JPS58179558A - Precision casting method using water-soluble casting mold - Google Patents

Precision casting method using water-soluble casting mold

Info

Publication number
JPS58179558A
JPS58179558A JP6200482A JP6200482A JPS58179558A JP S58179558 A JPS58179558 A JP S58179558A JP 6200482 A JP6200482 A JP 6200482A JP 6200482 A JP6200482 A JP 6200482A JP S58179558 A JPS58179558 A JP S58179558A
Authority
JP
Japan
Prior art keywords
mold
casting
water
magnesium sulfate
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6200482A
Other languages
Japanese (ja)
Other versions
JPS5952018B2 (en
Inventor
Takeshi Imura
井村 武
Masaki Sakakibara
榊原 将樹
Shoichi Yoshikawa
吉川 昌一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6200482A priority Critical patent/JPS5952018B2/en
Publication of JPS58179558A publication Critical patent/JPS58179558A/en
Publication of JPS5952018B2 publication Critical patent/JPS5952018B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To cast a thin walled member having an intricate shape precisely by performing vacuum casting then pressure casting by using a water soluble casting mold which is produced from gypsum and hydrate of magnesium sulfate and removing the mold with water after the casting. CONSTITUTION:Hemihydrate gypsum and magnesium sulfate are mixed at about 3:2 ratio, and a powdery and granular refractory material and water are added thereto to prepare a slurry. The slurry is cast into a pattern and is solidified, whereby a molding is obtained. The molding is dried primarily at <=120 deg.C and is then dried secondarily at >=270 deg.C to remove crystal water. A water-soluble casting mold having high mechanical strength and having a dense layer consisting of the fine crystal particles of magnesium sulfate in the surface layer is thus obtained. Such mold 13 is installed in the case 2 of a precision casting device 1 and the inside is evacuated with a vacuum pump 10, whereafter molten metal M is charged into the cavity 15 and is cast under pressure by a compressed air source 8 successively. The mold 13 is dipped and dissolved in water upon solidification of the metal M whereby the casting which is a product is obtained.

Description

【発明の詳細な説明】 本発明は表層部に硫酸マグネシウムの結晶微粒子が多く
集捷った緻密層を形成した水溶性鋳型を用いた精密鋳造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a precision casting method using a water-soluble mold in which a dense layer in which many crystalline particles of magnesium sulfate are concentrated is formed in the surface layer.

従来から、過給機用翼車、タービン用翼車等の薄肉で複
雑庁形状をした部材を鋳造するには、一般にα型の半水
石こうを主体とし、これに耐火物粉末或いは凝結時間や
膨張量をコントロールするための添加物を配合した鋳造
川石こう及び水を混合してスラリー状としたものを、枠
内に設置したゴム模型上に流し込んで硬化せしめた後、
該模型を取り除いて鋳型を成形し1次いで250〜55
0℃に予熱した上記鋳型に溶融金属を鋳込んで減圧鋳造
法若しくは加圧鋳造法で鋳造するようにしている。そし
て、鋳造後は上記鋳型を機械的振動又は高圧水洗浄等の
方法で崩壊して除去するようにしている。
Conventionally, in order to cast parts with thin walls and complex shapes such as turbocharger impellers and turbine impellers, α-type hemihydrate gypsum is generally used as the main material, and refractory powder or setting time or A slurry made by mixing cast river gypsum with additives to control the amount of expansion and water is poured onto a rubber model placed in a frame and allowed to harden.
The model was removed, a mold was formed, and the temperature was 250 to 55.
Molten metal is poured into the mold preheated to 0° C., and casting is performed by a vacuum casting method or a pressure casting method. After casting, the mold is disintegrated and removed by mechanical vibration or high-pressure water washing.

しかしながら、上記の如き薄肉で複雑な形状の部材を鋳
造する場合には、崩壊後の鋳型残り或いは薄肉部の変形
等が生じるため、鋳物の形状に大きな制約が課せられる
However, when casting a thin-walled member with a complicated shape as described above, significant restrictions are imposed on the shape of the casting because mold remains after collapse or deformation of the thin-walled portion occurs.

