JPH08100204A - Production of sintered part - Google Patents
Production of sintered partInfo
- Publication number
- JPH08100204A JPH08100204A JP6261768A JP26176894A JPH08100204A JP H08100204 A JPH08100204 A JP H08100204A JP 6261768 A JP6261768 A JP 6261768A JP 26176894 A JP26176894 A JP 26176894A JP H08100204 A JPH08100204 A JP H08100204A
- Authority
- JP
- Japan
- Prior art keywords
- freeze
- mold
- binder
- powder
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000843 powder Substances 0.000 claims abstract description 47
- 239000002002 slurry Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000005245 sintering Methods 0.000 claims abstract description 21
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000000919 ceramic Substances 0.000 claims abstract description 9
- 238000000465 moulding Methods 0.000 claims description 27
- 238000001291 vacuum drying Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- 239000003232 water-soluble binding agent Substances 0.000 claims description 2
- 238000007872 degassing Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 239000011230 binding agent Substances 0.000 abstract description 41
- 239000000203 mixture Substances 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000007711 solidification Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は金属又はセラミツクの単
独粉末或いは金属とセラミツクとの混合粉末等の焼結性
粉末を利用しての焼結部品の製造方法に係り、特に複雑
で大型の製品を焼結により製造する方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered part using a sinterable powder such as a single powder of metal or ceramic or a mixed powder of metal and ceramic, and particularly a complicated and large product. The present invention relates to a method for producing a ceramic by sintering.
【0002】[0002]
【従来の技術】従来から、金属又はセラミツクの単独粉
末或いは金属とセラミツクの混合粉末等の焼結性性粉末
を原料粉末とし、この原料粉末を型を利用して成形し粉
末成形体を先ず形成し、次いで粉末成形体を焼結炉で焼
結して製品を得る、いわゆる粉末焼結法による部品の製
造が広く行われている。2. Description of the Related Art Conventionally, a sinterable powder such as a single powder of metal or ceramic or a mixed powder of metal and ceramic is used as a raw material powder, and this raw material powder is molded using a mold to form a powder compact first. Then, the powder compact is sintered in a sintering furnace to obtain a product, which is widely used to manufacture parts by a so-called powder sintering method.
【0003】この粉末焼結法として従来から広く利用さ
れているのは、金型に充填された原料粉末をプレス機を
利用して先ず圧粉成形し、次いでこの圧粉成形により成
形された圧粉成形体を加熱炉で焼結するいわゆる圧粉成
形法である。[0003] The powder sintering method that has been widely used in the past is that the raw material powder filled in the mold is first compacted by using a press machine, and then compacted by this compaction molding. This is a so-called powder compacting method in which a powder compact is sintered in a heating furnace.
【0004】しかしながら圧粉成形法の場合は、成形が
成形方向が二方向のプレス成形であるために、成形でき
る製品の形状が制約され、極めて単純な部品しか製造で
きなかった。However, in the case of the powder compacting method, since the molding is performed by press molding in which the molding directions are two directions, the shape of the product that can be molded is restricted, and only an extremely simple part can be manufactured.
【0005】また圧粉成形法には、粉末の粒度が細かい
と圧力を受けても塑性変形して粉末相互が圧着しないの
で成形できず、さらに流動性が悪くホツパから型への粉
末を自動供給ができずに作業性が悪かったりし、粒径1
00ミクロン前後の比較的粒度の粗い粉末しか利用でき
ないので密度の高い製品がでず、粒度が細かい粉末を利
用したい場合には造粒してから成形しなければならない
きないという欠点もあった。Further, in the powder compacting method, if the particle size of the powder is small, even if pressure is applied, it will be plastically deformed and the powders will not be pressed against each other. Particle size 1
Since only powder having a relatively coarse particle size of about 00 microns can be used, a product having a high density cannot be produced, and there is also a drawback in that powder having a fine particle size must be granulated and then molded.
【0006】このため近年、前記したような圧粉成形法
の欠点を解消した焼結部品の製造技術として金属粉末射
出成形法いわゆるMIM法が開発された。For this reason, in recent years, a metal powder injection molding method, a so-called MIM method, has been developed as a technique for producing a sintered part that solves the above-mentioned drawbacks of the powder compacting method.
【0007】MIM法は、粒径10ミクロン以下の焼結
性粉末に熱可塑性合成樹脂やワツクス等の熱可塑性バイ
ンダを適量配合したものを原料粉末として利用し、この
原料粉末を通常の熱可塑性合成樹脂と同様にまず射出成
形し、次いでこの射出成形体を加熱してバインダを溶
融、分解させて取り除く脱バイダをした後焼結して製品
を得る、焼結部品の製造方法である。In the MIM method, a sinterable powder having a particle size of 10 μm or less and an appropriate amount of a thermoplastic binder such as a thermoplastic synthetic resin or wax is used as a raw material powder, and this raw material powder is subjected to an ordinary thermoplastic synthesis. This is a method for producing a sintered component, in which, like a resin, first, injection molding is performed, and then the injection molded body is heated to melt and decompose the binder to remove the binder, and then sintered to obtain a product.
