JPH079998B2 - Cubic boron nitride P-n junction light emitting device - Google Patents

Cubic boron nitride P-n junction light emitting device

Info

Publication number
JPH079998B2
JPH079998B2 JP160588A JP160588A JPH079998B2 JP H079998 B2 JPH079998 B2 JP H079998B2 JP 160588 A JP160588 A JP 160588A JP 160588 A JP160588 A JP 160588A JP H079998 B2 JPH079998 B2 JP H079998B2
Authority
JP
Japan
Prior art keywords
junction
type
boron nitride
current
cubic boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP160588A
Other languages
Japanese (ja)
Other versions
JPH01179471A (en
Inventor
修 三島
皓 江良
順三 田中
信夫 山岡
Original Assignee
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁無機材質研究所長 filed Critical 科学技術庁無機材質研究所長
Priority to JP160588A priority Critical patent/JPH079998B2/en
Publication of JPH01179471A publication Critical patent/JPH01179471A/en
Priority to US07/388,809 priority patent/US4980730A/en
Publication of JPH079998B2 publication Critical patent/JPH079998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は発光素子に関する。更に詳しくは立方晶窒化ほ
う素を母結晶とした赤外から紫外域の広領域の範囲で発
光し得られる発光素子に関する。
TECHNICAL FIELD The present invention relates to a light emitting device. More specifically, the present invention relates to a light emitting device which has cubic boron nitride as a mother crystal and can emit light in a wide range from infrared to ultraviolet.

従来技術 従来、p−n接合型発光素子を形成する素子の素材とし
ては、ひ化ガリウム,燐化ガリウムが知られ実用化され
ている。しかしこれらの発光素子の発光領域は赤外から
緑色の範囲のものである。青色に発光する素子の素材と
してシリコンカーバイド,セレン化亜鉛が開発された
が、シリコンカーバイドでは良質な結晶が得難く、また
セレン化亜鉛ではp型結晶が得難いので、p−n接合型
が得難い。そのため未だ実用化されていない。また紫外
域にエネルギーギャップを有する窒化ガリウム,硫化亜
鉛はp型を得ることができず、紫外域発光のp−n接合
型発光素子は存在していない。
2. Description of the Related Art Conventionally, gallium arsenide and gallium phosphide have been known and put to practical use as materials for elements forming a pn junction type light emitting element. However, the light emitting region of these light emitting elements is in the infrared to green range. Silicon carbide and zinc selenide have been developed as materials for devices emitting blue light. However, it is difficult to obtain a good crystal with silicon carbide, and it is difficult to obtain a p-type crystal with zinc selenide, and thus it is difficult to obtain a pn junction type. Therefore, it has not been put to practical use yet. Further, gallium nitride and zinc sulfide having an energy gap in the ultraviolet region cannot obtain a p-type, and there is no p-n junction type light-emitting device emitting light in the ultraviolet region.

発明の目的 本発明は従来のp−n接合型発光素子では困難あるいは
不可能であった赤外から紫外域の発光が可能な発光素子
を提供せんとするものである。
An object of the present invention is to provide a light emitting device capable of emitting light in the infrared region to the ultraviolet region, which is difficult or impossible with the conventional pn junction type light emitting device.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、立
方晶窒化ほう素を母結晶としたp−n接合型素子のp−
n接合部に電流を通すと、赤外から紫外域で発光し、発
光素子として優れたものであることを確認し得た。ま
た、p−n接合部またはn側表面に蛍光体を附設すると
任意の発光色に変化させ得られることを知見し得た。こ
れらの知見に基づいて本発明を完成した。
As a result of intensive research to achieve the above-mentioned object, the inventors of the present invention have found that the p-n junction device having a cubic boron nitride as a mother crystal has a pn junction type device.
It was confirmed that when an electric current was passed through the n-junction, it emitted light in the infrared to ultraviolet region and was excellent as a light emitting device. Further, it has been found that it is possible to change the emission color to an arbitrary color by attaching a phosphor to the pn junction or the n-side surface. The present invention has been completed based on these findings.

