JPS6254162B2 - - Google Patents

Info

Publication number
JPS6254162B2
JPS6254162B2 JP55010012A JP1001280A JPS6254162B2 JP S6254162 B2 JPS6254162 B2 JP S6254162B2 JP 55010012 A JP55010012 A JP 55010012A JP 1001280 A JP1001280 A JP 1001280A JP S6254162 B2 JPS6254162 B2 JP S6254162B2
Authority
JP
Japan
Prior art keywords
injection molding
raw material
metal powder
product
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55010012A
Other languages
Japanese (ja)
Other versions
JPS56108802A (en
Inventor
Eihiko Tsukamoto
Tetsuo Ichikizaki
Hiroshi Onoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1001280A priority Critical patent/JPS56108802A/en
Publication of JPS56108802A publication Critical patent/JPS56108802A/en
Publication of JPS6254162B2 publication Critical patent/JPS6254162B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は金属粉末を原料とする機械構成部品の
加工法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for processing machine components made from metal powder.

金属粉末を原料として機械構成部品を加工する
方法として焼結品を熱間静水圧(以下、HIPと略
称する)加圧法あるいは熱間鍛造プレスで熱間加
圧圧縮し、焼結品内部に残留する気孔を圧縮・圧
着することで真密度(溶製材の密度)に近い部品
を製造する方法はすでに知られており、工業的に
も広く利用されている。しかし、この従来の加工
法では粉末プレス成形で得られる部品の形状には
制限があり、例えば空冷用の細孔を有するタービ
ンブレードやターボチヤージヤロータのような複
数の翼を有する複雑な形状の機械構成部品は粉末
プレス成形で得ることはほとんど不可能である。
また、粉末プレス成形で得られる粉末成形品には
密度分布が生じやすくこれが次工程での焼結時の
不均一な圧縮の原因となり所要の製品品質を得る
ことができない。
As a method of processing machine components using metal powder as a raw material, sintered products are hot-pressed using hot isostatic pressure (hereinafter abbreviated as HIP) or hot forging presses, and the remaining material remains inside the sintered product. A method of manufacturing parts with a density close to the true density (density of melted material) by compressing and crimping the pores is already known and is widely used industrially. However, with this conventional processing method, there are limitations on the shape of parts that can be obtained by powder press molding. Machine components are almost impossible to obtain by powder pressing.
In addition, density distribution tends to occur in powder molded products obtained by powder press molding, which causes uneven compression during sintering in the next step, making it impossible to obtain the desired product quality.

また、上述の複雑な形状の機械構成部品の製造
法として精密鋳造法もあるが、材料歩留の悪さ、
欠陥率(不良率)の高さ等が原因となり製品が非
常に高価なものになつている。さらに、精密鋳造
法では量産化によるコストダウンもあまり期待で
きず、精密鋳造に代る製造法に対する要望が高ま
りつつある。
Precision casting is also available as a manufacturing method for the above-mentioned complex-shaped mechanical components, but it suffers from poor material yield and
Products are becoming extremely expensive due to high defect rates (defective rates). Furthermore, with the precision casting method, cost reductions due to mass production cannot be expected much, and there is an increasing demand for a manufacturing method that is an alternative to precision casting.

本発明は上記要望に鑑みてなされたもので金属
粉末を射出成形で成形することにより複雑な形状
の機械構成部品を加工可能とした金属粉末を原料
とする機械構成部品の加工法を提供することを目
的とする。かかる目的を達成する本発明の構成
は、平均粒径が2μm乃至10μmの金属粉末に熱
可塑性材料と成形助剤とを添加し、加熱しながら
混合・混練して射出成形用原料とし、この射出成
形用原料を用いて射出成形し機械構成部品として
の射出成形品を得、この射出成形品に含まれる前
記熱可塑性材料と成形助剤とをその溶融点以上に
加熱しかつ加圧しながら脱ロウし、脱ろう完了時
の粉末成型体の気孔率を20%未満に抑制し、さら
に真空中あるいは雰囲気ガス中で加熱しながら焼
結し、こののち熱間静水圧加圧して高密度な製品
とすることを特徴とする。
The present invention has been made in view of the above-mentioned needs, and it is an object of the present invention to provide a method for processing mechanical components using metal powder as a raw material, which makes it possible to process mechanical components with complex shapes by molding metal powder by injection molding. With the goal. The structure of the present invention that achieves this object is to add a thermoplastic material and a molding aid to metal powder with an average particle size of 2 μm to 10 μm, mix and knead the mixture while heating, and prepare a raw material for injection molding. An injection molded product as a machine component is obtained by injection molding using a molding raw material, and the thermoplastic material and molding aid contained in this injection molded product are heated to above their melting point and dewaxed under pressure. After dewaxing is completed, the porosity of the powder molded product is suppressed to less than 20%, and then sintered while heating in a vacuum or atmospheric gas, and then hot isostatically pressed to form a high-density product. It is characterized by

以下、本発明の具体例を図面に基づき詳細に説
明する。
Hereinafter, specific examples of the present invention will be described in detail based on the drawings.

