JPS5918877B2 - optical semiconductor device - Google Patents

optical semiconductor device

Info

Publication number
JPS5918877B2
JPS5918877B2 JP51063044A JP6304476A JPS5918877B2 JP S5918877 B2 JPS5918877 B2 JP S5918877B2 JP 51063044 A JP51063044 A JP 51063044A JP 6304476 A JP6304476 A JP 6304476A JP S5918877 B2 JPS5918877 B2 JP S5918877B2
Authority
JP
Japan
Prior art keywords
layer
type
light
semiconductor device
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51063044A
Other languages
Japanese (ja)
Other versions
JPS52146585A (en
Inventor
宏 柊元
昭信 笠見
達郎 別府
誠之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51063044A priority Critical patent/JPS5918877B2/en
Publication of JPS52146585A publication Critical patent/JPS52146585A/en
Publication of JPS5918877B2 publication Critical patent/JPS5918877B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 この発明は化合物半導体のヘテロ接合を用いた光半導体
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical semiconductor device using a compound semiconductor heterojunction.

緑色発光素子として現在市販されているのは。What green light-emitting elements are currently commercially available?

■−V族化合物半導体であるGaPを用いたものが一般
的(’ある一。一しかし、GaP緑色発光素子は発光色
が純粋な緑色で1く黄緑色(波長560〜570nm)
であること、および明るさが赤色発光素子に比べて約1
/3と低いことがその市場拡大を阻む大きな原因となつ
ている。一方、GaNや■−■族化合物半導体であるZ
nS、ZnSe、CdS等の広禁制帯幅を持つ半導体に
よる緑色ないし青色発光素子の開発も精力的に進められ
ているが、これらの材料はn型伝導しか示さず良好なp
n接合ができないため、MIS(金属−絶縁体−半導体
)構造の素子が試作されているのみで、その発光効率は
低く、未だ実用化のめどは立つていない。
■-GaP, which is a group V compound semiconductor, is commonly used.
and the brightness is about 1
The low value of /3 is a major reason for hindering the expansion of the market. On the other hand, Z
The development of green or blue light-emitting devices using semiconductors with wide forbidden bands such as nS, ZnSe, and CdS is being actively pursued, but these materials exhibit only n-type conduction and do not have good p-type conductivity.
Since n-junctions cannot be formed, devices with an MIS (metal-insulator-semiconductor) structure have only been prototyped, but their luminous efficiency is low and there is no prospect of practical use yet.

この発明は、■−■族化合物半導体であるZnS3−x
Sexとカルコパイライト型化合物半導体Cu、−yA
gyGa1−2Al2S2との組合せにより良質なpn
接合を形成することで、緑色ないし紫色の領域で高効率
の発光ないし受光特性を示す光半導体素子を提供するも
のである。
This invention is based on ZnS3-x, which is a ■-■ group compound semiconductor.
Sex and chalcopyrite compound semiconductor Cu, -yA
High quality pn in combination with gyGa1-2Al2S2
By forming a junction, it is possible to provide an optical semiconductor element that exhibits highly efficient light-emitting or light-receiving characteristics in a green to violet region.

即ち、この発明に係る光半導体素子はZnS3−xSe
xとCul−yAgyGa、−2Al2S2とのヘテロ
接合を備え、混晶比x、yがそれぞれ0≦X≦1および
O、65x+ 0.1≦y≦0.65x+ 0.2を満
たし、かつ混晶比zの値によりCul−yAgyGa、
−2Al2S2層のバンドギャップを規定したことを特
徴とする。
That is, the optical semiconductor device according to the present invention is made of ZnS3-xSe.
It is equipped with a heterojunction between Depending on the value of the ratio z, Cul-yAgyGa,
-2The band gap of the two Al2S layers is defined.

カルコパイライト型エー■−■族化合物半導体は■−■
族化合物半導体と格子定数やバンド構造が類似しており
、しかもp型になるので、これらの間のヘテロ接合によ
り良質のpn接合が得られるであろうことは十分期待さ
れた。
Chalcopyrite type A ■-■ group compound semiconductor is ■-■
Since it has similar lattice constants and band structures to group compound semiconductors and is p-type, it was fully expected that a high-quality pn junction could be obtained by a heterojunction between them.