本発明の要旨は、 1)立方晶窒化ほう素を母結晶とし、1mA以上の電流の
通電に耐える少なくとも0.3mm2以上の接合面を有するp
−n接合を持った素子からなることを特徴とする1mA以
上の電流の通電により赤外から紫外域で発光し得る発光
素子。
The gist of the present invention is as follows: 1) A cubic crystal of boron nitride is used as a mother crystal and has a bonding surface of at least 0.3 mm 2 which can withstand a current of 1 mA or more.
A light-emitting device capable of emitting light in the infrared to ultraviolet region when a current of 1 mA or more is applied, which is composed of a device having an -n junction.

2)立方晶窒化ほう素を母結晶とし、1mA以上の電流の
通電に耐える少なくとも0.3mm2以上の接合面を有するp
−n接合を持った素子において、p−n接合部またはn
側表面に蛍光体を附設したことを特徴とする1mA以上の
電流の通電により赤外から紫外域で発光し得る発光素
子。
2) Cu having a cubic boron nitride as a mother crystal and having a joint surface of at least 0.3 mm 2 or more that can withstand a current of 1 mA or more p
In an element having a −n junction, a pn junction or n
A light-emitting element capable of emitting light in the infrared to ultraviolet region when a current of 1 mA or more is applied, characterized in that a phosphor is attached to the side surface.

にある。It is in.

立方晶窒化ほう素を母結晶にしたp−n接合を持つ素子
は次の方法によって製造し得られる。
A device having a pn junction in which cubic boron nitride is a mother crystal can be manufactured by the following method.

高圧高温下で密封された例えばモリブデン製容器中に高
温部と低温部を作り、高温部に立方晶BN原料粒とp型ま
たはn型ドープ材をこれらの溶媒例えば窒化リチウム・
カルシウム(LiCaBN2)溶媒に溶かしたものを入れ、低
温部に前記ドープ材と異なる型の立方晶窒化ほう素結晶
基板を置き温度による溶解差を利用して低温部に置いた
結晶基板上にこれとは異なる伝導型の立方晶窒化ほう素
を析出成長させることによりp−n接合のものが得られ
る。容器の圧力、温度は4〜7GPa,1300〜2400℃範囲で
行うことができる。好ましくは5.5GPa,約1700℃であ
る。
A high temperature part and a low temperature part are made in, for example, a molybdenum container sealed under high pressure and high temperature, and cubic BN raw material particles and a p-type or n-type doping material are added to these solvents such as lithium nitride.
A solution of calcium (LiCaBN 2 ) dissolved in a solvent was placed, and a cubic boron nitride crystal substrate of a different type from the above-mentioned doping material was placed in the low temperature part, and this was placed on the crystal substrate placed in the low temperature part using the difference in dissolution due to temperature. A pn junction is obtained by depositing and growing cubic boron nitride having a conductivity type different from that of. The pressure and temperature of the container can be 4 to 7 GPa and 1300 to 2400 ° C. It is preferably 5.5 GPa and about 1700 ° C.

n型ドープ材としては例えばシリコン、p型ドープ材と
してはベリリウムが挙げられる。p−n接合面があまり
小さいと発光強度も弱くなるので、0.3平方ミリメータ
はあることが望ましい。母結晶の大きさや形状は制限さ
れず、その形状は塊状結晶でも薄膜結晶のものでもよ
い。このp−n接合に電流を流すとp−n接合の近傍の
電子と正孔の再結晶によって発光する。電流量がゼロで
あると発光しないが、電流量を増していけば発光強度は
増加し、充分な発光強度を得るには、1mm程度の大きさ
でp−n接合を持つ素子においては1mA以上の電流を流
す必要がある。p−n接合に電流を流すにはp型部側と
n型部側に電極をつけ、そこから電流を流せばよい。電
流の向きはp型からn型に流すのが通常であるが、その
逆方向でも発光する。
Examples of the n-type doping material include silicon, and examples of the p-type doping material include beryllium. If the pn junction surface is too small, the light emission intensity also weakens, so 0.3 square millimeter is desirable. The size and shape of the mother crystal are not limited, and the shape may be a bulk crystal or a thin film crystal. When a current is applied to the pn junction, light is emitted by recrystallization of electrons and holes near the pn junction. It does not emit light when the amount of current is zero, but the emission intensity increases as the amount of current increases, and in order to obtain sufficient emission intensity, 1mA or more for a device with a pn junction with a size of about 1mm. It is necessary to pass the current. In order to apply a current to the pn junction, electrodes may be attached to the p-type part side and the n-type part side and the current may be applied from there. The direction of current is usually from p-type to n-type, but light is emitted in the opposite direction.