本発明の基本工程は第1図に示すように原料金
属粉末にバインダと成形助剤とを加え混合・混練
し、これを原料として射出成形し、射出成形によ
つて得られた射出成形品を脱ロウし、さらに焼結
した後、熱間静水圧加圧し、仕上・検査の工程を
経て製品が作られる。
As shown in Figure 1, the basic process of the present invention is to add a binder and a molding aid to raw metal powder, mix and knead it, use this as a raw material for injection molding, and produce an injection molded product by injection molding. After dewaxing and further sintering, the product is manufactured through hot isostatic pressing, finishing and inspection processes.

次に、各工程について詳しく説明する。 Next, each process will be explained in detail.

原料金属粉末としては、還元法、電気分解法、
水噴霧法、ガス噴霧法、真空噴霧法、回転消耗電
極法などの製造法で得られる各種金属粉末の適用
が可能であり、粉末粒子の平均粒径は2〜10μ程
度の微細金属粉末が適している。射出成形原料
は、上述の原料金属粉末にバインダ(射出成形原
料としての金属粉末に流動性を持たせるために添
加する材料)としてパラフインワツクスをはじめ
とする熱可塑性材料を添加し、加温しながら混練
して可塑化するとともに成形助剤としてエチレン
アクリレート(可塑剤)、油剤(浸潤剤)、ポリエ
チレン(硬化剤)を添加して、100℃前後に加熱
しながら1〜3時間混合・混練して得られる。
As raw metal powder, reduction method, electrolysis method,
Various metal powders obtained by manufacturing methods such as water atomization, gas atomization, vacuum atomization, and rotating consumable electrode methods can be applied, and fine metal powder with an average particle size of about 2 to 10μ is suitable. ing. The raw material for injection molding is made by adding a thermoplastic material such as paraffin wax as a binder (a material added to give fluidity to the metal powder used as the raw material for injection molding) to the raw metal powder mentioned above, and then heating it. While kneading and plasticizing, ethylene acrylate (plasticizer), oil agent (wetting agent), and polyethylene (hardening agent) are added as molding aids, and the mixture is mixed and kneaded for 1 to 3 hours while heating to around 100℃. can be obtained.

この射出成形原料を成形する射出成形機として
はプランジヤ式、インラインスクリユ式など各種
の機械があるが、射出成形圧が2000Kg/cm2程度ま
でとれるものであれば、型式は特に問題とならな
い。
There are various types of injection molding machines for molding this injection molding raw material, such as plunger type and in-line screw type, but the model does not matter as long as the injection molding pressure can be up to about 2000 kg/cm 2 .

また、射出成形用金型は、成形しようとする対
象品ごとに設計方案も異なるが、ゲイト、ライナ
の位置、数、寸法、金型の脱気、打出ピン(エジ
エクタピン)の位置などが重要な要素となる。こ
の金型の一例を第4図に示した。
In addition, the design of injection molding molds differs depending on the product to be molded, but important factors include the position, number, and dimensions of the gate and liner, the degassing of the mold, and the position of the ejector pin. Become an element. An example of this mold is shown in FIG.

脱ロウは射出成形時に必要であつた金属粉末粒
子間に介在するバインダを溶融・燃焼・焼失させ
る工程である。この脱ロウ工程中にはバインダが
通常加熱され熱膨張するので、この影響を除くた
め10〜50Kg/cm2の気体圧をかけた状態で加熱す
る。この脱ロウが完了した時点で得られる粉末成
形体の密度比は溶製材の密度を100%として、80
%以上にすることが望ましく、したがつて気孔率
は20%未満の粉末成形体であることが、後工程の
関係からも望ましい(第7図参照)。
Dewaxing is a process of melting, burning, and burning away the binder interposed between metal powder particles, which is necessary during injection molding. During this dewaxing process, the binder is usually heated and thermally expanded, so in order to remove this effect, the binder is heated under a gas pressure of 10 to 50 kg/cm 2 . The density ratio of the powder compact obtained when this dewaxing is completed is 80%, assuming the density of the ingot material as 100%.
% or more, and therefore a powder compact with a porosity of less than 20% is also desirable from the standpoint of post-processing (see Figure 7).

