えた以後の時刻をt0とし、こ
の時のTの値をT0とする。そしてt0より時間△
t11(例えば1秒)後の時刻t1におけるT値をT1
とし、以下同様にt1より△t12(例えば2秒)後の
t2におけるTの値をT2とし、t2より△t13(例えば
3秒)後のt3におけるTの値をT3とし、t3より△
t14(例えば4秒)後のt4におけるTの値をT4
し、t4より△t15(例えば5秒)後のt5におけるT
の値をT5とする。これより各時間区分△t11〜△
t15におけるTの変化量△t11〜△t15は △T11=T1−T0 △T12=T2−T1 △T13=T3−T2 △T14=T4−T3 △T15=T5−T4 となる。そして、これらを例えばθ、θ、θ
となる3つの閾値(但しθ>θ>θ)で
判定して分類する。ここで、θ≦A、θ≦B
<θ、θ≦C<θ、D<θ、すなわちD
<θ≦C≦θ≦B≦Aとおけば△T11〜△
T15の組合せはA〜Dの組合せで分類できる。例
えば△T11〜△T15がθ<△T11、θ<△
T12、θ<△T13、θ<△T14<θ、θ
△T15<θの場合、分類結果は「AAABB」と
なる。 同様な分類を種々の温度上昇曲線について行な
い、その分類データをメモリに個別に記憶する。 一方、各々の温度上昇曲線の特徴抽出時の最終
時間区分△t15の終了時刻t5におけるTの値T5
と、熱平衡温度Tuとの温度差Tu−T5=TRXも、
上記温度上昇曲線の特徴の分類データと対応付け
て記憶する。なお、TRXを求めるためのTuの測
定は、通常の測定方法と同様に長い時間(例えば
5分間)かけて行ない、そのときのTの値の最高
値をTuとすればよい。 前述のような分類を行なうと、分類可能数は64
となる。実際にθ〜θの値をθ=0.18℃
θ=0.12℃ θ=0.06℃として、213例の温
度上昇曲線について上記の処理を行なつてみたと
ころ、次の結果を得た。
The present invention relates to a method of predicting the thermal equilibrium temperature between a temperature sensing element and a measured object before thermal equilibrium and measuring the temperature of the measured object. Electronic thermometers that use temperature-sensitive elements such as thermistors are used in thermometers and the like. However, since a temperature sensing element generally has a thermal time constant, it is impossible to instantaneously measure the temperature of the object to be measured. Therefore,
Generally, after bringing the temperature sensing element into contact with the object to be measured,
The conventional method was to wait for both to reach thermal equilibrium and then measure the temperature, but it usually takes about 50 minutes to reach thermal equilibrium.
Since it takes about a minute, it has the disadvantage that it cannot be measured in a short period of time. Therefore, a method of measuring the temperature of the object by predicting the thermal equilibrium temperature between the temperature sensing element and the object to be measured before the thermal equilibrium is considered has been proposed. This can be done by adding a fixed value corresponding to the temperature difference between this temperature and the thermal equilibrium temperature to the temperature detected by the thermosensor at a specific time before thermal equilibrium, or by using data at multiple times before thermal equilibrium of the temperature detected by the thermosensor. There is a method of predicting the thermal equilibrium temperature by calculation. However, the former method is easily influenced by the initial temperature of the temperature sensing element, and moreover, the temperature difference varies depending on the individual, so accurate measurement cannot be expected at all. On the other hand, the latter method only requires that the thermal time constant of the thermosensing element be constant; however, in reality, this thermal time constant varies depending on the thermal time constant of the object to be measured, so it depends on the individual and on the measurement site. Therefore, there was a drawback that measurement errors occurred. This invention was made in view of the above points, and its purpose is to predict the thermal equilibrium temperature before thermal equilibrium, and to quickly and accurately measure body temperature, etc., without causing errors due to differences in the object to be measured or changes in the measurement site. It is an object of the present invention to provide a temperature measurement method that can measure temperatures and reduce the memory capacity for storing classification data of temperature rise curves. This invention will be explained in detail below. When a temperature sensing element such as a thermistor is brought into contact with an object to be measured, for example a human body, the detected temperature T of the temperature sensing element increases exponentially with time t, as shown in the figure.
Eventually the thermal equilibrium temperature Tu is reached. This temperature rise curve changes depending on the object to be measured, for example, from person to person, and even in the same object, it changes depending on the measurement site to which the temperature sensing element is brought into contact. Therefore, in the above-mentioned conventional adding method or method for determining the thermal equilibrium temperature by calculation, measurement errors occur due to differences in individuals or measurement sites. To solve this problem, store a large number of temperature rise curves of the temperature detected by the thermosensor in advance, calculate the temperature rise curve for each measurement, and find out which of the stored curves it is most similar to. , based on which the thermal equilibrium temperature may be predicted before thermal equilibrium. However, many examples of past temperature curves (e.g.