また、従来の鋳型はα警手水石こうを凝結材(バインダ
ー)としている為、鋳型表面及び内部とも略均−な組成
となり、100〜120℃に加熱した場合には上記α警
手水石こうが半水石こうとなり、200℃付近に加熱し
た場合には無水石こうとなり。
In addition, since conventional molds use α-Kate-sui gypsum as a coagulating material (binder), the composition is approximately uniform both on the surface and inside of the mold, and when heated to 100 to 120°C, the α-Kate-sui gypsum It becomes hemihydrate gypsum, and when heated to around 200℃, it becomes anhydrous gypsum.

強度が低下する。このため、減圧鋳造時或いは加圧鋳造
時に鋳型の一部が壊れ、砂噛みゃ鋳肌荒れの原因となる
Strength decreases. For this reason, a part of the mold breaks during vacuum casting or pressure casting, and sand encroachment causes rough casting surface.

本発明者等は上記従来の問題点を改善すべく本発明を成
したものであり、その目的とする処は。
The present inventors have accomplished the present invention in order to improve the above-mentioned conventional problems, and the purpose thereof is as follows.

鋳造時における機械的強度に優れ、且つ鋳造後において
は水によって容易に崩壊し取り除きが可能な水溶性鋳型
を用いることで、鋳造品の鋳肌が良好で、しかも内部が
健全な製品を得ることができ、特に過給機用翼車、ター
ビン用翼車等の薄肉で複雑な形状の部材を精密鋳造する
のに好適した鋳造法を提供するにある。
By using a water-soluble mold that has excellent mechanical strength during casting and can be easily disintegrated and removed by water after casting, it is possible to obtain a product with a good casting surface and a sound interior. It is an object of the present invention to provide a casting method which is particularly suitable for precision casting thin-walled and complicatedly shaped members such as supercharger impellers and turbine impellers.

断る目的を達成すべく本発明は、石こう、硫酸マグネシ
ウムの水和物、水及び必要に応じて粉末状或いは粒状の
耐火物を混合してスラリーを作る]−程と、このスラリ
ーをゴム模型などに流し込んで硬化せしめ1次いで該模
型を取り除いて鋳型となる成形物を作る工程と、この成
形物を120℃以Fの温度次いで270℃以上の温度で
二段階に加熱幹燥せしめて鋳型を製造する工程と、この
鋳型を用いて最初は減圧で次いで加圧して連続的に溶融
金属を鋳込むようにしたことをその要旨としている。
In order to achieve the above object, the present invention prepares a slurry by mixing gypsum, hydrated magnesium sulfate, water and, if necessary, a powdered or granular refractory material. A process of pouring the mold into a mold and hardening it, then removing the model to make a molded product, and heating and drying this molded product in two stages at a temperature of 120°C or higher and then at a temperature of 270°C or higher to produce a mold. The gist of the process is that molten metal is continuously cast using this mold, first under reduced pressure and then under increased pressure.

以下に本発明に係る精密鋳造法の一例を工程順に詳述す
る。
An example of the precision casting method according to the present invention will be explained in detail below in order of steps.

先ず水溶性の鋳型を製造する方法について述べると、最
初の工程として、半水石こう(CaSO4’/!H,O
)に硫酸マグネシウムの水和物例えば1゜2、3.4.
5.6.7或いは12個の水分子が結合した水和物を・
たとえば、上記半水石こうの量と比較して重量比で名程
度の割合となるように混合し。
First, to describe the method for producing a water-soluble mold, the first step is to use hemihydrate gypsum (CaSO4'/!H,O
) to a hydrate of magnesium sulfate, for example 1°2, 3.4.
5.6.7 or a hydrate in which 12 water molecules are bonded.
For example, mix it so that the weight ratio is about the same as the amount of hemihydrate gypsum above.

この混合物にムライトフラワーなどの粉末状耐火物と水
を加え、更にこれに珪砂などの粒状耐火物を加えて混合
しスラリーとする。
A powdered refractory such as mullite flour and water are added to this mixture, and further a granular refractory such as silica sand is added and mixed to form a slurry.

そして、このスラリーを減圧下などの出来るだけ気泡が
生じない状態で、枠内に設置した製品形状をしたゴム模
型上に流し込み、5〜10分程静置して石こうを凝固せ
しめ、次いで上記ゴム模型を取り除き、後に鋳型となる
成形物を製造する。
This slurry is then poured under reduced pressure or other conditions with as few air bubbles as possible onto a product-shaped rubber model placed in a frame, left to stand for 5 to 10 minutes to solidify the plaster, and then the above-mentioned rubber The model is removed and a molded product that will later become a mold is manufactured.