脱ロウが完了した後、焼結が行なわれるが、焼
結は真空中あるいはガス雰囲気中で行なわれる。
一般に、粉末成形体の段階で気孔率が20%未満で
あれば、これを焼結することで密度比92〜95%の
焼結品が得られ、残留する気孔も5〜8%とな
り、さらに焼結品最表面にある気孔を除いて全て
焼結品内部に気孔がとじ込められた状態にあるも
のと考えられ、次工程の熱間静水圧加圧(以下、
HIPと略記する)処理で、高温下で焼結品表面に
気体圧を作用させ、焼結品内部に残留する気孔を
圧縮・圧着して真密度に近い部品を得ることがで
きる。尚、HIP装置でのHIP処理を行なう状態の
概要を第5図に示す。図中、26は高圧容器、2
7は圧力媒体である不活性ガス(例えばアルゴン
ガス)を密封するためのシール、28は断熱層、
29は加熱体、30は気体圧が静水圧的に作用す
る様子を説明する矢印、31はHIP処理される焼
結品である。
After dewaxing is completed, sintering is performed, and the sintering is performed in a vacuum or in a gas atmosphere.
Generally, if the porosity is less than 20% at the powder compact stage, by sintering it, a sintered product with a density ratio of 92 to 95% can be obtained, and the remaining porosity will be 5 to 8%. It is thought that all pores are trapped inside the sintered product, except for the pores on the outermost surface of the sintered product, and the next step, hot isostatic pressing (hereinafter referred to as
In the HIP (abbreviated as HIP) process, gas pressure is applied to the surface of the sintered product at high temperatures to compress and compress the pores remaining inside the sintered product, making it possible to obtain parts with close to true density. Incidentally, FIG. 5 shows an outline of the state in which the HIP process is performed in the HIP device. In the figure, 26 is a high pressure vessel, 2
7 is a seal for sealing an inert gas (for example, argon gas) as a pressure medium; 28 is a heat insulating layer;
29 is a heating element, 30 is an arrow explaining how gas pressure acts in a hydrostatic manner, and 31 is a sintered product to be subjected to HIP treatment.

次に実施例をあげ、本発明を具体的に説明する
とともにその効果について述べる。加工の対象は
第2図に示す翼車とする。
Next, examples will be given to specifically explain the present invention and its effects. The object to be processed is the impeller shown in Fig. 2.

第2図に示す翼車は翼1、軸穴2、ボス部3、
翼基部4とで構成され、材質は超耐熱合金(イン
コネル)であり、その寸法は翼基部4の外径が約
80mm、ボス部3の全長が約60mm、射出成形の成形
性を支配する因子である翼の厚さtと長さlの比
l/tは約25、翼枚数は6枚である。
The impeller shown in Fig. 2 includes a blade 1, a shaft hole 2, a boss part 3,
The blade base 4 is made of super heat-resistant alloy (Inconel), and its dimensions are such that the outer diameter of the blade base 4 is approximately
80 mm, the total length of the boss portion 3 is about 60 mm, the ratio l/t of the blade thickness t to the length l, which is a factor governing moldability in injection molding, is about 25, and the number of blades is 6.

金属粉末は回転消耗電極法で製造したインコネ
ル713C(ニツケル基超耐熱合金)の粒径分布を
2μ以下5体積%、2〜10μ92体積%、10μ以上
3体積%に調合したものを使用した。
The metal powder used was Inconel 713C (nickel-based super heat-resistant alloy) manufactured by a rotating consumable electrode method, with a particle size distribution of 5% by volume of 2μ or less, 92% by volume of 2-10μ, and 3% by volume of 10μ or more.

次に、上記金属粉末80体積%にバインダとして
パラフインワツクスを18体積%、成形助剤として
エチレンアクリレート(可塑剤)、油剤(浸潤
剤)、ポリエチレン(硬化剤)を合計2体積%添
加し、100℃に加温しながら3時間混練し、これ
を一旦室温まで冷却・固化した後粉砕機で平均2
mm角の顆粒をつくり、これを射出成形用の原料と
してホツパから供給する方法をとつた。尚、混練
から直接加熱シリンダに射出成形用の原料が供給
される型式の射出成形機であれば、冷却・固化、
粉砕は特に必要としない。
Next, 18 volume% of paraffin wax as a binder and a total of 2 volume% of ethylene acrylate (plasticizer), oil agent (wetting agent), and polyethylene (hardening agent) as molding aids were added to 80 volume% of the above metal powder, Kneaded for 3 hours while heating to 100℃, once cooled to room temperature and solidified, milled to give an average of 2.
A method was adopted in which millimeter square granules were made and supplied from a hopper as raw material for injection molding. In addition, if the injection molding machine is of a type in which raw materials for injection molding are supplied directly from kneading to the heating cylinder, cooling, solidification,
No particular grinding is required.