【0008】このMIM法によると、原料粉末の成形が
射出成形であるのでいかなる形状の製品でも成形でき、
したがって複雑な形状の製品でも容易に焼結法で製造で
きるようになった。According to this MIM method, since the raw material powder is molded by injection molding, products of any shape can be molded,
Therefore, even a product having a complicated shape can be easily manufactured by the sintering method.
【0009】しかもMIM法の場合は粒径10ミクロン
以下という極めて微細な焼結性粉末が利用されているの
で、得られる焼結品は密度が極めて高く寸法精度にすぐ
れたものとなる。Further, in the case of the MIM method, since an extremely fine sinterable powder having a particle size of 10 μm or less is used, the obtained sintered product has an extremely high density and excellent dimensional accuracy.
【0010】[0010]
【発明が解決しようとする課題】しかしながらMIM法
には圧粉成形法と同様に大型の製品が作りにくく、しか
もこれが多品種少量生産の場合には非常にコスト高とな
ってしまう欠点があった。However, the MIM method has a drawback that it is difficult to make a large-sized product as in the case of the powder compacting method, and the cost is very high in the case of high-mix low-volume production. .
【0011】すなわちMIM法の場合も圧粉成形法の場
合と同様に加圧成形であるため、成形には成形機と金型
が必要であり、大型で複雑形状の製品を成形する場合に
は、まず大型の成形機を用意しなければならないがこれ
が大変であり、次いで大型で複雑な金型は非常にコスト
が高い。That is, since the MIM method is pressure molding as in the case of the powder compacting method, a molding machine and a mold are required for molding, and when molding a large-sized product having a complicated shape. First, a large molding machine must be prepared, but this is difficult, and then a large and complicated mold is very expensive.
【0012】このように大型の成形機と金型を用いて成
形すると非常に成形費が掛かることは言うまでもないこ
とであるが、さらにこれが多品種少量生産となると非常
にコストが高くなる。It goes without saying that molding using a large-sized molding machine and a mold in this way requires a very high molding cost, but further, if this is a high-mix low-volume production, the cost will be very high.
【0013】次にMIM法の場合前記したように成形用
の原料中に熱可塑性のバインダが配合されるが、射出成
形を円滑に行わせるためにこの配合量は重量比で金属粉
末100に対して10前後と非常に高く、成形品の容量
の40〜50%はバインダが占めることになる。Next, in the case of the MIM method, a thermoplastic binder is blended in the raw material for molding as described above, but this blending amount is in a weight ratio with respect to 100 of the metal powder in order to smoothly perform the injection molding. It is extremely high at around 10 and the binder occupies 40 to 50% of the capacity of the molded product.
【0014】MIM法の場合、射出成形品中にこのよう
に多量に配合されている熱可塑性のバインダを焼結の前
に完全に取り除かないと高温での加熱に伴うバインダの
熱膨張や熱分解により焼結品に割れが生じてしまう。In the case of the MIM method, the thermoplastic binder, which is blended in such a large amount in the injection-molded product, must be completely removed before sintering, so that thermal expansion and thermal decomposition of the binder due to heating at high temperature will occur. This causes cracks in the sintered product.
【0015】このため射出成形品は焼結の前に低温で長
時間加熱してバインダを徐々に溶融したり熱分解したり
して取り除くいわゆる脱バインダをしなければならな
い。For this reason, the injection-molded article must be so-called binder removed before sintering by heating for a long time at a low temperature to gradually melt or thermally decompose the binder to remove it.
【0016】しかしながら製品が大型の場合は、脱バイ
ンダにより取り除かなければならないバインダの量が非
常に多いので、いくら時間を掛けてもバインダを完全に
取り除くのが難しく、この結果製品はひび割れが生じて
不良品が多くなり歩留まりが悪いので、製造に非常に時
間が掛かるだけでなくコストも非常に高くなってしま
う。However, when the product is large, the amount of binder that must be removed by the binder removal process is so large that it is difficult to completely remove the binder for any amount of time, which results in cracking of the product. Since the number of defective products increases and the yield is low, not only manufacturing takes a very long time, but also the cost becomes very high.
【0017】本発明は前記したような従来技術の欠点を
解消し、大型の製品を多品種少量生産する場合であって
も、短時間に低コストで製造できる焼結部品の製造方法
を提供することを目的とするものである。The present invention solves the above-mentioned drawbacks of the prior art, and provides a method for producing a sintered part which can be produced in a short time and at low cost even when producing a large number of large-sized products in small quantities. That is the purpose.