次いで上記成形物を120℃以下の乾燥炉で所定時間1
次乾燥せしめ、この後頁に270U以上の乾燥炉で2次
乾燥して水溶性の鋳型とする。
Next, the molded product is dried in a drying oven at 120°C or lower for a predetermined time 1.
It is then dried, and then dried in a drying oven of 270 U or more to form a water-soluble mold.

以上において、無水硫酸マグネシウムとせずに硫酸マグ
ネシウムの水和物を添加するようKしたのは、F記成形
物を乾燥せしめる際に、石こうの針状結晶間を硫酸マグ
ネシウム水和物の水溶液が表面に向って移動し、この移
動につれて硫酸マグネシウムの結晶微粒子が表層部に移
動し、表層部に緻密な層を形成するという所謂フローテ
ーション現象をねらったものであり、逆に無水硫酸マグ
ネ/ラムを添加すると石こうよりも先に無水硫酸マグネ
シウムが凝固してしまい、上記70−テ−/ヨンが生じ
ないので、鋳型全体が従来と同様の均一組成となり強度
が低下してしまうからである。
In the above, the reason for adding hydrated magnesium sulfate instead of anhydrous magnesium sulfate is that when drying the molded product described in F, an aqueous solution of hydrated magnesium sulfate passes between the acicular crystals of gypsum on the surface. This is aimed at the so-called flotation phenomenon in which the crystalline fine particles of magnesium sulfate move toward the surface and form a dense layer on the surface. If added, the anhydrous magnesium sulfate will solidify before the gypsum, and the above-mentioned 70-tail/yon will not occur, so the entire mold will have a uniform composition similar to the conventional one, resulting in a decrease in strength.

壕だ120℃以下の温度で1次乾燥するようKしたのは
、この温度以上で一気に加熱乾燥せしめると、石こうの
水和物(CaSO+・zato)及び硫酸マグネシウム
の水和物の脱水反応が急激に行なわれ、70−テ−7ヨ
ンによって生じた鋳型表層部の緻密層の通気が悪くなっ
て、鋳型が部分的に破裂状態となり、鋳型としての機能
を成さなくなるからである。
The reason why the trench was first dried at a temperature below 120°C was because if it was heated and dried all at once above this temperature, the dehydration reaction of gypsum hydrate (CaSO+・zato) and magnesium sulfate hydrate would occur rapidly. This is because the dense layer on the surface of the mold created by the 70-tail 7 yen becomes poorly ventilated, causing the mold to partially rupture and no longer function as a mold.

更に、270℃以上の温度で2次乾燥するようにしたの
は、硫酸マグネシウムの水和物は270℃以上で無水硫
酸マグネシウムとなり、鋳造後の鋳巣・ふかれ等を防止
し得ると共に、水に容易に溶けるようにするためである
。このようにすることで。
Furthermore, secondary drying was carried out at a temperature of 270°C or higher because the hydrate of magnesium sulfate becomes anhydrous magnesium sulfate at 270°C or higher, which prevents cavities and blisters after casting, and also prevents water from forming. This is to make it easily soluble. By doing it like this.

鋳造後に鋳型を容易に崩壊せ(7めることかでき。The mold can be easily collapsed after casting.

薄肉で複雑な形状の製品を変形させることなく鋳型を除
去し得る。
The mold can be removed without deforming a thin-walled, complex-shaped product.

以上の如くして得られた水溶性鋳型と従来の鋳型とを強
度的に比較したものを第1図に示した。
FIG. 1 shows a comparison of the strength of the water-soluble mold obtained as described above and a conventional mold.

この第1図からも明らかな如く本発明方法の実施に用い
る鋳型は強度的に優れ、加圧鋳造時に鋳型の一部が壊れ
たりする不利がないことが分かる。
As is clear from FIG. 1, the mold used for carrying out the method of the present invention has excellent strength, and there is no disadvantage that part of the mold breaks during pressure casting.