その発光は赤色より長い波長のものだけでなく、赤色か
ら紫外域をも含む領域に亘って発光し得られる。
The emission can be emitted not only in a wavelength longer than that of red, but also in a region including red to ultraviolet region.

このp−n接合部またはn側表面に蛍光体を附設する
と、発光色を変化させることができる。
When a phosphor is attached to the pn junction or the n-side surface, the emission color can be changed.

実施例1. p型立方晶窒化ほう素結晶基板の作成 325〜400メッシュの立方晶窒化ほう素の粒子とLiCaBN溶
媒の粉末を、モリブデン製育成容器に(内径4mm、内高3
mm、厚さ1mm)内に詰める。このとき溶媒の中に1重量
%の金属ベリリウム粉末を入れておく。前記モリブデン
製育成容器は高温部と低温部の温度差をつけるように構
成され、高温部を加熱加圧して5.5GPa,1700℃とし20時
間保持する。これにより低温部にp型立方晶窒化ほう素
結晶基板が得られた。
Example 1. Preparation of p-type cubic boron nitride crystal substrate 325 to 400 mesh cubic boron nitride particles and LiCaBN solvent powder were placed in a molybdenum growth container (inner diameter 4 mm, inner height 3 mm).
mm, thickness 1 mm). At this time, 1% by weight of metal beryllium powder is put in the solvent. The molybdenum growth container is configured to have a temperature difference between a high temperature part and a low temperature part, and the high temperature part is heated and pressurized to 5.5 GPa and 1700 ° C. and held for 20 hours. As a result, a p-type cubic boron nitride crystal substrate was obtained in the low temperature portion.

p−n接合 前記のp型立方晶窒化ほう素結晶板を種結晶として育成
容器低温部に置き、前記と同じ立方晶窒化ほう素粒子と
5重量%のシリコン粒を入れたLiCaBN2溶媒粉末とを詰
め、前記と同じ条件下で育成することにより、p型結晶
の上にn型単結晶が育成される。このp−n接合結晶は
全体が約1mm大の単結晶で、中心部に濃青色のp型、周
囲が透明山吹色のn型結晶からなるものであった。p−
n接合面の大きさは0.4mm2とした。
pn junction The above-mentioned p-type cubic boron nitride crystal plate was placed as a seed crystal in a low temperature part of a growth vessel, and the same cubic boron nitride particles as described above and LiCaBN 2 solvent powder containing 5% by weight of silicon particles were added. And growing under the same conditions as described above, an n-type single crystal is grown on the p-type crystal. This pn junction crystal was a single crystal having a size of about 1 mm as a whole, and consisted of a deep blue p-type crystal in the center and a transparent bright yellow n-type crystal in the periphery. p-
The size of the n-junction surface was 0.4 mm 2 .

第1図に示すように、p−n接合を挟むp型部とn型部
に銀ペーストの電極4をつけ、p型側を正n型側を負に
して70ボルトの順バイアス電圧をかけると、p型からn
型に2ミリアンペアの電流が流れた。銀ペースト電極と
立方晶窒化ほう素半導体との間の電圧降下を除いたp−
n接合を挟むp型部とn型部との間の電圧は間隔約0.2m
mにおいて約5ボルトであった。2ミリアンペアの電流
を通電中に実体顕微鏡でp−n接合素子を観察したとこ
ろ、p−n接合部に沿ってその近くのn型側に青白い発
光が観察された。
As shown in FIG. 1, a silver paste electrode 4 is attached to the p-type part and the n-type part sandwiching the pn junction, and a forward bias voltage of 70 V is applied with the p-type side being positive and the n-type side being negative. And from p-type to n
A current of 2 milliamps passed through the mold. P- excluding the voltage drop between the silver paste electrode and the cubic boron nitride semiconductor
The voltage between the p-type part and the n-type part that sandwich the n-junction is about 0.2 m.
It was about 5 volts at m. When observing the pn junction element with a stereoscopic microscope while applying a current of 2 milliamperes, pale light emission was observed along the pn junction and on the n-type side near the junction.