Memorizing 100 or several hundred cases would require an enormous amount of memory, making it completely impractical. Therefore, when storing temperature increase curves, a method can be considered in which the curves are classified and stored according to their characteristics, as is done in pattern recognition devices. In that case, unlike characters or figures, the problem is what features to extract from the temperature rise curve. In order to classify the temperature rise curve of the temperature detected by a thermosensor according to its characteristics, this invention divides the portion of the curve before reaching thermal equilibrium into multiple time segments, and calculates the amount of temperature change in each of the divided time segments. The combination is adopted as a feature. That is, the characteristics of various temperature increase curves are extracted by combining the amount of temperature change in each of the plurality of time periods, classified according to characteristics, and the classified data is stored. In this way, the capacity of the memory is much smaller than that required for storing the temperature rise curve itself. However, in reality, the thermal equilibrium temperature cannot be predicted even if only the characteristics of the temperature rise curve are known, so the temperature difference between the temperature detected by the thermosensor and the thermal equilibrium temperature at the end of the final time segment when the characteristics of the temperature rise curve are extracted is calculated. and store it in association with the classification data. Then, during actual measurement, the characteristics of the temperature rise curve of the temperature detected by the thermosensor are extracted in the same way, and it is determined which of the stored classification data of the temperature rise curve corresponds, and the characteristics are matched with that classification data. The thermal equilibrium temperature is predicted and the temperature of the object to be measured is measured by adding the temperature difference value to the temperature detected by the temperature sensing element at the end time of the final time segment when extracting the feature of the temperature increase curve. Note that when dividing the temperature rise curve into multiple sections, the time length of each time segment may be constant; however, since the slope of the temperature rise curve gradually becomes gentler, it is better to increase the above time length as time passes to increase the measurement time. It is desirable to shorten the curve and more accurately capture the characteristics of the curve. Furthermore, the classification data obtained for each characteristic of the temperature rise curve may be data showing the combination of each temperature change amount itself, but it may be data obtained by comparing and classifying the temperature change amount using a single or multiple threshold values. But that's fine. In this way, the memory capacity can be even smaller. Next, the present invention will be specifically explained using examples. As shown in the figure, the time after the temperature T detected by the temperature sensing element exceeds a certain reference value Ts is defined as t0 , and the value of T at this time is defined as T0 . And time △ from t 0
The T value at time t 1 after t 11 (for example, 1 second) is T 1
Similarly, after △t 12 (for example, 2 seconds) from t 1 ,
Let the value of T at t 2 be T 2 , let the value of T at t 3 after △t 13 (for example, 3 seconds) after t 2 be T 3 , and let from t 3
The value of T at t 4 after t 14 (for example, 4 seconds) is T 4 , and the value of T at t 5 after Δt 15 (for example, 5 seconds) from t 4 is T 4 .
Let the value of be T 5 . From this, each time segment △t 11 ~ △
The amount of change in T at t 15 from △t 11 to △t 15 is △T 11 =T 1 −T 0 △T 12 =T 2 −T 1 △T 13 =T 3 −T 2 △T 14 =T 4 −T 3 △T 15 = T 5T 4 . For example, θ 1 , θ 2 , θ
Classification is performed using three threshold values (where θ 123 ). Here, θ 1 ≦A, θ 2 ≦B
1 , θ 3 ≦C<θ 2 , D<θ 3 , that is, D
If <θ 3 ≦C≦θ 2 ≦B≦A, △T 11 ~△
The combinations of T 15 can be classified as combinations of A to D. For example, △T 11 to △T 15 are θ 1 < △T 11 , θ 1 < △
T 12 , θ 2 <△T 13 , θ 2 <△T 141 , θ 2 <
If ΔT 151 , the classification result is “AAABB”. A similar classification is performed for various temperature rise curves, and the classification data is individually stored in memory. On the other hand, the value of T at the end time t 5 of the final time segment Δt 15 when extracting the features of each temperature increase curve is T 5
The temperature difference between the temperature and the thermal equilibrium temperature Tu is Tu−T 5 =T RX .
It is stored in association with the classification data of the characteristics of the temperature rise curve. Note that the measurement of Tu for determining T RX may be performed over a long period of time (for example, 5 minutes) in the same manner as in a normal measurement method, and the highest value of T at that time may be taken as Tu. When classifying as described above, the number of possible classifications is 64.
becomes. Actually, the value of θ 1 to θ 3 is θ 1 = 0.18℃
When θ 2 =0.12°C and θ 3 =0.06°C, the above processing was performed on the temperature increase curves of 213 examples, and the following results were obtained.