次に上記水溶性鋳型を用いた精密鋳造法を第2図に基い
て詳述する。
Next, a precision casting method using the above-mentioned water-soluble mold will be explained in detail with reference to FIG.

第2図は精密鋳造装置1を示すものであり、鋳造装置1
はボックス状のケース2の上面に開口部3を形成し、こ
の開口部3を蓋体4で気密に密閉し得るようにするとと
もに、下面に2本のノくイブ5,6を接続(7、一方の
パイプ5をパルプ7を介して用気源8につなげ、他方の
バイブロをパルプ9を介して真空ポンプ10につなげて
いる。
Figure 2 shows the precision casting device 1.
An opening 3 is formed on the top surface of the box-shaped case 2, and this opening 3 can be airtightly sealed with a lid 4, and two knobs 5 and 6 are connected to the bottom surface (7). , one pipe 5 is connected to an air source 8 via a pulp 7, and the other vibro is connected to a vacuum pump 10 via a pulp 9.

そしてケース2内にはアングル状のブラケット11i/
こよつで鋳枠12が支持され、との鋳枠12に前記した
方法によって製造した水溶性鋳型13及び冷(7金14
をセットしている。而してこれら鋳型13及び冷し金1
4によって製品を鋳造するキャビティ15及びこれ15
とつながる湯口16が形成される。
Inside the case 2 is an angled bracket 11i/
A flask 12 is supported by the shingle, and a water-soluble mold 13 manufactured by the method described above and a cold (7 gold 14) are placed in the flask 12.
is set. These molds 13 and chillers 1
4 and a cavity 15 in which the product is cast.
A sprue 16 is formed which is connected to the sprue.

以1−の如き鋳造装置1を用いて精密鋳造するには、蓋
体4を外して開口部3から溶湯Mを予め予熱し7たラド
ル17に注入し、蓋体4によって開口部3を閉じ1.真
空ポンプ10を駆動せしめ、ケース2内を減圧する。し
かる後ラドル17を傾は溶iMを湯1]16を介してキ
ャピテイ15内に溶湯Mを充填する。
To carry out precision casting using the casting apparatus 1 as described in 1- below, remove the lid 4, pour the molten metal M from the opening 3 into the preheated ladle 17, and close the opening 3 with the lid 4. 1. The vacuum pump 10 is driven to reduce the pressure inside the case 2. Thereafter, the ladle 17 is tilted to fill the cavity 15 with the molten metal M via the molten metal 1]16.

そ(7てrt=lちにパルプ9を閉じ減圧を破壊し1次
いで溶湯Mが凝固する前にパルプ7を開とし、ケース2
内に圧気を導入し、溶湯Mを加圧しつつ鋳造する。この
ようにして溶湯Mを凝固せしめた後、鋳型13を鋳造装
置1から取り出して水槽中に浸漬し、鋳型13を溶かし
て製品である鋳物を得る。
Then, at rt=l, the pulp 9 is closed to break the vacuum, and then the pulp 7 is opened before the molten metal M solidifies, and the case 2
Pressurized air is introduced into the mold, and the molten metal M is cast while being pressurized. After solidifying the molten metal M in this manner, the mold 13 is taken out from the casting apparatus 1 and immersed in a water tank to melt the mold 13 and obtain a cast product.

次に本発明の具体的な実施例を述べる。Next, specific examples of the present invention will be described.

(実施例1) 石こう60部に硫酸マグネシウムの水和物40部及び水
50部を入れて気泡の発生を極力抑えて混合してスラリ
ーとし、このスラリーを枠内に設置したコンプレッサー
ホイールのゴム模型に流し込み、石こうが凝固した後ゴ
ム模型を取り除いて鋳型となる成形物を作成した。その
後この成形物を80℃の乾燥炉にて4時間乾燥せしめ1
次いで270℃の乾燥炉にて3時間乾燥せしめて鋳型と
した。
(Example 1) 60 parts of gypsum, 40 parts of magnesium sulfate hydrate, and 50 parts of water are mixed to minimize the generation of air bubbles to form a slurry, and this slurry is installed in a frame to create a rubber model of a compressor wheel. After the plaster solidified, the rubber model was removed to create a mold. After that, this molded product was dried in a drying oven at 80°C for 4 hours.
Next, it was dried in a drying oven at 270°C for 3 hours to form a mold.