射出成形機としてはインラインスクリユ型の機
械を使用した。
An in-line screw type machine was used as the injection molding machine.

射出成形機に供給された顆粒状の原料は加熱シ
リンダ内をスクリユで圧送されながら約100℃に
加熱され、再度可塑化された後に、ノズル、ゲイ
トを通し金型内に射出され成形される。この射出
成形品を第3図中の記号5で示した。また第4図
は本実施例に使用した射出成形用の金型であり、
10は金型内の射出成形品、11はランナ、12
はランナと射出成形品との間のゲイト、13は可
動盤、14は金型冷却用の冷却水孔、15は可動
金型、16は固定金型、17はエジエクタ、18
は主ラム、19は可動盤、20はスプリユーズ、
21はノズル、22は加熱シリンダ、23はバン
ドヒータ、24は可塑化した原料である。また、
第4図bはランナ11の正面図で、破線で翼1が
示してあるように各翼に1個づつのランナを設け
た。
The granular raw material supplied to the injection molding machine is heated to approximately 100°C while being pumped through a heating cylinder with a screw, and after being plasticized again, it is injected into a mold through a nozzle and a gate and molded. This injection molded product is indicated by symbol 5 in FIG. Furthermore, Figure 4 shows the injection mold used in this example.
10 is an injection molded product in the mold, 11 is a runner, 12
is a gate between the runner and the injection molded product, 13 is a movable plate, 14 is a cooling water hole for mold cooling, 15 is a movable mold, 16 is a fixed mold, 17 is an ejector, 18
is the main ram, 19 is the movable plate, 20 is the sprue-use,
21 is a nozzle, 22 is a heating cylinder, 23 is a band heater, and 24 is a plasticized raw material. Also,
FIG. 4b is a front view of the runner 11, with one runner for each wing, as indicated by the broken line on the wing 1.

また、本実施例の翼車の翼1のような薄く長い
部分を有する部品は射出成形圧がたりない場合、
翼先端まで完全に材料が充満しない現象(シヨー
トシヨツト)が発生しやすく、このような成形性
の目安として厚さtと長さlとの比l/tが良く
用いられるが、本実施例ではl/t=25としてあ
る。これは別に行なつた実験結果を示した第6図
のように、横軸に射出成形原料中の金属粉末体積
比率を、縦軸に適正な射出成形圧力、すなわち、
シヨートシヨツトが発生せず、翼先端まで完全に
材料が充満した成形品を得るために必要な射出成
形圧力を示したもので、本実施例の金属粉末体積
比率80%では2000Kg/cm2が適正な射出成形圧力で
あることがわかる。第6図中、曲線が右上りの傾
向を示すのは金属粉末体積比率が高くなるとバイ
ンダの体積比率が減少し、粘度が高くなり流動性
が低下するため、高い射出成形圧力が必要となる
ためである。本実施例では金属粉末体積比率を80
%にするための射出成形圧力として2000Kg/cm2
適正な圧力である事を見い出し成形条件を設定し
た。
In addition, if the injection molding pressure is not sufficient for a part having a thin and long part such as the blade 1 of the impeller in this embodiment,
A phenomenon in which the material does not completely fill up to the tip of the blade (short shot) is likely to occur, and the ratio l/t between the thickness t and the length l is often used as a measure of formability. /t=25. As shown in Figure 6, which shows the results of a separate experiment, the horizontal axis represents the metal powder volume ratio in the raw material for injection molding, and the vertical axis represents the appropriate injection molding pressure.
This shows the injection molding pressure necessary to obtain a molded product that is completely filled with material up to the blade tip without any shot, and with the metal powder volume ratio of 80% in this example, 2000 kg/cm 2 is appropriate. It can be seen that this is the injection molding pressure. In Figure 6, the curve shows an upward trend to the right because as the metal powder volume ratio increases, the binder volume ratio decreases, the viscosity increases, and fluidity decreases, which requires high injection molding pressure. It is. In this example, the metal powder volume ratio is 80
%, we found that 2000 kg/cm 2 was the appropriate injection molding pressure and set the molding conditions.

次に、この射出成形品5を脱ロウする。脱ロウ
では射出成形品に含まれている20体積%のバイン
ダおよび成形助剤を溶融燃焼、焼失させる工程で
ある。パラフインワツクスは加熱されると熱膨張
するので、10〜50Kg/cm2の気体圧をかけた状態
で、400〜500℃に加熱しながら行なつた。この脱
ロウ後の粉末成形体を第3図の記号6で示した。
この粉末成形体6ではバインダおよび成形助剤の
ところが気孔となるため、その気孔率は約20%程
度となる。
Next, this injection molded product 5 is dewaxed. Dewaxing is a process in which 20% by volume of the binder and molding aids contained in the injection molded product are melted and burned out. Since paraffin wax thermally expands when heated, the test was performed while applying gas pressure of 10 to 50 kg/cm 2 and heating to 400 to 500°C. The powder compact after this dewaxing is indicated by symbol 6 in FIG.
In this powder compact 6, pores are formed at the binder and the forming aid, so the porosity thereof is about 20%.