【表】 但し、この表は比較的出現回数の多いものにつ
いてのみ示してある。TRXの各分類毎の平均値か
らの偏差(標準偏差)は小さく、TRXを分類毎に
固定しても支障のないことが確認された。 次に、測定時には同様に△11〜△15を求めて特
徴を抽出し分類する。そしてその抽出した特徴が
記憶されている分類データのどれと対応するかを
判定し、その分類データに対応するTRXの値を
T5に加えることにより、Tuが求まる。このTuが
被測定体の温度となる。 なお、測定時に予め記憶されている分類データ
のどれにも対応しない特徴が抽出された場合は、
各分類データに対応するTRXの全平均値をT5
加えるか、またはその旨を何らかの表示により指
示して、水銀体温計などによる測定と同様に十分
長い時間をかけてTuを実測するようにすればよ
い。 一方、被測定体に対する感温素子の接触不良が
生じた場合などには、△T11〜△T15のいずれか
が負の値になることもあり得る。このような場合
には、接触状態を直してから最初から測定し直し
てもよいが、接触不良が瞬時的にどうしても起る
ようなことがあれば、感温素子検出温度をピーク
ホールドしておき、接触不良が起きた時の検出温
度がそれ以前のピーク値と同一とみなして△T11
〜△T15を求め、特徴の抽出を行なつてもよい。 なお、この発明の方法を実施する場合、感温素
子検出温度の温度上昇曲線の特徴抽出は、図に示
したようにTの値がある一定基準値Tsを越えた
以後のT0〜T5の値を用いて行なうことが、正確
な測定を行なう上で望ましい。第1の理由はT0
〜T5の値が低すぎると、室温による誤差が出る
からであり、この点からTsは室温以上であるこ
とがよい。第2の理由はT0〜T5の値が低い領域
では、感温素子の接触状態が悪い可能性があるた
めである。これらのことから、Tsの値は例えば
体温測定の場合で34〜35℃程度が適当であり、こ
のようにすれば通常の室温下では室温の影響を受
けることがなく、しかもTの値がこの程度の温度
を越えていれば、感温素子の接触状態も十分良好
となつているので、特徴の抽出を適確に、従つて
温度測定を正確に行なうことができる。 また、前記実施例では△T11〜△T15を複数の
閾値θ〜θにより比較判定したが、単一の閾
値を用いて比較判定してもよい。その場合、温度
上昇曲線の特徴抽出に用いる感温素子検出温度
(T1、T2、………)の個数を多くとることが望ま
しい。 以上述べたように、この発明は種々の被測定体
や卒定部位について感温素子検出温度の温度上昇
曲線の特徴を抽出し分類しておき、それに基づい
て熱平衡温度を熱平衡以前に求めて被測定体の温
度を測定する方法であるから、被測定体の相違や
測定部位の変化による測定誤差が本質的に少な
く、正確かつ迅速な温度測定を行なうことができ
る。 また、温度上昇曲線の特徴を抽出し分類する
際、複数の時間区分における温度変化量を単一又
は複数の閾値により比較判定しているので、上記
分類データを記憶するメモリの容量を著しく低減
することができる。 この発明の方法は特に体温の測定に適している
が、サーミスタ等の熱時定数を有する感温素子を
用い、熱平衡以前に熱平衡温度を予測して被測定
体の温度を測定するものに一般に適用が可能であ
る。
[Table] However, this table only shows items that appear relatively frequently. The deviation (standard deviation) of T RX from the average value for each category was small, and it was confirmed that there was no problem even if T RX was fixed for each category. Next, during measurement, △ 11 to △ 15 are similarly obtained to extract and classify features. Then, it is determined which of the stored classification data the extracted feature corresponds to, and the value of T RX corresponding to that classification data is determined.
Tu can be found by adding to T 5 . This Tu becomes the temperature of the object to be measured. Note that if a feature is extracted that does not correspond to any of the classification data stored in advance during measurement,
Either add the total average value of T RX corresponding to each classification data to T 5 , or indicate this with some kind of display, and actually measure Tu over a sufficiently long period of time, similar to measurement using a mercury thermometer, etc. do it. On the other hand, if a contact failure of the temperature sensing element with the object to be measured occurs, any one of ΔT 11 to ΔT 15 may become a negative value. In such a case, you can correct the contact condition and start the measurement again from the beginning, but if a contact failure inevitably occurs instantaneously, hold the temperature detected by the thermosensor at its peak. , assuming that the detected temperature when a contact failure occurs is the same as the previous peak value, △T 11
~ΔT 15 may be determined and features may be extracted. When implementing the method of the present invention, the characteristics of the temperature rise curve of the temperature detected by the thermosensor are extracted from T 0 to T 5 after the value of T exceeds a certain reference value Ts, as shown in the figure. For accurate measurements, it is desirable to use the value of The first reason is T 0
This is because if the value of ~ T5 is too low, an error due to room temperature will occur, and from this point of view, Ts is preferably equal to or higher than room temperature. The second reason is that in a region where the values of T 0 to T 5 are low, there is a possibility that the contact state of the temperature sensing element is poor. For these reasons, the appropriate value for Ts is, for example, 34 to 35 degrees Celsius when measuring body temperature.In this way, it will not be affected by room temperature under normal room temperature conditions, and the value of T will not exceed this value. If the temperature exceeds a certain temperature, the contact condition of the temperature sensing element is sufficiently good, so that features can be extracted accurately and temperature can be measured accurately. Further, in the above embodiment, ΔT 11 to ΔT 15 were compared and determined using a plurality of threshold values θ 1 to θ 3 , but a single threshold value may be used for comparison and determination. In that case, it is desirable to increase the number of temperatures detected by the temperature