【0018】[0018]
【課題を解決するための手段】すなわち本発明は、金属
或いはセラミツク等の焼結性粉末を水溶性バインダを溶
解した水に混合して焼結用の水性スラリを形成する工
程、成形用型のキヤビテイに水性スラリを注入する工
程、型に振動を与えつつキヤビテイ中の水性スラリに混
入した空気を真空排気し脱泡する工程、脱泡の終わった
型をキヤビテイ内を圧搾空気で加圧しつつ冷却しキヤビ
テイ中のスラリを凍結固化成形する工程、型から取り出
した凍結固化成形物を乾燥する工程、乾燥した凍結固化
成形物を脱バインダした後焼結する工程から成ることを
第1の請求項とし、さらには、第1の請求項における凍
結固化成形物の乾燥を真空乾燥により行うことを特徴と
することを第2の請求項とする焼結部品の製造方法であ
る。That is, according to the present invention, a step of forming an aqueous slurry for sintering by mixing a sinterable powder such as metal or ceramic with water in which a water-soluble binder is dissolved, The process of injecting an aqueous slurry into the cavity, the process of evacuating the air mixed in the aqueous slurry in the cavity while applying vibration to the foam to defoam it, and cooling the defoamed mold while pressurizing the inside of the cavity with compressed air. The first claim comprises a step of freeze-solidifying and molding the slurry in the cavity, a step of drying the freeze-solidified article taken out of the mold, and a step of debinding the dried freeze-solidified article and then sintering. Furthermore, the method for producing a sintered component according to the second aspect is characterized in that the freeze-solidified molded article according to the first aspect is dried by vacuum drying.
【0019】[0019]
【発明の作用】本発明は以上のように構成され、まず成
形用の原料を水性スラリとしているので成形は型にスラ
リを流し込むいわゆる注型に行われ、この場合には成形
に際して加圧が全くないので、型としては、製品マスタ
を型取りし大型でも安くて短期間に作れる、ゴム型、金
属粉入り樹脂型、非鉄金属鋳造型、石膏型等の簡易型を
利用できる。The present invention is constructed as described above. First, since the raw material for molding is an aqueous slurry, the molding is performed by so-called casting in which the slurry is poured into a mold. In this case, no pressure is applied during molding. Since there is no such mold, a simple mold such as a rubber mold, a resin mold containing metal powder, a non-ferrous metal casting mold, a gypsum mold, etc., which can be molded from a product master and can be made inexpensively in a short time, can be used.
【0020】次いで簡易型への注入したスラリは真空排
気による脱泡により混入している空気が取り除かれ、さ
らに圧搾空気で加圧しながら冷却されて水分が凍結して
製品形状に固化されるので、キヤビテイ形状を精密に模
写すると同時に、真空排気により取り除けなかった気が
圧し潰されて気泡が全く存在しない、凍結固化成形物が
得られる。Next, the slurry that has been injected into the simple mold is defoamed by vacuum exhaust to remove the mixed air, and is further cooled while being pressurized with compressed air to freeze the water and solidify into the product shape. At the same time as precisely replicating the shape of the cavity, a freeze-solidified molded product can be obtained in which air that could not be removed by vacuum evacuation is crushed and no bubbles are present.
【0021】このようにして得られた凍結固化成形物
は、水分の凍結の効果を利用して固化されているのでバ
インダの配合量少なくても十分に形状を保持でき、この
結果としてバインダの配合量は水分を真空乾燥により取
り除いた際に形状を保持するのに必要な量だけで良い。Since the freeze-solidified molded product thus obtained is solidified by utilizing the effect of freezing of water, the shape can be sufficiently maintained even if the blending amount of the binder is small, and as a result, the blending of the binder is carried out. The amount is only required to maintain the shape when the water is removed by vacuum drying.
【0022】したがってバインダの配合量をMIM法の
場合に比べてはるかに少なくできるので、製品が大型の
場合でも比較的短時間で完全に脱バインダでき、焼結品
にはひび割れが殆ど生じないで歩留まりが良くなる。Therefore, since the amount of the binder to be blended can be made much smaller than that in the case of the MIM method, the binder can be completely removed in a relatively short time even if the product is large, and cracks hardly occur in the sintered product. Yield improves.
【0023】[0023]
【実施例】次に本発明の製造工程を図1の製造工程表に
基づいて説明する。EXAMPLES Next, the manufacturing process of the present invention will be explained based on the manufacturing process table of FIG.
【0024】まず第1工程は水性スラリの調整である。First, the first step is the adjustment of the aqueous slurry.
【0025】水性スラリは、焼結性粉末とバイダ水溶液
とを各々別途に用意し、両者を良く混合して調整され
る。The aqueous slurry is prepared by separately preparing the sinterable powder and the aqueous solution of the binder and thoroughly mixing them.
【0026】この場合に焼結性粉末は、平均粒径30ミ
クロン以下、好ましくは10ミクロン前後のSUS、銅
合金、Ti合金、W合金等の各種金属粉末やアルミナ、
ジルコニア、窒化ケイ素等の各種セラミツク粉末を、製
造しようとする製品の特性に応じて適宜選択して単体と
して或いは混合して利用する。In this case, the sinterable powder includes various metal powders such as SUS, copper alloys, Ti alloys, W alloys, etc. having an average particle size of 30 μm or less, preferably about 10 μm or alumina,
Various ceramic powders such as zirconia and silicon nitride are appropriately selected according to the characteristics of the product to be manufactured and used alone or as a mixture.