脱ロウが終了した粉末成形体6は焼結される。
焼結は真空中で1260℃、2時間かけて行ない、粉
末成形体6の密度比80%を焼結後約92%とするこ
とができた。
The powder compact 6 that has been dewaxed is sintered.
Sintering was carried out in vacuum at 1260° C. for 2 hours, and the density ratio of the powder compact 6 could be reduced from 80% to about 92% after sintering.

この脱ロウ後、焼結前の粉末成形体密度比と焼
結品の密度比との関係を実験により調べ、これを
第7図に示した。第7図の横軸には脱ロウ後、焼
結前の粉末成形体密度を、縦軸には焼結品の密度
比を示した。尚、図中のハツチング部分は焼結品
の密度比が92%未満となる範囲で、気孔が内部に
とじこめられた状態にならず、HIP処理ができな
い範囲であることを示している。同図から明らか
なように本実施例では焼結品密度比が92%であ
り、次工程でのHIP処理が可能である。また、こ
の焼結品を第3図中の記号7で示した。尚焼結品
密度比の高い焼結品を得るためには高い射出成形
圧力が必要となるが、射出成形金型の構造、射出
成形機の容量、能力などの面から制限を受けるこ
とになる。
After this dewaxing, the relationship between the density ratio of the powder compact before sintering and the density ratio of the sintered product was investigated by experiment, and this is shown in FIG. The horizontal axis of FIG. 7 shows the density of the powder compact after dewaxing and before sintering, and the vertical axis shows the density ratio of the sintered product. Note that the hatched area in the figure indicates the range where the density ratio of the sintered product is less than 92%, where the pores are not trapped inside and the HIP treatment cannot be performed. As is clear from the figure, the density ratio of the sintered product in this example is 92%, and HIP treatment in the next step is possible. Further, this sintered product is indicated by symbol 7 in FIG. In order to obtain a sintered product with a high density ratio, high injection molding pressure is required, but this is limited by the structure of the injection mold, the capacity and capacity of the injection molding machine, etc. .

次に、この焼結品7をHIP処理した。この結
果、密度比が97%程度まで向上し、真密度にきわ
めて近いものが得られた。
Next, this sintered product 7 was subjected to HIP treatment. As a result, the density ratio was improved to about 97%, which was extremely close to the true density.

本実施例で設定したHIP処理条件を第8図に示
した。図中、横軸は経過時間、縦軸は設定圧力
(2000Kg/cm2)と設定温度(1200℃)を示してお
り、設定圧力および設定温度が一定の範囲(図中
の水平線部分)が保持範囲である。
FIG. 8 shows the HIP processing conditions set in this example. In the figure, the horizontal axis shows elapsed time, and the vertical axis shows set pressure (2000Kg/cm 2 ) and set temperature (1200℃), and the set pressure and temperature are maintained within a certain range (horizontal line in the figure). range.

ここで、原料金属粉末の平均粒径を2μm乃至
10μmとした理由を説明する。原料金属粉末の粒
径が10μmを越えると、熱可塑性材料と加熱混練
してできる射出成形用原料の粘性が乏しくなり射
出成形に適さなくなる。これに対し熱可塑性材料
を増量して比率を増すことで射出成形用原料に所
定の粘性を持たせることは可能であるが、逆にこ
れは金属粉末体積比率の下限値(第6,7図で80
%と表示している点)を割ることになる。この結
果、焼結前の粉末成形体密度比が低くなり、焼結
品の密度比がHIP可能な92%に到達しないことに
なり本願が成立しない。即ち、熱可塑性材料の選
び方にもよるが、原料金属粉末の平均粒径が10μ
mを越えると射出成形用の原料粉末として使用し
にくくなるのである。
Here, the average particle size of the raw metal powder is set to 2 μm or more.
The reason for setting the thickness to 10 μm will be explained. If the particle size of the raw metal powder exceeds 10 μm, the raw material for injection molding produced by heating and kneading with the thermoplastic material will have poor viscosity and will become unsuitable for injection molding. On the other hand, it is possible to give the raw material for injection molding a predetermined viscosity by increasing the ratio by increasing the amount of thermoplastic material, but on the other hand, this is less than the lower limit of the metal powder volume ratio (see Figures 6 and 7). 80 at
The point indicated as %) is divided. As a result, the density ratio of the powder compact before sintering becomes low, and the density ratio of the sintered product does not reach 92%, which is possible for HIP, and the present application is not valid. In other words, although it depends on how the thermoplastic material is selected, the average particle size of the raw metal powder is 10μ.
If it exceeds m, it becomes difficult to use it as a raw material powder for injection molding.