実施例2. 実施例1における電圧を70ボルトの逆バイアス電圧とし
たところ、p−n接合を挟むp型部とn型部間の電圧は
−40ボルトで、n型からp型に0.5ミリアンペアの電流
が流れ、n型部が橙色に輝いた。
Example 2. When the voltage in Example 1 was set to a reverse bias voltage of 70 V, the voltage between the p-type part and the n-type part sandwiching the pn junction was -40 V, and 0.5 mA from n-type to p-type. Current flows, and the n-type part shines orange.

実施例3. 実施例1において流す電流を変化させて発光強度を光度
計で測定したところ、電流量の増加と共に発光強度も増
加した。数ミリアンペア流せば肉眼でも発光を検知し得
られる。
Example 3 When the emission intensity was measured with a photometer while changing the current flowing in Example 1, the emission intensity also increased as the amount of current increased. With a few milliamperes, the luminescence can be detected with the naked eye.

実施例4. 実施例1および2の条件下で、発光スペクトルを分光光
度計で測定した。その結果は第2図に示す通りであっ
た。この図は測定系の感度補正を行っていない生のデー
タである。この結果が示すように、2000オングストロー
ムの紫外域から青色にかけても発光することが確認され
た。また電流量の増加と共に短波長へ発光域が拡大され
た。
Example 4. Emission spectra were measured with a spectrophotometer under the conditions of Examples 1 and 2. The result was as shown in FIG. This figure is raw data without sensitivity correction of the measurement system. As shown by these results, it was confirmed that light was emitted even from the ultraviolet region of 2000 angstrom to the blue region. In addition, the emission range was expanded to shorter wavelengths as the amount of current increased.

なお、p−n接合を持たないp型もしくはn型だけの素
子では電流を通じても発光は検知できなかった。
It should be noted that light emission could not be detected even through a current in a p-type or n-type element having no pn junction.

実施例5. 実施例1のp−n接合部、またはn側表面に、銀ドープ
硫化亜鉛,銅ドープ硫化亜鉛,ユーロピウムドープイッ
トリウムオキシサルファイドの蛍光体をそれぞれ塗布
し、p−n接合に順方向の電流を流したところ、それぞ
れ、青色,緑色,赤色の発光が得られた。
Example 5 Silver-doped zinc sulfide, copper-doped zinc sulfide, and europium-doped yttrium oxysulfide phosphors were applied to the pn junction or the n-side surface of Example 1, respectively, and the pn junction was forward-oriented. When a current was applied, the blue, green, and red luminescence was obtained, respectively.