【0027】バイダ水溶液は、CMC、澱粉、PVA、
アルギン酸ナトリウム等の天然或いは合成の水溶性高分
子化合物を水に溶解するか、酢ビ系或いはアクリル系等
の合成樹脂エマルジヨンを水で希釈して形成する。The aqueous solution of the binder is CMC, starch, PVA,
It is formed by dissolving a natural or synthetic water-soluble polymer compound such as sodium alginate in water, or diluting a vinyl acetate-based or acrylic-based synthetic resin emulsion with water.
【0028】この場合、バイダ水溶液の濃度は、スラリ
が注型に適した流動性を持ちしかも焼結品の引けや密度
が適正となるような水分量とすると同時に、バイダ量が
焼結性粉末に対して容量として20%以下、好ましくは
10%以下程度となるように調整するが、溶媒は単に水
だけとしないで、低級のアルコールやセルソルブのよう
な親水性溶媒との混合溶媒としても良い。In this case, the concentration of the aqueous solution of the binder is such that the slurry has fluidity suitable for casting, and the shrinkage and density of the sintered product are appropriate, and at the same time, the amount of the binder is sinterable powder. The volume is adjusted to 20% or less, preferably 10% or less, but the solvent is not limited to water, but may be a mixed solvent with a hydrophilic solvent such as lower alcohol or cellosolve. .
【0029】前記のような条件を満たした水性スラリの
配合例を示すと次の通りである。 焼結性粉末 平均粒径10ミクロンのSUS粉末 100重量部 バインダ水溶液 PVA5重量%水溶液 10 〃A formulation example of the aqueous slurry satisfying the above conditions is as follows. Sinterable powder SUS powder having an average particle size of 10 microns 100 parts by weight Binder aqueous solution PVA 5% by weight aqueous solution 10 〃
【0030】次に第2工程として前記した配合例のよう
な水性スラリを型に注入するが、この場合に利用する型
は、製品マスタを液状の型取り材で注型法により型取り
してキヤビテイを形成した簡易型で十分である。Next, as a second step, an aqueous slurry as in the above-mentioned formulation example is injected into a mold. In this case, the mold used is a liquid mastering material obtained by casting by a casting method. A simple type with cavities is sufficient.
【0031】すなわち、製品マスタを配備した型枠の中
に、シリコンゴム、金属粉入りエポキシ樹脂、低融点合
金、石膏等の液状型取り材を注入し固化させた後製品マ
スタを取り出すと製品の形状をキヤビテイとして型取り
した簡易型が形成でき、本発明では型は高圧で押されな
いので、このような簡易型を利用しても何ら支障がな
い。That is, when a liquid mastering material such as silicon rubber, epoxy resin containing metal powder, low melting point alloy, gypsum, etc. is poured into a mold in which the product master is provided and solidified, the product master is taken out. It is possible to form a simple mold having a shape as a cavity, and since the mold is not pressed by high pressure in the present invention, there is no problem even if such a simple mold is used.
【0032】次に第3工程として、水性スラリをキヤビ
テイに注入した型を密閉箱内に入れて振動を与えつつ5
0〜100torr程度の真空度で真空排気し、型のキ
ヤビテイに注入された水性スラリ中に混入している空気
を取り除くいわゆる脱泡を1分間程度する。Next, in the third step, a mold in which the aqueous slurry was injected into the cavity was placed in a closed box and vibrated while being vibrated.
The so-called defoaming is carried out for about 1 minute by evacuating at a vacuum degree of about 0 to 100 torr to remove air mixed in the aqueous slurry injected into the mold cavity.
【0033】次に第4工程として、脱泡の終わった型を
脱泡の場合と同じく密閉箱中に入れ5kg/cm2程度
の圧力の圧搾空気でキヤビテイ内を加圧しつつ−30℃
程度で約10分間冷却しキヤビテイ中のスラリを凍結固
化成形する。Next, as the fourth step, the defoamed mold is put in a closed box as in the case of defoaming, and the inside of the cavity is pressurized with compressed air of a pressure of about 5 kg / cm 2 at -30 ° C.
After about 10 minutes of cooling, the slurry in the cavity is freeze-solidified.
【0034】この凍結固化成形に際してキヤビテイが圧
搾空気により加圧されているので、スラリはキヤビテイ
の壁面に良く密着すると同時に、前記した脱泡により取
り除けなかった空気も圧し潰されて取り除かれ、キヤビ
テイの形状を忠実に模写した良好な成形物が得られる。Since the cavity is pressed by the compressed air during the freeze-solidification molding, the slurry adheres well to the wall surface of the cavity, and at the same time, the air that could not be removed by the above-mentioned defoaming is also crushed and removed. It is possible to obtain a good molded product that faithfully reproduces the shape.
【0035】凍結固化成形物が得られたら、次に第5工
程として、凍結固化成形物から水分を取り除くために乾
燥を行うが、凍結固化成形物の形を崩さないで急速に水
分を取り除くために真空加熱乾燥炉中で真空乾燥を行
う。After the freeze-solidified molded product is obtained, as a fifth step, drying is performed to remove water from the freeze-solidified molded product, but water is rapidly removed without losing the shape of the freeze-solidified molded product. Then, vacuum drying is performed in a vacuum heating drying oven.