sensing elements (T 1 , T 2 , . . . ) used for extracting features of the temperature rise curve. As described above, the present invention extracts and classifies the characteristics of the temperature rise curve of the temperature detected by the thermosensor for various objects to be measured and graduation parts, and then calculates the thermal equilibrium temperature based on the characteristics before thermal equilibrium. Since this is a method of measuring the temperature of the object to be measured, there is essentially little measurement error due to differences in the object to be measured or changes in the measurement site, and temperature can be measured accurately and quickly. In addition, when extracting and classifying the characteristics of the temperature rise curve, the amount of temperature change in multiple time periods is compared and determined using a single or multiple threshold values, which significantly reduces the memory capacity for storing the above classification data. be able to. Although the method of this invention is particularly suitable for measuring body temperature, it is generally applicable to measuring the temperature of a measured object by predicting the thermal equilibrium temperature before thermal equilibrium using a temperature sensing element such as a thermistor with a thermal time constant. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の一実施例を説明するための図で
ある。
The figure is a diagram for explaining one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 熱時定数を有する感温素子により被測定体の
温度を感温素子と被測定体とが熱平行に達する以
前に測定する方法において、感温素子を被測定体
に接触させた時の感温素子検出温度の種々の温度
上昇曲線の特徴を、熱平衡に達する以前の複数の
時間区分における温度変化量を単一又は複数の閾
値により比較判定した結果の組合わせにより抽出
し、特徴別に分類を行つてその分類データを記憶
しておくと共に、この特徴抽出時の最終時間区分
の終了時刻における感温素子検出温度の、感温素
子と測定体との熱平衡温度に対する温度差値を求
めて上記分類データと対応付けて記憶しておき、
測定時に同様に感温素子検出温度の温度上昇曲線
から特徴を抽出してその特徴が前記分類データの
どれに対応するかを判定し、その分類データに対
応する前記温度差値を特徴抽出時の最終時間区分
の終了時刻における感温素子検出温度に加えて前
記熱平衡温度を予測し被測定体の温度を測定する
ことを特徴とする温度測定方法。 2 前記複数の時間区分の各時間長を時間経過と
共に順次増加させるようにした特許請求の範囲第
1項記載の温度測定方法。 3 前記温度上昇曲線の特徴の抽出を、前記感温
素子検出温度が一定基準値を越えた以後に行うよ
うにした特許請求の範囲第1項記載の温度測定方
法。
[Claims] 1. In a method for measuring the temperature of an object to be measured using a temperature sensing element having a thermal time constant before the temperature sensing element and the object to be measured reach thermal parallelism, the temperature sensing element is attached to the object to be measured. Characteristics of various temperature rise curves of the temperature detected by the thermosensor when in contact are extracted by combining the results of comparing and determining the amount of temperature change in multiple time periods before reaching thermal equilibrium using a single or multiple threshold values. Then, the classification data is classified by characteristic and stored, and the temperature difference between the temperature detected by the temperature sensing element and the thermal equilibrium temperature between the temperature sensing element and the measuring object at the end time of the final time segment at the time of feature extraction is calculated. Find the value and store it in association with the above classification data,
At the time of measurement, a feature is similarly extracted from the temperature rise curve of the temperature detected by the thermosensor, it is determined which of the classification data the feature corresponds to, and the temperature difference value corresponding to the classification data is determined at the time of feature extraction. A temperature measuring method characterized in that the temperature of the object to be measured is measured by predicting the thermal equilibrium temperature in addition to the temperature detected by the temperature sensing element at the end time of the final time segment. 2. The temperature measuring method according to claim 1, wherein the time length of each of the plurality of time segments is increased sequentially as time passes. 3. The temperature measuring method according to claim 1, wherein the feature of the temperature increase curve is extracted after the temperature detected by the temperature sensing element exceeds a certain reference value.
JP15255478A 1978-12-09 1978-12-09 Temperature measuring method Granted JPS5578220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15255478A JPS5578220A (en) 1978-12-09 1978-12-09 Temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15255478A JPS5578220A (en) 1978-12-09 1978-12-09 Temperature measuring method