発明の効果 本発明は従来の素材を用いたp−n接合型発光素子では
得られなかった青色から紫外域の発光を生ずるp−n接
合型発光素子を提供し得たものである。更に母結晶が立
方晶窒化ほう素であるため、その熱伝導率,硬度,化学
的安定性においても従来のものに比し優れており、その
ため高温等、あるいは苛酷な条件下でも使用可能である
効果も有する。
EFFECTS OF THE INVENTION The present invention can provide a pn junction type light emitting device that emits light in the blue to ultraviolet range, which has not been obtained by a pn junction type light emitting device using conventional materials. Furthermore, since the mother crystal is cubic boron nitride, it has superior thermal conductivity, hardness, and chemical stability as compared with conventional ones, and therefore can be used even at high temperatures or under severe conditions. It also has an effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の発光素子の実施態様図で、第2図は実
施例4で得られた分光スペクトルを示す。 1:n型、2:p型、3:p−n接合面、4:電極。
FIG. 1 is an embodiment diagram of a light emitting device of the present invention, and FIG. 2 shows a spectrum obtained in Example 4. 1: n type, 2: p type, 3: pn junction surface, 4: electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】立方晶窒化ほう素を母結晶とし、1mA以上
の電流の通電に耐える少なくとも0.3mm2以上の接合面を
有するp−n接合を持った素子からなることを特徴とす
る1mA以上の電流の通電により赤外から紫外域で発光し
得る発光素子。
1. A device having a pn junction, which has cubic boron nitride as a mother crystal and has a junction surface of at least 0.3 mm 2 and which can withstand a current of 1 mA or more, 1 mA or more. A light-emitting element capable of emitting light in the infrared to ultraviolet region when the current is applied.
【請求項2】立方晶窒化ほう素を母結晶とし、1mA以上
の電流の通電に耐える少なくとも0.3mm2以上の接合面を
有するp−n接合を持った素子において、p−n接合部
またはn側表面に蛍光体を附設したことを特徴とする1m
A以上の電流の通電により赤外から紫外域で発光し得る
発光素子。
2. An element having a pn junction, which has a cubic boron nitride as a master crystal and has a junction surface of at least 0.3 mm 2 or more, which can withstand the application of a current of 1 mA or more. 1m characterized by a phosphor attached to the side surface
A light-emitting element that can emit light in the infrared to ultraviolet range when a current of A or higher is applied.
JP160588A 1987-05-01 1988-01-07 Cubic boron nitride P-n junction light emitting device Expired - Lifetime JPH079998B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP160588A JPH079998B2 (en) 1988-01-07 1988-01-07 Cubic boron nitride P-n junction light emitting device
US07/388,809 US4980730A (en) 1987-05-01 1989-08-03 Light emitting element of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP160588A JPH079998B2 (en) 1988-01-07 1988-01-07 Cubic boron nitride P-n junction light emitting device

Publications (2)

Publication Number Publication Date
JPH01179471A JPH01179471A (en) 1989-07-17
JPH079998B2 true JPH079998B2 (en) 1995-02-01

Family

ID=11506133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP160588A Expired - Lifetime JPH079998B2 (en) 1987-05-01 1988-01-07 Cubic boron nitride P-n junction light emitting device

Country Status (1)