【0036】この真空乾燥の条件は凍結固化成形物の形
状や水分の含有量によっても変わるが、例えば10-1t
orr程度の真空度で常温で1時間乾燥した後100℃
でさらに1時間乾燥する。The vacuum drying conditions vary depending on the shape of the freeze-solidified molded product and the water content, but are, for example, 10 -1 t.
After drying at room temperature for 1 hour at a vacuum degree of orr, 100 ℃
And further dry for 1 hour.
【0037】凍結固化成形物は真空乾燥により水分を取
り除いてもバインダの結合力で形状を保っており、最後
に第6工程として、この真空乾燥の終わった成形物を真
空乾燥炉中に入れ常法に従い真空状態で加熱し、脱バイ
ダ及び焼結を行う。The freeze-solidified molded product retains its shape by the binding force of the binder even if the water content is removed by vacuum drying. Finally, as the sixth step, the vacuum-dried molded product is placed in a vacuum drying furnace. According to the method, it is heated in a vacuum state to remove the binder and sinter.
【0038】この脱バインダ及び焼結の条件は焼結性粉
末の種類やバインダの配合量により異なるが、例えば配
合例に示したようなスラリを用いた場合は、10-1to
rrの真空度で300℃−1時間の脱バインダをした後
10-2torrの真空度で1300℃−1.5時間の焼
結を行い窒素、アルゴン等の不活性ガス雰囲気中で冷却
して密度95%以上の高密度焼結部品を得る。The conditions of this binder removal and sintering differ depending on the type of sinterable powder and the compounding amount of the binder. For example, when the slurry shown in the compounding example is used, 10 -1 to
After removing the binder at a vacuum degree of rr at 300 ° C. for 1 hour, sintering at 1300 ° C. for 1.5 hours at a vacuum degree of 10 −2 torr and cooling in an inert gas atmosphere such as nitrogen and argon. A high-density sintered part having a density of 95% or more is obtained.
【0039】以上のように基本的に構成される本発明の
焼結部品の製造方法の具体的な実施方法について、次に
図面に基づいて説明する。A specific method for carrying out the method for manufacturing a sintered part of the present invention, which is basically constructed as described above, will be described below with reference to the drawings.
【0040】図2には本発明を実施するための凍結固化
成形装置が示され、1が上面が開口しこの開口を閉じる
蓋2を持つ密閉箱であり、この密閉箱1の側面には図示
しない真空ポンプに接続する真空排気管3及び図示しな
いコンプレツサに接続ある圧搾空気供給菅4が接続して
いる。FIG. 2 shows a freeze-solidification molding apparatus for carrying out the present invention. Reference numeral 1 denotes a closed box having a lid 2 having an open top surface and closing the opening. A vacuum exhaust pipe 3 connected to a vacuum pump and a compressed air supply pipe 4 connected to a compressor (not shown) are connected.
【0041】また密閉箱1の中には振動装置5が配備さ
れており、この振動装置5は、密閉箱1の底面に立てた
ばね7で振動板6を支持し、この振動板6の裏面に振動
板6を振動するための振動発生機8が取り付けられて形
成されている。A vibrating device 5 is provided in the closed box 1. The vibrating device 5 supports the vibrating plate 6 by a spring 7 standing on the bottom surface of the closed box 1, and the vibrating plate 5 is provided on the back surface of the vibrating plate 6. A vibration generator 8 for vibrating the diaphragm 6 is attached and formed.
【0042】さらに振動板6の上には冷却管10が埋設
された上面が開口した冷却枠9が載せられている。Further, on the vibration plate 6, a cooling frame 9 having an opened upper surface in which a cooling pipe 10 is embedded is placed.
【0043】以上のように構成される装置を利用して焼
結性粉末の凍結固化成形をするには、まず前記したよう
な、例えばシリコンゴム型のような簡易型11を冷却枠
9の中に入れて振動板6の上に載せ、蓋2は開けた状態
で密閉箱1内に配備する。In order to freeze-solidify and sinter the sinterable powder using the apparatus constructed as described above, first of all, the simple mold 11 such as a silicone rubber mold as described above is placed in the cooling frame 9. The lid 2 is placed in the closed box 1 with the lid 2 opened.
【0044】次に簡易型11の上面のキヤビテイ12に
連接するスラリ注入口13に対してスラリ注入用シリン
ダ14をスラリ吐出口15を合わせて配備し、スラリ注
入用シリンダ14から水性スラリ16をキヤビテイ12
内に注入する。Next, a slurry injecting cylinder 14 is provided so that the slurry injecting cylinder 14 is aligned with the slurry injecting opening 13 connected to the cavity 12 on the upper surface of the simplified mold 11, and the aqueous slurry 16 is removed from the slurry injecting cylinder 14. 12
Inject into.