次に、原料金属粉末に加えるバインダを変えた
他の実施例について説明する。
Next, another example in which the binder added to the raw metal powder is changed will be described.

バインダとしてポリエチレンを用い、他の原料
金属粉末等は前述の実施例の場合と同様とした。
また、その工程も同一であるが温度、圧力条件が
異なる。
Polyethylene was used as the binder, and other raw material metal powders and the like were the same as in the previous example.
Furthermore, although the steps are the same, the temperature and pressure conditions are different.

バインダとしてポリエチレンを用いたので混練
および射出成形時の可塑化温度がパラフインワツ
クスに比べ多少高く、120℃前後であり、可塑化
時の粘度が高く流動性が悪いため射出成形圧力を
2700Kg/cm2程度にする必要があつた。また、焼結
品の密度比と脱ロウ後・焼結前の粉末成形体の密
度比の関係は、第7図に示したパラフインワツク
スの場合とはとんど同様で、粉末成形体の密度比
を80%以上にすることが、HIP処理に必要な条件
である。そこで、射出成形圧力を2700Kg/cm2
し、脱ロウは50Kg/cm2程度の気体圧をかけ700〜
800℃に加熱し、ポリエチレンを溶融・燃焼・焼
失させた。その他の条件は前述の実施例の場合と
同様であり、HIP処理後の密度比は97%まで向上
し、真密度にきわめて近いものが得られた。
Since polyethylene was used as the binder, the plasticization temperature during kneading and injection molding was slightly higher than that of paraffin wax, around 120℃, and the injection molding pressure was high due to the high viscosity and poor fluidity during plasticization.
It was necessary to reduce the weight to around 2700Kg/cm2. Furthermore, the relationship between the density ratio of the sintered product and the density ratio of the powder compact after dewaxing and before sintering is almost the same as in the case of paraffin wax shown in Fig. A necessary condition for HIP treatment is to have a density ratio of 80% or more. Therefore, the injection molding pressure was set to 2700Kg/ cm2 , and the dewaxing was performed by applying a gas pressure of about 50Kg/ cm2 to 700~700Kg/cm2.
It was heated to 800℃ to melt, burn, and burn out the polyethylene. Other conditions were the same as in the previous example, and the density ratio after HIP treatment was improved to 97%, which was extremely close to the true density.

このようにして得られた2つの実施例の翼車の
強度について調べた。一般に、粉末焼結部品の衝
撃強度はその気孔率に大きく影響され、本実施例
においても、HIP処理前の焼結品の段階では、衝
撃強度比率は約25%(溶製材強度の約1/4)と低
いが、HIP処理を施こすことで、焼結品の密度比
が97%まで向上し、これによつて衝撃強度比率も
60%と大幅に向上した。この結果を第9図に示し
た。同図は溶製材の衝撃強度を100%とした時の
焼結品の衝撃強度の比率と焼結品の密度比との関
係を示したものである。尚、同図中、斜線部分は
HIP処理が不可能な範囲を示す。
The strength of the two examples of impellers thus obtained was investigated. In general, the impact strength of powder sintered parts is greatly influenced by its porosity, and in this example, the impact strength ratio was approximately 25% (approximately 1/of the strength of the ingot material) at the stage of the sintered product before HIP treatment. 4), but by applying HIP treatment, the density ratio of the sintered product can be improved to 97%, which also increases the impact strength ratio.
This was a significant improvement of 60%. The results are shown in FIG. The figure shows the relationship between the impact strength ratio of the sintered product and the density ratio of the sintered product, when the impact strength of the ingot material is taken as 100%. In addition, in the same figure, the shaded area is
Indicates the range where HIP processing is not possible.

また、本実施例で製造した翼車はホツトスピン
テストでも十分仕様を満足する性能を示すことが
確認され、十分実用に供することができることが
確認された。
Further, it was confirmed that the impeller manufactured in this example exhibited performance that sufficiently satisfied the specifications in a hot spin test, and it was confirmed that it could be sufficiently put to practical use.