そして、上記鋳型を約200℃に予熱し、 20.、l
Hfの減圧室中で溶解温度720℃の溶融アルミニウム
(ACJC相当)を鋳込み、直ちに9驚の圧縮空気を送
り込んで約6分間程装置し凝固せしめた後。
Then, preheat the mold to about 200°C, 20. ,l
Molten aluminum (equivalent to ACJC) with a melting temperature of 720°C was cast in a Hf reduced pressure chamber, and immediately after 9 hours of compressed air was fed into the machine for about 6 minutes to solidify it.

大気解放し放冷した その後、この鋳型を水槽中に約30分浸漬したところ、
鋳型は完全に溶出し、また鋳物自体も流水で洗浄したと
ころ非常に鋳肌の優れたものが得られた。
After exposing the mold to the atmosphere and leaving it to cool, the mold was immersed in a water tank for about 30 minutes.
The mold was completely eluted, and when the casting itself was washed with running water, a casting with an excellent cast surface was obtained.

(実施例2) 石こう口部、硫酸マグネシウムの水和物8部、ムライト
フラワー20部、珪砂60部、水20部を材料とし、実
施例1と同様の方法で鋳型となる成形物を作成し、これ
を100℃で3時間乾燥せしめた後、史に270℃にて
3時間乾燥して鋳型とし、この鋳型の温度が低下しない
ようにして実施例1と回じ条件で溶融アルミニウムを鋳
造した。そして鋳造金属が凝固し7た後直ちに水槽に浸
漬したところ、鋳型は完全に溶解した。
(Example 2) Using a gypsum mouthpiece, 8 parts of magnesium sulfate hydrate, 20 parts of mullite flour, 60 parts of silica sand, and 20 parts of water as materials, a molded article was created in the same manner as in Example 1. After drying this at 100°C for 3 hours, it was dried at 270°C for 3 hours to form a mold, and molten aluminum was cast under the same conditions as in Example 1 without decreasing the temperature of this mold. . Immediately after the cast metal had solidified, it was immersed in a water bath, and the mold was completely dissolved.

このようにして得られた鋳物製品の鋳肌の面粗度と従来
の石こう鋳型を用いた場合の鋳肌の面粗度を第3図に示
している。即ち本発明方法によってイHられた製品の鋳
肌の面粗度は第3図(イ)に示す如く約15μと優れて
いるが、従来方法によって得た製品の峡肌の面粗度は第
3図(ロ)に示す如く、約3.Opと劣っている。
FIG. 3 shows the surface roughness of the casting surface of the thus obtained casting product and the surface roughness of the casting surface when a conventional gypsum mold was used. That is, the surface roughness of the cast surface of the product obtained by the method of the present invention is excellent, approximately 15μ, as shown in FIG. As shown in Figure 3 (b), about 3. It is inferior to OP.

以上の説明で明らかな如く本発明によれば、石こう、硫
酸マグネシウム水和物及び水を含むスラリーを鋳型形状
に成形せしめた後、これを2段階に加熱乾燥せしめるよ
うにして鋳型を製造するようにしたので、乾燥工程にお
けるフローチージョンによって鋳型表面には硫酸マグネ
シウムの結晶微粒子を多量に含む緻密層が形成され、こ
のため。
As is clear from the above description, according to the present invention, a mold is manufactured by forming a slurry containing gypsum, magnesium sulfate hydrate, and water into a mold shape, and then heating and drying the slurry in two stages. Because of this, a dense layer containing a large amount of crystalline fine particles of magnesium sulfate is formed on the mold surface due to flow fusion during the drying process.

鋳型は鋳造時における機械的強度に優れたものとなると
同時に鋳造後に容易に水に溶けるものとなる。
The mold has excellent mechanical strength during casting, and at the same time is easily soluble in water after casting.