【0045】簡易型11のキヤビテイ12へのスラリ1
6の注入が終わったなら、スラリ注入用シリンダ14を
取り除き密閉箱1の蓋2を閉め、まず真空排気管3の弁
を開いて箱内を50〜100torr程度の真空度と
し、しかも振動装置5の振動発生機8を作動させて簡易
型11を振動させながら約1分真空排気し、型11のキ
ヤビテイ12の中に注入された水性スラリ16の脱泡を
する。Slurry 1 for cavities 12 of simplified type 11
When the injection of 6 is completed, the slurry injection cylinder 14 is removed, the lid 2 of the closed box 1 is closed, the valve of the vacuum exhaust pipe 3 is first opened to make the inside of the box a vacuum degree of about 50 to 100 torr, and the vibration device 5 The vibration generator 8 is operated to evacuate the simplified mold 11 for about 1 minute to evacuate the aqueous slurry 16 injected into the cavity 12 of the mold 11.
【0046】脱泡が終わったなら、図3に示すように、
振動装置5の作動を止めると共に真空排気管3の弁を閉
じて圧搾空気供給管4の弁を開き密閉箱1内を圧力5k
g/cm2程度の圧搾空気で加圧し、同時に冷却枠9に
埋設されている冷却管10に液体窒素のような冷媒を流
し簡易型11を−30℃前後で約10分間冷却して簡易
型11のキヤビテイ12に注入されている水性スラリ1
6を凍結固化させて成形し、凍結固化成形物17を得
る。When the defoaming is completed, as shown in FIG.
The operation of the vibration device 5 is stopped, the valve of the vacuum exhaust pipe 3 is closed, the valve of the compressed air supply pipe 4 is opened, and the pressure in the closed box 1 is 5k.
Pressurized with compressed air of about g / cm 2 , and at the same time, a coolant such as liquid nitrogen is caused to flow through the cooling pipe 10 embedded in the cooling frame 9 to cool the simplified mold 11 at around -30 ° C for about 10 minutes. Aqueous slurry 1 injected into 11 cavities 12
6 is freeze-solidified and molded to obtain a freeze-solidified molded product 17.
【0047】以上のようにして凍結固化成形装置を利用
して水性スラリ16を凍結固化成形し凍結固化成形物1
7を得たなら、凍結固化成形装置の密閉箱1は、圧搾空
気の供給を止めて大気圧に戻すと同時に冷却管10への
冷媒の供給も止めて型の冷却を止め、蓋2を開いて簡易
型11を冷却枠9から外に取り出す。As described above, the freeze-solidification molding apparatus is used to freeze-solidify the aqueous slurry 16 for freeze-solidification molding 1.
7 is obtained, the closed box 1 of the freeze-solidification molding apparatus stops the supply of compressed air to return to atmospheric pressure, and at the same time stops the supply of refrigerant to the cooling pipe 10 to stop the cooling of the mold and open the lid 2. Then, the simplified mold 11 is taken out of the cooling frame 9.
【0048】簡易型11を密閉箱1の外に取り出したな
ら簡易型11を開いて凍結固化成形物17を型抜きをし
次の真空乾燥に移る。When the simple mold 11 is taken out of the closed box 1, the simple mold 11 is opened, the freeze-solidified molded product 17 is demolded, and the next vacuum drying is performed.
【0049】まず前記したような凍結固化成形装置を利
用すると水性スラリ16を極めて容易に凍結固化成形で
き、次いで簡易型としてシリコンゴム型を利用すると凍
結固化成形物17の形状が複雑であっても成形物を損傷
させることなく容易に型抜きができて好都合である。First, by using the freeze-solidifying apparatus as described above, the aqueous slurry 16 can be freeze-molded very easily, and then by using a silicone rubber mold as a simple mold, even if the shape of the freeze-molded article 17 is complicated. It is convenient that the die can be easily demolded without damaging the molded product.
【0050】簡易型11から型抜きされた凍結固化成形
物17は次に真空乾燥炉に入れて、水分の真空乾燥、脱
バインダ、焼結及び冷却を連続して行う。The freeze-solidified molded product 17 released from the simple mold 11 is then placed in a vacuum drying furnace, and vacuum drying of water, binder removal, sintering and cooling are continuously performed.
【0051】この場合の真空乾燥炉の雰囲気及び温度の
制御条件は図4の真空乾燥炉制御状態図に示す通りであ
り、まず真空乾燥炉の真空度を10-1torrとし、常
温で1時間、次に温度を100℃に上げて1時間真空乾
燥し凍結固化成形物17中の水分を取り除く。The conditions for controlling the atmosphere and temperature of the vacuum drying furnace in this case are as shown in the vacuum drying furnace control state diagram of FIG. 4. First, the vacuum degree of the vacuum drying furnace is set to 10 −1 torr and the temperature is kept at room temperature for 1 hour. Then, the temperature is raised to 100 ° C. and vacuum-dried for 1 hour to remove water in the freeze-solidified molded product 17.