以上、実施例とともに具体的に説明したように
本発明方法によれば、複雑な形状の機械構成部品
であつても、射出成形で成形することで密度分布
のない均一なものが製造でき、最終的に得られる
製品は溶製品とほぼ同等の強度を有することが確
認された。また、多量生産も可能となり、コスト
の低減にも寄与する。
As explained above in detail along with the examples, according to the method of the present invention, even if the machine component part has a complicated shape, it can be molded by injection molding to produce a uniform product with no density distribution, and the final It was confirmed that the obtained product had almost the same strength as the melted product. Furthermore, mass production becomes possible, contributing to cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の加工法の工程説明図、第2図
は本発明の加工法の対象品の一例である翼車の斜
視図、第3図は各工程中の成形品の断面図、第4
図a,bは実施例に用いた射出成形用の金型にか
かり、aは縦断面図、bはランナの正面図、第5
図はHIP処理の説明図、第6図は射出成形原料中
の金属粉末体積比率と射出成形圧力との関係を示
すグラフ、第7図は脱ロウ後・焼結前の粉末成形
体密度比と焼結品の密度比との関係を示すグラ
フ、第8図は本実施例で設定したHIP処理条件を
示すグラフ、第9図は焼結品密度比と溶製材の強
度を100%としたときの衝撃強度比率との関係を
示すグラフである。 図面中、1は翼車、2は軸穴、3はボス部、4
は翼基部、5は射出成形品、6は粉末成形体、7
は焼結品、10は金型内の射出成形品、11はラ
ンナ、12はランナと射出成形品との間のゲイ
ト、13は可動盤、14は金型冷却用の冷却水
孔、15は可動金型、16は固定金型、17はエ
ジエクタ、18は主ラム、19は可動盤、20は
スプリユーズ、21はノズル、22は加熱シリン
ダ、23はバンドヒータ、24は可塑化した原
料、26は高圧容器、27は圧力媒体である不活
性ガスのシール、28は断熱層、29は加熱体、
30は気体圧が静水圧的に作用する様子を説明す
る矢印、31はHIP処理される焼結品、lは翼の
長さ、tは翼の厚さである。
Fig. 1 is a process explanatory diagram of the processing method of the present invention, Fig. 2 is a perspective view of a blade wheel which is an example of the target product of the processing method of the present invention, Fig. 3 is a cross-sectional view of the molded product during each process, Fourth
Figures a and b show the injection mold used in the example, where a is a longitudinal sectional view, b is a front view of the runner, and the fifth
The figure is an explanatory diagram of the HIP process, Figure 6 is a graph showing the relationship between the metal powder volume ratio in the injection molding raw material and the injection molding pressure, and Figure 7 is the graph showing the relationship between the density ratio of the powder compact after dewaxing and before sintering. A graph showing the relationship between the density ratio of the sintered product, Figure 8 is a graph showing the HIP processing conditions set in this example, and Figure 9 is when the density ratio of the sintered product and the strength of the ingot material are taken as 100%. It is a graph showing the relationship between impact strength ratio and impact strength ratio. In the drawing, 1 is a blade wheel, 2 is a shaft hole, 3 is a boss part, 4
is a wing base, 5 is an injection molded product, 6 is a powder molded product, 7
10 is a sintered product, 10 is an injection molded product in the mold, 11 is a runner, 12 is a gate between the runner and the injection molded product, 13 is a movable plate, 14 is a cooling water hole for cooling the mold, 15 is a Movable mold, 16 is a fixed mold, 17 is an ejector, 18 is a main ram, 19 is a movable plate, 20 is a sprue, 21 is a nozzle, 22 is a heating cylinder, 23 is a band heater, 24 is a plasticized raw material, 26 is a high-pressure container, 27 is a seal for inert gas as a pressure medium, 28 is a heat insulating layer, 29 is a heating element,
30 is an arrow explaining how gas pressure acts hydrostatically, 31 is a sintered product to be subjected to HIP treatment, l is the length of the blade, and t is the thickness of the blade.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径が2μm乃至10μmの金属粉末に熱
可塑性材料と成形助剤とを添加し、加熱しながら
混合・混練して射出成形用原料とし、この射出成
形用原料を用いて射出成形し機械構成部品として
の射出成形品を得、この射出成形品に含まれる前
記熱可塑性材料と成形助剤とをその溶融点以上に
加熱しかつ加圧しながら脱ロウし、脱ロウ完了時
の粉末成型体の気孔率を20%未満に抑制し、さら
に真空中あるいは雰囲気ガス中で加熱しながら焼
結し、こののち熱間静水圧加圧して高密度な製品
とすることを特徴とする金属粉末を原料とする機
械構成部品の加工法。
1 Add a thermoplastic material and a molding aid to metal powder with an average particle size of 2 μm to 10 μm, mix and knead while heating to obtain a raw material for injection molding, and use this raw material for injection molding to create a machine. An injection molded product as a component is obtained, and the thermoplastic material and molding aid contained in this injection molded product are dewaxed by heating the thermoplastic material and molding aid above their melting point and applying pressure, and a powder molded product is obtained when dewaxing is completed. The raw material is metal powder, which is characterized by suppressing the porosity to less than 20%, sintering it while heating in vacuum or atmospheric gas, and then hot isostatically pressing it into a high-density product. Processing method for machine components.
JP1001280A 1980-02-01 1980-02-01 Working method for machine constituting parts using metal powder as raw material Granted JPS56108802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001280A JPS56108802A (en) 1980-02-01 1980-02-01 Working method for machine constituting parts using metal powder as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001280A JPS56108802A (en) 1980-02-01 1980-02-01 Working method for machine constituting parts using metal powder as raw material