Publications (2)

Publication Number Publication Date
JPS5578220A JPS5578220A (en) 1980-06-12
JPS6129446B2 true JPS6129446B2 (en) 1986-07-07

Family

ID=15542996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15255478A Granted JPS5578220A (en) 1978-12-09 1978-12-09 Temperature measuring method

Country Status (1)

Country Link
JP (1) JPS5578220A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165132A (en) * 1986-01-16 1987-07-21 Omron Tateisi Electronics Co Electronic clinical thermometer
JPH0810165B2 (en) * 1986-05-13 1996-01-31 オムロン株式会社 Electronic thermometer
JPH07111383B2 (en) * 1989-10-05 1995-11-29 テルモ株式会社 Equilibrium temperature detection method and electronic thermometer
JP2007248154A (en) * 2006-03-14 2007-09-27 Tokiko Techno Kk Device for measuring flow rate

Also Published As

Publication number Publication date
JPS5578220A (en) 1980-06-12

Similar Documents

Publication Publication Date Title
US6270252B1 (en) Predictive temperature measurement system
EP0421451B1 (en) Electronic clinical thermometer
EP2963402B1 (en) Method of operating a mobile device, computer program product and mobile device
RU2007140372A (en) DEVICE AND METHOD FOR FORECASTING HUMAN TEMPERATURE
US5259389A (en) Electronic clincal thermometer
US6439768B1 (en) Electronic thermometer and temperature prediction method therefor
CN106706165B (en) A kind of method and device of temperature measurement
JP2001520741A (en) Electronic thermometer
JPH0795004B2 (en) Body temperature measuring device
JPS61193037A (en) Electronic clinical thermometer
JPS62165132A (en) Electronic clinical thermometer
WO2017211071A1 (en) Temperature prediction method and apparatus thereof
JPS6129446B2 (en)
JP6705894B2 (en) Biological state prediction device, biological state prediction method, and biological state prediction program
CA1177277A (en) Electronic thermometer
JPS54107374A (en) Electronic clinical thermometer
CN110276044A (en) Body temperature prediction technique and the clinical thermometer that body temperature is predicted using the body temperature prediction technique
CN111522398A (en) Contact detection apparatus and method
JP7464124B2 (en) Temperature measuring device, method and program
JP4209285B2 (en) Temperature detection method and temperature detector
US20240068859A1 (en) Systems and methods for detecting a cryogenic fluid level in a container
JPS6126012B2 (en)
JPS612029A (en) Electronic thermometer
JPH0216869B2 (en)
JPS639829A (en) Electronic clinical thermometer capable of short-time measurement