また、これらの材料は禁制帯幅が広くかつ直接遷移型の
バンド構造をもつため、緑色ないし紫色発光素子材料と
しても有望視された。しかし、良質なヘテロ接合を形成
するには両者の格子定数をできるだけ合わせることが極
めて重要である。そこで、実験を重ねた結果、ZnS3
−xSex(5Cu、−yAgyGa0−2Al2S2
とのヘテロ接合において、混晶比x(5yを前述した範
囲に選ぶことにより良質なpn接合を得ることができ6
しかも混晶比zを変えることによつて発光のピーク波長
を任意に変え.緑から紫色までの発光を得ることに成功
したものである。更に.混晶比zの異なるCu,−YA
gyGa,−ZAl2S2層を多層積ねることによ幻,
キヤリアの閉じ込め効果による高効率発光が認められた
。以下,実施例に基づいてこの発明の効果.混晶比の限
定理由等を明らかにする。
Furthermore, since these materials have a wide forbidden band width and a direct transition type band structure, they are considered promising as materials for green to violet light-emitting devices. However, in order to form a high-quality heterojunction, it is extremely important to match the lattice constants of the two as much as possible. Therefore, as a result of repeated experiments, ZnS3
-xSex(5Cu, -yAgyGa0-2Al2S2
In the heterojunction with
Moreover, by changing the mixed crystal ratio z, the peak wavelength of light emission can be changed arbitrarily. This device succeeded in emitting light ranging from green to purple. Furthermore. Cu, -YA with different mixed crystal ratios z
By stacking multiple layers of gyGa,-ZAl2S,
Highly efficient light emission was observed due to the carrier confinement effect. The effects of this invention are explained below based on examples. Clarify the reasons for limiting the mixed crystal ratio.

実施例−1 第1図に示すように、高圧溶融法によるn型ZnS単結
晶から(100)主面をもつウエハ1を切り出し.この
(100)主面上にp型のCu,−YAgyGa,−2
A1zS2(y=0.15,z=0.2)層2をGa融
液中より液相エピタキシヤル成長させ6その界面にPn
接合3を形成した。
Example 1 As shown in Fig. 1, a wafer 1 having a (100) main surface was cut out from an n-type ZnS single crystal by high-pressure melting. On this (100) main surface, p-type Cu, -YAgyGa, -2
A1zS2 (y=0.15, z=0.2) layer 2 is grown by liquid phase epitaxial growth from Ga melt 6, and Pn is added at the interface.
Joint 3 was formed.

液相成長はスライドボート方式によつて行い,CuGa
s2多結晶.AgおよびA1を添加した厚さ3jE1f
)Ga融液とウエハを1000℃で接触させ、ウエハに
対して垂直方向に10℃/Cmの温度勾配をつけた状態
でエピタキシヤル成長を行つた。混晶比y<5zはGa
融液に添加するAgとAlの量により制御するが.y=
0.15とするにはAgの添加量は1.5m01%.z
=0.2とするにはA1の添加量は0.5m01%であ
つた。得られたp型CUl−YAgyGa,−ZAl2
S2層2の厚さは30μmであ!).成長方向について
yおよびXはほぼ一定であり,Pn接合面3も平担であ
つた。
Liquid phase growth was performed using a slide boat method, and CuGa
s2 polycrystal. Thickness 3jE1f with addition of Ag and A1
) The Ga melt and the wafer were brought into contact at 1000° C., and epitaxial growth was performed with a temperature gradient of 10° C./Cm perpendicular to the wafer. The mixed crystal ratio y<5z is Ga
It is controlled by the amounts of Ag and Al added to the melt. y=
To make it 0.15, the amount of Ag added is 1.5m01%. z
=0.2, the amount of A1 added was 0.5m01%. The obtained p-type CUl-YAgyGa,-ZAl2
The thickness of S2 layer 2 is 30 μm! ). In the growth direction, y and X were almost constant, and the Pn junction surface 3 was also flat.