したがって斯る鋳型を用いて最初減圧状態で次いで加圧
状態で鋳造する精密鋳造方法によって得られた製品は寸
法精度が高く、且つ鋳肌に極めて優れたものとなる等多
くの利点を有する。
Therefore, products obtained by a precision casting method in which the mold is first cast in a reduced pressure state and then in a pressurized state have many advantages, such as high dimensional accuracy and an extremely excellent casting surface.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施の一例を示すものであり。 第1図は本発明方法によって得られた鋳型の強度を従来
例と比較した線図、第2図は本発明方法を実施するため
の鋳造装置の縦断面図、第3図(イ)は本発明方法によ
って得られた製品の鋳肌の面粗度を表わす線図、第3図
(ロ)は従来法によって得られた製品の鋳肌の面粗度を
表わす線図である。 r「”后、図面中1はりj造装置、8は圧気源、10は
真空ポンプ、12は鋳枠、13は鋳型、15はキャピテ
イ、Mit溶湯である。 特許 出 願人 本田技研工業株式会社代理人 弁理士
 下  1) 容一部
The drawings show an example of implementation of the present invention. Fig. 1 is a diagram comparing the strength of the mold obtained by the method of the present invention with that of a conventional example, Fig. 2 is a longitudinal cross-sectional view of a casting device for carrying out the method of the present invention, and Fig. 3 (a) is a diagram comparing the strength of the mold obtained by the method of the present invention with that of a conventional example. A diagram showing the surface roughness of the casting surface of a product obtained by the inventive method, and FIG. 3 (b) is a diagram showing the surface roughness of the casting surface of the product obtained by the conventional method. In the drawing, 1 is a gluing device, 8 is a pressure source, 10 is a vacuum pump, 12 is a casting flask, 13 is a mold, 15 is a capacitance, and Mit molten metal. Patent Applicant Honda Motor Co., Ltd. Agent Patent Attorney 2 1) Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 石こう、硫酸マグネシウムの水和物及び水を混合してな
るスラリーを模型に流し込んで硬化せしめ、次いで模型
を取り除くことで所定形状の成形物を成形し、この成形
物を120℃以下の温度で1次乾燥しだ後270℃以上
の温度で2次乾燥して成形物内の結晶水を取り除いて鋳
型とし、常温以上VC予熱した上記鋳型を用いて溶融金
属を減圧鋳造し、その後上記溶融金属が凝固する前に圧
縮気体にて溶融金属を加圧するようにしたことを特徴と
する水溶性鋳型を用いた精密鋳造法。
A slurry made by mixing gypsum, magnesium sulfate hydrate, and water is poured into a model and allowed to harden.Then, the model is removed to form a molded product of a predetermined shape, and this molded product is heated at a temperature of 120°C or less. After drying, the mold is dried at a temperature of 270°C or higher to remove crystallization water in the molded product, and the molten metal is cast under reduced pressure using the mold that has been preheated by VC to room temperature or higher. A precision casting method using a water-soluble mold characterized by pressurizing molten metal with compressed gas before solidifying.
JP6200482A 1982-04-14 1982-04-14 Precision casting method using water-soluble mold Expired JPS5952018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200482A JPS5952018B2 (en) 1982-04-14 1982-04-14 Precision casting method using water-soluble mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200482A JPS5952018B2 (en) 1982-04-14 1982-04-14 Precision casting method using water-soluble mold

Publications (2)

Publication Number Publication Date
JPS58179558A true JPS58179558A (en) 1983-10-20
JPS5952018B2 JPS5952018B2 (en) 1984-12-17

Family

ID=13187567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200482A Expired JPS5952018B2 (en) 1982-04-14 1982-04-14 Precision casting method using water-soluble mold

Country Status (1)

Country Link
JP (1) JPS5952018B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132745A (en) * 1986-11-25 1988-06-04 Honda Motor Co Ltd Production of water soluble casting mold
JPS63140741A (en) * 1986-12-01 1988-06-13 Honda Motor Co Ltd Manufacture of water soluble mold
JPH091284A (en) * 1995-06-15 1997-01-07 Nippon Flour Mills Co Ltd Clay for casting mold and casting method using the same
US5639298A (en) * 1995-11-27 1997-06-17 Air Products And Chemicals, Inc. Modified gypsum compositions
JP2001105121A (en) * 1999-09-30 2001-04-17 Aisin Takaoka Ltd Casting method and casting apparatus using gypsum mold
GB2379628A (en) * 2001-08-08 2003-03-19 Micro Metalsmiths Ltd Investment casting
EP1449601A1 (en) * 2003-02-21 2004-08-25 Mazda Motor Corporation Water-soluble casting mold and method for manufacturing the same
JP2007069400A (en) * 2005-09-06 2007-03-22 Yokohama Rubber Co Ltd:The Gypsum mold-drying method and gypsum mold-drying apparatus
KR100925973B1 (en) 2008-12-18 2009-11-09 김영현 A manufacturing method of brassware and maunfactured brassware
JP2019501780A (en) * 2015-11-18 2019-01-24 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for manufacturing amorphous metal parts
CN114273638A (en) * 2020-09-28 2022-04-05 中国科学院金属研究所 Low-pressure precision casting method of magnesium alloy thin-wall shell part