【0052】続いて真空乾燥炉を真空度を10-1tor
rとしたまま温度を300℃に上げ、1時間脱バインダ
をし、水分が取り除かれた凍結固化成形物17中のバイ
ンダを溶融及び熱分解させて取り除く。Subsequently, the vacuum drying furnace is set to a vacuum degree of 10 -1 torr.
The temperature is raised to 300 ° C. with the temperature kept at r, the binder is removed for 1 hour, and the binder in the freeze-solidified molded product 17 from which water has been removed is melted and thermally decomposed and removed.
【0053】凍結固化成形物17は、まず真空乾燥によ
り水分が取り除かれ、続いて脱バインダによりバインダ
が取り除かれたならなら、真空乾燥炉の真空度を10-2
torrに上げ、温度もステンレスの焼結温度である1
300℃まで上げ、1.5時間加熱して焼結する。If the water content of the freeze-solidified molded product 17 is first removed by vacuum drying and then the binder is removed by debinding, the vacuum degree of the vacuum drying furnace is set to 10 -2.
Raised to torr, the temperature is also the sintering temperature of stainless steel 1
The temperature is raised to 300 ° C. and heated for 1.5 hours for sintering.
【0054】焼結が終わったなら真空乾燥炉の真空度は
10-2torrのままとして加熱を止めて焼結部品を冷
却し、炉内が500℃程度までに温度が下がったなら、
例えば窒素ガスのような不活性ガスを導入して不活性ガ
ス雰囲気の下で焼結部品をさらに常温まで冷却する。When the sintering is completed, the vacuum degree of the vacuum drying furnace is kept at 10 -2 torr, the heating is stopped and the sintered parts are cooled, and if the temperature inside the furnace is lowered to about 500 ° C,
For example, an inert gas such as nitrogen gas is introduced to further cool the sintered part to room temperature under an inert gas atmosphere.
【0055】[0055]
【発明の効果】本発明は以上のような構成及び作用のも
のであり、勿論既存の減圧箱や冷凍庫を利用しても良い
がこれらの機能を一つに纏めた簡便な凍結固化成形装置
を利用すれば一層容易に水性スラリと簡易型とを用いて
焼結性粉末の凍結固化成形物が得られる。The present invention has the constitution and operation as described above, and of course, an existing decompression box or freezer may be used, but a simple freeze-solidification molding apparatus combining these functions into one is provided. If used, a freeze-solidified molded product of a sinterable powder can be obtained more easily by using an aqueous slurry and a simple mold.
【0056】凍結固化成形物が得られたならば、これを
真空乾燥炉にいれまず水分を取り除くための真空乾燥を
した後に常法にしたがって脱バインダと焼結とを行えば
大型の焼結部品が容易に製造できる。When a freeze-solidified molded product is obtained, it is put in a vacuum drying furnace, vacuum-dried to remove water, and then subjected to binder removal and sintering according to a conventional method to obtain a large sintered part. Can be easily manufactured.
【0057】しかも凍結固化成形物中には焼結性粉末に
対して容量で10%前後しかバインダが含まれていない
ので、バインダが50%以上も含まれているために脱バ
イダに数十時間掛かるMIM法に比べれば1時間程度と
はるかに短い時間で脱バインダができ。Furthermore, since the freeze-solidified molded product contains only about 10% by volume of the binder with respect to the sinterable powder, the binder is contained in an amount of 50% or more. Binder removal can be done in a much shorter time of about 1 hour compared to the MIM method.
【0058】しかも従来のMIM法では脱バインダに際
して多量のバインダが熱膨張した後取り除かれ大きな体
積変化が生じるために焼結部品ひび割れによる不良が発
生し易く、特に大型部品ではこの傾向が強かったが、本
発明によると前記したようにバイダ含有量が極めて少な
いので、大型部品であってもこのような不良は殆ど生じ
ない。Further, in the conventional MIM method, a large amount of binder is removed after thermal expansion during binder removal and a large volume change occurs, so that defects due to cracking of sintered parts are likely to occur, and this tendency is particularly strong in large parts. According to the present invention, since the binder content is extremely small as described above, such a defect hardly occurs even in a large-sized component.
【0059】さらにMIM法の場合と同様に粒径10ミ
クロン以下程度の非常に微細な焼結性粉末を利用できる
ので、表面が平滑で高密度の焼結部品を製造できる。Further, as in the case of the MIM method, a very fine sinterable powder having a particle size of about 10 microns or less can be used, so that a sintered part having a smooth surface and a high density can be manufactured.
【図1】 製造工程表、FIG. 1 is a manufacturing process chart,
【図2】 凍結固化成形装置(スラリの
型への注入状態)、FIG. 2 Freeze-solidification molding device (state of pouring slurry into mold),
【図3】 凍結固化成形装置(凍結固化
成形状態)、FIG. 3 Freeze-solidification molding device (freeze-solidification molding state),
【図4】 真空乾燥炉制御状態図。FIG. 4 is a vacuum drying furnace control state diagram.