このようにしてつくられたエピタキシヤル・ウエハから
0.5mu角のチツプを切り出し.第2図に示すように
n側およびp側にInを主成分とするオーミック電極4
,5を形成してTO−18ヘツダ6にマウントし、電極
5と正側リード端子7の間をボンデイング接続した後エ
ポキシ樹脂8でモールドして発光ダイオードとした。
A 0.5 mu square chip was cut from the epitaxial wafer thus produced. As shown in FIG. 2, ohmic electrodes 4 containing In as a main component on the n side and p side
, 5 was formed and mounted on a TO-18 header 6, and after bonding was made between the electrode 5 and the positive lead terminal 7, it was molded with epoxy resin 8 to form a light emitting diode.

9は負側りード端子である。9 is a negative side lead terminal.

リード端子7,9間にダイオード順方向電流20mAを
流したところ、非常に明るい緑色発光を示した。
When a diode forward current of 20 mA was passed between lead terminals 7 and 9, very bright green light was emitted.

発光のピーク波長は約500nmであl)6この時の発
光効率は0.3%であつた。従来のGaP緑色発光ダイ
オードと比較すると.発光色が純緑色であることおよび
発光効率が5倍程度高いことからその実用的価値は大き
い。実施例−2 Agの添加量を一定(y=0.15)とし.A1の添加
量を変えて成長層の混晶比zを変える以外は実施例−1
と同様のプロセスで発光ダイオードを作B6混晶比zと
発光波長の関係を調べた。
The peak wavelength of light emission was approximately 500 nm, and the light emission efficiency at this time was 0.3%. Compared to the conventional GaP green light emitting diode. Its practical value is great because the luminescent color is pure green and the luminous efficiency is about 5 times higher. Example-2 The amount of Ag added is constant (y=0.15). Example-1 except that the mixed crystal ratio z of the growth layer was changed by changing the amount of A1 added.
A light emitting diode was fabricated using a process similar to the above, and the relationship between the B6 mixed crystal ratio z and the emission wavelength was investigated.

その結果を実施例−1の結果と併せて第3図に示す。第
3図から明らかなように、混晶比zを変えることで成長
層のバンドギヤツプが変l).緑色〜紫色の範囲で高効
率の発光を示した。発光効率はzの増加に従つて少しず
つ減少し,z=0.70で0.1%であつたが.その発
光効率の変化の割合はゆるやかであつた。なお.ZnS
,−XSex(0くX≦1)の基板についても同様な実
験を行つたが、x=0の場合も含め.良質なヘテロ接合
が得られるのは混合比yの値を0.65x+0.1≦y
≦0.65x+0.2の範囲に選んだ場合であつた。
The results are shown in FIG. 3 together with the results of Example-1. As is clear from Fig. 3, the band gap of the grown layer changes by changing the mixed crystal ratio z. It exhibited highly efficient light emission in the green to violet range. The luminous efficiency decreased little by little as z increased, and was 0.1% at z = 0.70. The rate of change in luminous efficiency was gradual. In addition. ZnS
, −XSex (0 x A good quality heterojunction can be obtained if the value of the mixing ratio y is 0.65x + 0.1≦y
This was the case when the range was selected to be ≦0.65x+0.2.

実施例−3 実施例−1と同様の方法で6第4図示のようにn型Zn
Sウエハ11上VC3層のCU,−YAgyGal−,
Z.Al7,S2層12,13,14を液相成長させた
Example 3 In the same manner as in Example 1, n-type Zn was prepared as shown in Figure 6.
CU of 3 layers of VC on S wafer 11, -YAgyGal-,
Z. The Al7, S2 layers 12, 13, and 14 were grown by liquid phase growth.

第1層12はy=0.15,z=0.3のn型層で厚さ
10μM6第2層13はy=0.156z=0.1のp
型層で厚さ1μM.第3層14はy=0.156z=0
.3のp型層で厚さ10μmである。なお、第1層12
をn型にするにはZn,Cdあるいはハロゲン物質の添
加が必要であつた。このようにじ(得られたエピタキシ
ヤル・ウエハから第2図と同様のダイオードを作つたと
ころ6発光波長510nmで発光効率0.4%と非常に
高効率の青色発光が認められた。
The first layer 12 is an n-type layer with y=0.15 and z=0.3 and has a thickness of 10 μM.The second layer 13 is a p-type layer with y=0.156 and z=0.1.
The mold layer has a thickness of 1 μM. The third layer 14 is y=0.156z=0
.. The p-type layer No. 3 has a thickness of 10 μm. Note that the first layer 12
To make it n-type, it was necessary to add Zn, Cd, or a halogen substance. When a diode similar to that shown in FIG. 2 was made from the epitaxial wafer obtained in this manner, very high efficiency blue light emission was observed with a light emission wavelength of 510 nm and a light emission efficiency of 0.4%.