Publications (2)

Publication Number Publication Date
JPS56108802A JPS56108802A (en) 1981-08-28
JPS6254162B2 true JPS6254162B2 (en) 1987-11-13

Family

ID=11738480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001280A Granted JPS56108802A (en) 1980-02-01 1980-02-01 Working method for machine constituting parts using metal powder as raw material

Country Status (1)

Country Link
JP (1) JPS56108802A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305756A (en) * 1980-01-14 1981-12-15 Witec Cayman Patents, Ltd. Method and means for removing binder from a green body
JPS57123902A (en) * 1981-01-21 1982-08-02 Uitetsuku Keiman Patentsu Ltd Manufacture of bakes granular structure and crush compress formation
JPS5839707A (en) * 1981-09-01 1983-03-08 Kobe Steel Ltd High density sintering method for powder molding
US4602953A (en) * 1985-03-13 1986-07-29 Fine Particle Technology Corp. Particulate material feedstock, use of said feedstock and product
JPH0647684B2 (en) * 1989-01-20 1994-06-22 川崎製鉄株式会社 Degreasing method for injection molded products
JPH0368708A (en) * 1989-08-07 1991-03-25 Kozo Ishizaki Method for reforming porous body having opened pores
US5194203A (en) * 1991-02-28 1993-03-16 Mitsui Mining & Smelting Co., Ltd. Methods of removing binder from powder moldings
CN104759626A (en) * 2014-01-03 2015-07-08 湖南省民鑫新材料有限公司 Novel injection molding process of precision metal parts
JP7049149B2 (en) * 2018-03-28 2022-04-06 三菱重工航空エンジン株式会社 How to make wings
CN109014176A (en) * 2018-08-07 2018-12-18 深圳市铂科新材料股份有限公司 A kind of preparation method of gas turbine engine blade
JP2021021140A (en) * 2020-09-07 2021-02-18 三菱重工航空エンジン株式会社 Injection-molded article of nickel-based alloy, and method for manufacturing injection-molded article of nickel-based alloy

Also Published As

Publication number Publication date
JPS56108802A (en) 1981-08-28

Similar Documents

Publication Publication Date Title
CN104907567B (en) A kind of method for preparing high-density complicated shape cemented carbide parts and cutter
EP0311407B1 (en) Process for fabricating parts for particulate material
JPS6254162B2 (en)
CN107666976B (en) For manufacturing the composition of titanium aluminium object component by sintering powder and using the manufacturing method of the composition
JPS61287702A (en) Method of molding powdered body
EP1371742B1 (en) Dry and self lubricant material,mechanical pieces made of a such material and its method of fabrication
WO2010135859A1 (en) Accurate shaping method for metal ceramic material
CN1067615C (en) Method for producing high-gravity alloy manufactured product
CN102452123B (en) Ceramic body and forming method thereof, and ceramic product
US5997603A (en) Sintered metal mould and method for producing the same
CN108101541A (en) A kind of ejection forming method of non-bond cemented carbide
EP2564955B1 (en) Process for production of electrode to be used in discharge surface treatment
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JPH0375510B2 (en)
JPH0826366B2 (en) Mold made of metal powder compact and manufacturing method thereof
CN116967441A (en) Material for powder metallurgy flow pressure swing injection of large component and application thereof
JP2005272934A (en) Method for manufacturing metal member using fine atomized metal powder, and metal member using fine atomized metal powder
JPH0196353A (en) Material for electric discharge machining and its manufacture
CN116900304A (en) Material for powder metallurgy rheological pressing of precise component and application thereof
US20130266470A1 (en) Method for the manufacturing high-temperature resistant engine components
JPH034291B2 (en)
CN116926402A (en) Flow pressure swing injection preparation method of aluminum electrolysis metal ceramic anode
JPS61143102A (en) Method of molding ceramic molded shape
RU2190499C1 (en) Method for manufacture of removable investment castings
JPH02141502A (en) Manufacture of metal sintered product