Country Link
JP (1) JPH079998B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240877A (en) * 1989-11-28 1993-08-31 Sumitomo Electric Industries, Ltd. Process for manufacturing an ohmic electrode for n-type cubic boron nitride
JP3104979B2 (en) * 1990-07-27 2000-10-30 株式会社東芝 Ultraviolet semiconductor laser, semiconductor device, and manufacturing method thereof
US6600175B1 (en) 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
EP1439586B1 (en) 1996-06-26 2014-03-12 OSRAM Opto Semiconductors GmbH Light-emitting semiconductor component with luminescence conversion element
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP4109297B2 (en) * 2006-05-22 2008-07-02 日亜化学工業株式会社 Light emitting diode
US8947619B2 (en) 2006-07-06 2015-02-03 Intematix Corporation Photoluminescence color display comprising quantum dots material and a wavelength selective filter that allows passage of excitation radiation and prevents passage of light generated by photoluminescence materials
US20080029720A1 (en) 2006-08-03 2008-02-07 Intematix Corporation LED lighting arrangement including light emitting phosphor
US20080192458A1 (en) 2007-02-12 2008-08-14 Intematix Corporation Light emitting diode lighting system
US7972030B2 (en) 2007-03-05 2011-07-05 Intematix Corporation Light emitting diode (LED) based lighting systems
US8203260B2 (en) 2007-04-13 2012-06-19 Intematix Corporation Color temperature tunable white light source
US8783887B2 (en) 2007-10-01 2014-07-22 Intematix Corporation Color tunable light emitting device
US7915627B2 (en) 2007-10-17 2011-03-29 Intematix Corporation Light emitting device with phosphor wavelength conversion
US8740400B2 (en) 2008-03-07 2014-06-03 Intematix Corporation White light illumination system with narrow band green phosphor and multiple-wavelength excitation
US8567973B2 (en) 2008-03-07 2013-10-29 Intematix Corporation Multiple-chip excitation systems for white light emitting diodes (LEDs)
US8651692B2 (en) 2009-06-18 2014-02-18 Intematix Corporation LED based lamp and light emitting signage
US8779685B2 (en) 2009-11-19 2014-07-15 Intematix Corporation High CRI white light emitting devices and drive circuitry
US8888318B2 (en) 2010-06-11 2014-11-18 Intematix Corporation LED spotlight
US8807799B2 (en) 2010-06-11 2014-08-19 Intematix Corporation LED-based lamps
US8946998B2 (en) 2010-08-09 2015-02-03 Intematix Corporation LED-based light emitting systems and devices with color compensation
US8610341B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Wavelength conversion component
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
US8604678B2 (en) 2010-10-05 2013-12-10 Intematix Corporation Wavelength conversion component with a diffusing layer
US8614539B2 (en) 2010-10-05 2013-12-24 Intematix Corporation Wavelength conversion component with scattering particles
CN103155024B (en) 2010-10-05 2016-09-14 英特曼帝克司公司 The solid luminous device of tool photoluminescence wavelength conversion and label
US9004705B2 (en) 2011-04-13 2015-04-14 Intematix Corporation LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
US20130088848A1 (en) 2011-10-06 2013-04-11 Intematix Corporation Solid-state lamps with improved radial emission and thermal performance
US8992051B2 (en) 2011-10-06 2015-03-31 Intematix Corporation Solid-state lamps with improved radial emission and thermal performance
US9365766B2 (en) 2011-10-13 2016-06-14 Intematix Corporation Wavelength conversion component having photo-luminescence material embedded into a hermetic material for remote wavelength conversion
US9115868B2 (en) 2011-10-13 2015-08-25 Intematix Corporation Wavelength conversion component with improved protective characteristics for remote wavelength conversion
EP3240052A1 (en) 2012-04-26 2017-11-01 Intematix Corporation Methods and apparatus for implementing color consistency in remote wavelength conversion
US8994056B2 (en) 2012-07-13 2015-03-31 Intematix Corporation LED-based large area display
US20140185269A1 (en) 2012-12-28 2014-07-03 Intermatix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US9217543B2 (en) 2013-01-28 2015-12-22 Intematix Corporation Solid-state lamps with omnidirectional emission patterns
TWI627371B (en) 2013-03-15 2018-06-21 英特曼帝克司公司 Photoluminescence wavelength conversion components
US9318670B2 (en) 2014-05-21 2016-04-19 Intematix Corporation Materials for photoluminescence wavelength converted solid-state light emitting devices and arrangements
WO2016154214A1 (en) 2015-03-23 2016-09-29 Intematix Corporation Photoluminescence color display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCIENCE,VOL.238,(4824)(1987−10−9)P.181−183

Also Published As

Publication number Publication date
JPH01179471A (en) 1989-07-17

Similar Documents

Publication Publication Date Title
JPH079998B2 (en) Cubic boron nitride P-n junction light emitting device
TW413956B (en) Fluorescent substrate LED
US4081764A (en) Zinc oxide light emitting diode
CN103456865B (en) A kind of LED encapsulation
CN102916097B (en) A kind of electroluminescent device
JPH0291980A (en) Solid-state light emitting element
US6417019B1 (en) Phosphor converted light emitting diode
TWI250664B (en) White light LED
KR20090099593A (en) High output small area group iii nitride leds
JP2685377B2 (en) Compound semiconductor light emitting device
US4980730A (en) Light emitting element of cubic boron nitride
GB2482311A (en) II-III-N and II-N semiconductor nanoparticles, comprising the Group II elements Zinc (Zn) or Magensium (Mg)
US4875967A (en) Method for growing a single crystal of cubic boron nitride semiconductor and method for forming a p-n junction thereof, and light emitting element
JPH02260470A (en) Light emitting element
CN203481269U (en) LED package
US20120025139A1 (en) Ii-iii-v compound semiconductor
JP4348488B2 (en) LED substrate
JPH0658977B2 (en) Semiconductor element
John Different types of in light emitting diodes (LED) materials and challenges-a brief review
JP3087743B2 (en) Intermediate color LED
Nelkowski et al. Preparation and properties of ZnS-CuGaS2 heterodiodes
US5032539A (en) Method of manufacturing green light emitting diode
Brander Silicon-carbide electroluminescent devices
CN203850332U (en) Novel LED packaging structure
JPS5918877B2 (en) optical semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term