これだけの高効率が得られたのは6活性層としての第2
層13が格子定数のほと等しい第1層12と第3層14
に挟まれているため格子不整合がきわめて小さく6第1
層12との間に良質のPn接合を形成し.かつキヤリア
の閉じ込め効果が有効に働いているためと考えられる。
なお、以上においては専ら発光素子について説明したが
6この発明に係るヘテロ接合素子は緑色ないし紫色領域
の光を選択的に受光する受光素子としても有用である。
The reason why such high efficiency was obtained was that the second active layer
The first layer 12 and the third layer 14 in which the layer 13 has almost the same lattice constant
The lattice mismatch is extremely small because it is sandwiched between the 6th and 1st
A high quality Pn junction is formed between the layer 12. This is also considered to be because the carrier confinement effect is working effectively.
Although the above description has focused on a light-emitting device, the heterojunction device according to the present invention is also useful as a light-receiving device that selectively receives light in the green to violet region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例におけるエピタキシヤル・
ウエハの断面構造を示す図6第2図はそのウエハからチ
ツプを切り出して作つた発光ダイオードの断面構造を示
す図、第3図は成長層であるCul−YAgyGa,−
.Z.Al2S2層の混晶比Zを変えた場合の発光波長
の変化を測定したデータを示す図6第4図は成長層内に
Pn接合を作るようにした他の実施例におけるエピタキ
シヤル・ウエハの断面構造を示す図である。 1・・・・・・n型ZnSウエハ 2・・・・・・P型
Cu,−YAgyGa,−ZAlzS2層、3・・・・
・・Pn接合64,5・・・・・・オーミツク電極66
・・・・・・TO−18ヘツダ,7,9・・・・・・リ
ード端子68・・・・・・エポキシ樹脂,11・・・・
・・n型ZnSワエノ\ 12・・・・・・n型Cu,
−YAgyGa,−7.AlzS2層(y=0.15,
Z.=0.3).13・・・・・・p型Cu,−YAg
yGa,−2A17.s2層(y=0.15,z=0.
1).14・・・・・・p型CUl−YAgyGal−
7.Al2S2層(y=0.15,z=0.3)。
FIG. 1 shows an epitaxial diagram in one embodiment of the present invention.
FIG. 6 shows the cross-sectional structure of the wafer. FIG. 2 shows the cross-sectional structure of a light-emitting diode made by cutting chips from the wafer. FIG.
.. Z. Figure 6 shows the measured data of the change in emission wavelength when the mixed crystal ratio Z of the Al2S2 layer is changed. Figure 4 is a cross section of an epitaxial wafer in another example in which a Pn junction is created in the growth layer. It is a figure showing a structure. 1... N-type ZnS wafer 2... P-type Cu, -YAgyGa, -ZAlzS 2 layers, 3...
...Pn junction 64,5...Ohmic electrode 66
...TO-18 header, 7,9...Lead terminal 68...Epoxy resin, 11...
・・n-type ZnS Waeno\ 12・・・・・・n-type Cu,
-YAgyGa, -7. AlzS2 layer (y=0.15,
Z. =0.3). 13...p-type Cu, -YAg
yGa, -2A17. s2 layer (y=0.15, z=0.
1). 14...p-type CUl-YAgyGal-
7. Al2S2 layer (y=0.15, z=0.3).