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132745A (en) * 1986-11-25 1988-06-04 Honda Motor Co Ltd Production of water soluble casting mold
JPH0371932B2 (en) * 1986-11-25 1991-11-15 Honda Motor Co Ltd
JPS63140741A (en) * 1986-12-01 1988-06-13 Honda Motor Co Ltd Manufacture of water soluble mold
JPH0371934B2 (en) * 1986-12-01 1991-11-15 Honda Motor Co Ltd
JPH091284A (en) * 1995-06-15 1997-01-07 Nippon Flour Mills Co Ltd Clay for casting mold and casting method using the same
US5639298A (en) * 1995-11-27 1997-06-17 Air Products And Chemicals, Inc. Modified gypsum compositions
JP2001105121A (en) * 1999-09-30 2001-04-17 Aisin Takaoka Ltd Casting method and casting apparatus using gypsum mold
GB2379628A (en) * 2001-08-08 2003-03-19 Micro Metalsmiths Ltd Investment casting
EP1449601A1 (en) * 2003-02-21 2004-08-25 Mazda Motor Corporation Water-soluble casting mold and method for manufacturing the same
JP2007069400A (en) * 2005-09-06 2007-03-22 Yokohama Rubber Co Ltd:The Gypsum mold-drying method and gypsum mold-drying apparatus
KR100925973B1 (en) 2008-12-18 2009-11-09 김영현 A manufacturing method of brassware and maunfactured brassware
JP2019501780A (en) * 2015-11-18 2019-01-24 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for manufacturing amorphous metal parts
US10981223B2 (en) 2015-11-18 2021-04-20 The Swatch Group Research And Development Ltd Method for manufacturing an amorphous metal part
CN114273638A (en) * 2020-09-28 2022-04-05 中国科学院金属研究所 Low-pressure precision casting method of magnesium alloy thin-wall shell part

Also Published As

Publication number Publication date
JPS5952018B2 (en) 1984-12-17

Similar Documents

Publication Publication Date Title
US4812278A (en) Process for preparing mold
CN104209497B (en) A kind of large-scale complex thin-wall Mg alloy part plaster casting method
CN104439074A (en) Fusible mold precision casting method
JPS58179558A (en) Precision casting method using water-soluble casting mold
US4530722A (en) Binder and refractory compositions and methods
JP2003507192A (en) METHOD AND APPARATUS FOR PRODUCING METAL GRID NETWORK
CN106424562A (en) Precision investment casting method eliminating shrinkage cavities and porosity defects
CN105364047A (en) Gypsum type rapid precision casting method for nonferrous metal
CN111496185A (en) Production process of lost foam casting
JP2006175492A (en) Method for manufacturing casting with lost-foam pattern casting method
US4602667A (en) Method for making investment casting molds
CN107716861A (en) A kind of lost foam casting process of transmission housing
US4664948A (en) Method for coating refractory molds
US3615755A (en) Method for making a mold using manganese carbonate
JPS5927749A (en) Production of casting mold for precision casting
GB2155484A (en) Binder and refractory compositions
JPS6044150A (en) Production of water soluble casting mold
Nor et al. The effect of dewaxing and burnout temperature in block mold process for copper alloy casting
JPS60162553A (en) Molding method in packed casting method
US3644608A (en) Method of making a non-metallic cast chill
JPS58179539A (en) Production of water soluble casting mold
CN109899492A (en) A kind of transmission case body and its production method
US2639478A (en) Process of preparing patterns
RU2048955C1 (en) Method of making castings of ferrous and non-ferrous metals
JPS63188444A (en) Expendable pattern casting method