1 密閉箱 3 排気管 4 圧搾空気供給管 5 振動装置 6 振動板 9 冷却枠 10 冷却管 11 簡易型 14 スラリ注入用シリンダ 16 水性スラリ 17 凍結固化成形物 1 Closed Box 3 Exhaust Pipe 4 Compressed Air Supply Pipe 5 Vibration Device 6 Vibration Plate 9 Cooling Frame 10 Cooling Pipe 11 Simple Type 14 Cylinder for Slurry Injection 16 Aqueous Slurry 17 Freeze-solidified Molded Product
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/64 C04B 35/64 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C04B 35/64 C04B 35/64 Z
Claims (2)
溶性バインダを溶解した水に混合して焼結用の水性スラ
リを形成する工程、成形用型のキヤビテイに水性スラリ
を注入する工程、型に振動を与えつつキヤビテイ中の水
性スラリに混入した空気を真空排気し脱泡する工程、脱
泡の終わった型をキヤビテイ内を圧搾空気で加圧しつつ
冷却しキヤビテイ中のスラリを凍結固化成形する工程、
型から取り出した凍結固化成形物を乾燥する工程、乾燥
した凍結固化成形物を脱バインダした後焼結する工程か
ら成ることを特徴とする焼結部品の製造方法。1. A step of mixing a sinterable powder such as metal or ceramic with water in which a water-soluble binder is dissolved to form an aqueous slurry for sintering, a step of injecting the aqueous slurry into a cavity of a molding die, A process of degassing by vacuum exhausting the air mixed in the aqueous slurry in the cavity while giving vibration to the mold, cooling the mold after defoaming while pressing the inside of the cavity with compressed air to freeze-solidify the slurry in the cavity Process,
A method of manufacturing a sintered part, comprising: a step of drying a freeze-solidified molded product taken out of a mold; and a step of debindering the dried freeze-solidified molded product and then sintering.
うことを特徴とする請求項1記載の焼結部品の製造方
法。2. The method for producing a sintered part according to claim 1, wherein the freeze-solidified molded product is dried by vacuum drying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6261768A JPH08100204A (en) | 1994-09-30 | 1994-09-30 | Production of sintered part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6261768A JPH08100204A (en) | 1994-09-30 | 1994-09-30 | Production of sintered part |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08100204A true JPH08100204A (en) | 1996-04-16 |
Family
ID=17366431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6261768A Pending JPH08100204A (en) | 1994-09-30 | 1994-09-30 | Production of sintered part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08100204A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2050727A2 (en) | 2007-10-15 | 2009-04-22 | Pacific Rundum Co., Ltd | Ceramic Molded Product and Manufacturing Method Thereof |
CN103204750A (en) * | 2012-09-21 | 2013-07-17 | 湖北航天化学技术研究所 | Vacuum vibration casting system for slurry of explosives and powders |
-
1994
- 1994-09-30 JP JP6261768A patent/JPH08100204A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2050727A2 (en) | 2007-10-15 | 2009-04-22 | Pacific Rundum Co., Ltd | Ceramic Molded Product and Manufacturing Method Thereof |
EP2050727A3 (en) * | 2007-10-15 | 2012-03-14 | Pacific Rundum Co., Ltd | Ceramic Molded Product and Manufacturing Method Thereof |
CN103204750A (en) * | 2012-09-21 | 2013-07-17 | 湖北航天化学技术研究所 | Vacuum vibration casting system for slurry of explosives and powders |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0968062B1 (en) | Method of constructing fully dense metal molds | |
EP0255577A1 (en) | Method of producing mold for slip casting | |
JPS60217106A (en) | Inorganic-powder freezing molding method | |
US5977007A (en) | Erbia-bearing core | |
EP1832359A1 (en) | Process for producing cast metal according to evaporative pattern casting | |
JPS61287702A (en) | Method of molding powdered body | |
JP2002129204A (en) | Method for manufacturing porous metal | |
JPS6164801A (en) | Molding method of powder of metal, ceramics or the like | |
CN112895238B (en) | Method for near-net forming of hollow metal structural part | |
US5028363A (en) | Method of casting powder materials | |
US5997603A (en) | Sintered metal mould and method for producing the same | |
JPH0533006A (en) | Production of injected and sintered body of powder | |
JPH08100204A (en) | Production of sintered part | |
JPS6254162B2 (en) | ||
JPS58179558A (en) | Precision casting method using water-soluble casting mold | |
JP2008254427A (en) | Manufacturing method of component by pim or micro pim | |
JPH01200907A (en) | Method and apparatus for cast molding of powder | |
CN101302116A (en) | Method for making composite multi-stage fine powder Y2O3 copple by isostatic pressing process dry press | |
JPH08117247A (en) | Manufacture of powder-sintered dental inlay | |
WO1990001385A1 (en) | Process for making a consolidated body | |
JPH0478681B2 (en) | ||
JPH05200711A (en) | Method for molding powder | |
JPH06226718A (en) | Powder molding method | |
JPH08127802A (en) | Production of precision parts by powder hardening | |
CN114752798A (en) | Preparation method of high-silicon aluminum alloy |