Claims (1)

【特許請求の範囲】[Claims] 1 ZnS_1_−_xSe_xとCu_1_−_yA
g_yGa_1_−_zAl_zS_2とのヘテロ接合
を備え、混晶比x、yがそれぞれ0≦x≦1および0.
65x+0.1≦y≦0.65x+0.2を満たし、か
つ混晶比zの値により前記Cu_1_−_yAg_yG
a_1_−_zAl_zS_2層のバンドギャップを規
定したことを特徴とする半導体素子。
1 ZnS_1_-_xSe_x and Cu_1_-_yA
It has a heterojunction with g_yGa_1_-_zAl_zS_2, and the mixed crystal ratios x and y are 0≦x≦1 and 0.
65x+0.1≦y≦0.65x+0.2, and depending on the value of the mixed crystal ratio z, the Cu_1_-_yAg_yG
A semiconductor device characterized in that a band gap of a_1___zAl_zS_2 layer is defined.
JP51063044A 1976-05-31 1976-05-31 optical semiconductor device Expired JPS5918877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51063044A JPS5918877B2 (en) 1976-05-31 1976-05-31 optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51063044A JPS5918877B2 (en) 1976-05-31 1976-05-31 optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS52146585A JPS52146585A (en) 1977-12-06
JPS5918877B2 true JPS5918877B2 (en) 1984-05-01

Family

ID=13217927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51063044A Expired JPS5918877B2 (en) 1976-05-31 1976-05-31 optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS5918877B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355213B2 (en) 2003-04-25 2008-04-08 Hoya Corporation Electrode material and semiconductor element
WO2019065572A1 (en) 2017-09-27 2019-04-04 大王製紙株式会社 Elastic member and disposable wearable item using this elastic member
WO2019065574A1 (en) 2017-09-27 2019-04-04 大王製紙株式会社 Elastic member, disposable wearable item using this elastic member, and method for producing elastic member
WO2019235244A1 (en) 2018-06-04 2019-12-12 大王製紙株式会社 Disposable wearable article
WO2020189177A1 (en) 2019-03-18 2020-09-24 大王製紙株式会社 Disposable wearable article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355213B2 (en) 2003-04-25 2008-04-08 Hoya Corporation Electrode material and semiconductor element
WO2019065572A1 (en) 2017-09-27 2019-04-04 大王製紙株式会社 Elastic member and disposable wearable item using this elastic member
WO2019065574A1 (en) 2017-09-27 2019-04-04 大王製紙株式会社 Elastic member, disposable wearable item using this elastic member, and method for producing elastic member
WO2019235244A1 (en) 2018-06-04 2019-12-12 大王製紙株式会社 Disposable wearable article
WO2020189177A1 (en) 2019-03-18 2020-09-24 大王製紙株式会社 Disposable wearable article

Also Published As

Publication number Publication date
JPS52146585A (en) 1977-12-06

Similar Documents

Publication Publication Date Title
JP3069533B2 (en) Compound semiconductor light emitting device
EP0377940A2 (en) Compound semiconductor material and semiconductor element using the same and method of manufacturing the semiconductor element
JP2564024B2 (en) Compound semiconductor light emitting device
JPH04199752A (en) Compound semiconductor light-emitting element and manufacture thereof
JP2685377B2 (en) Compound semiconductor light emitting device
JPH0268968A (en) Compound semiconductor light-emitting device
JP2002232000A (en) Group-iii nitride semiconductor light-emitting diode
JPS5918877B2 (en) optical semiconductor device
GB2033155A (en) Light emissive diode structure
JP2579326B2 (en) Epitaxial wafer and light emitting diode
US5091758A (en) Semiconductor light-emitting devices
JPS63155781A (en) Light-emitting element
KR100339518B1 (en) GaN Semiconductor White Light Emitting Device
US6245588B1 (en) Semiconductor light-emitting device and method of manufacturing the same
JPS5846875B2 (en) optical semiconductor device
JP2001226200A (en) LOW RESISTANCE p-TYPE SINGLE CRYSTAL ZnS AND ITS PRODUCING METHOD
JP4799769B2 (en) GaP light emitting diode
KR20010009602A (en) Gan semiconductor white light emitting device
JP2653901B2 (en) Compound semiconductor light emitting device
JP3353703B2 (en) Epitaxial wafer and light emitting diode
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
JP2893099B2 (en) MIS type high efficiency light emitting device
JPS6351552B2 (en)
JP2545212B2 (en) Blue light emitting element
JP3144247B2 (en) Liquid phase epitaxial growth method