JPS5846875B2 - optical semiconductor device - Google Patents

optical semiconductor device

Info

Publication number
JPS5846875B2
JPS5846875B2 JP51063039A JP6303976A JPS5846875B2 JP S5846875 B2 JPS5846875 B2 JP S5846875B2 JP 51063039 A JP51063039 A JP 51063039A JP 6303976 A JP6303976 A JP 6303976A JP S5846875 B2 JPS5846875 B2 JP S5846875B2
Authority
JP
Japan
Prior art keywords
light
type
green
zns
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51063039A
Other languages
Japanese (ja)
Other versions
JPS52146580A (en
Inventor
昭信 笠見
誠之 飯田
宏 柊元
達郎 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51063039A priority Critical patent/JPS5846875B2/en
Publication of JPS52146580A publication Critical patent/JPS52146580A/en
Publication of JPS5846875B2 publication Critical patent/JPS5846875B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 この発明は化合物半導体を用いた光半導体素子に係り、
特に高効率の緑色ないし青色発光を示す発光素子および
エネルギーの高い選択的に効率よく受光する素子に関す
る。
[Detailed Description of the Invention] The present invention relates to an optical semiconductor device using a compound semiconductor,
In particular, the present invention relates to a light-emitting element that emits green or blue light with high efficiency and an element that selectively and efficiently receives high-energy light.

緑色発光素子として現在市販されているのは、■−V族
化合物半導体であるGaPを用いたものが一般的である
Currently commercially available green light-emitting devices generally use GaP, which is a ■-V group compound semiconductor.

しかし、GaP緑色発光素子は発光色が完全i緑色でな
く黄緑色(波長560〜570nm)であること、およ
び明るさが赤色発光素子に比べて約イと低いことがその
市場拡大を阻む大きな原因となっている。
However, GaP green light-emitting devices emit light in yellow-green (wavelength 560 to 570 nm) rather than completely green, and the brightness is only about 100% lower than that of red light-emitting devices, which are major factors preventing the market from expanding. It becomes.

一方、GaN* Zn5jZnSe等の広禁制帯幅を持
つ半導体による緑色ないし青色発光素子の開発も精力的
に進められているが、これらの材料はいずれもn型伝導
しか示さず良好なpn接合ができないため、M I S
”(金属−絶縁体一半導体)構造の素子が試作されて
いるのみで、その発光効率は低く未だ実用化のめどが立
っていない。
On the other hand, the development of green or blue light-emitting devices using semiconductors with a wide forbidden band width such as GaN*Zn5jZnSe is being actively pursued, but all of these materials exhibit only n-type conduction and cannot form good p-n junctions. Because, M.I.S.
``Elements with a (metal-insulator-semiconductor) structure have only been prototyped, but their luminous efficiency is low and there is no prospect of practical application yet.

また現在ある半導体受光素子は禁制帯幅が小さいため、
緑色:青色等のエネルギーの大きい光に対しては感度が
低い。
In addition, existing semiconductor photodetectors have a small forbidden band width, so
Green: Low sensitivity to high energy light such as blue.

この発明の第一の目的は高効率の緑色ないし青色発光を
示す化合物半導体発光素子を提供しようとするもので、
その要旨は広禁制帯幅を持つn型ZnSとカルコパイラ
イト型化合物半導体であるp型のCuGaS2 hよび
GaAA!S2からなる混晶とのへテロ接合を用いるこ
とにある。
The first object of this invention is to provide a compound semiconductor light emitting device that emits green or blue light with high efficiency.
The gist is n-type ZnS, which has a wide forbidden band width, and p-type CuGaS2h, which is a chalcopyrite compound semiconductor, and GaAA! The purpose is to use a heterojunction with a mixed crystal consisting of S2.

この発明の第二の目的は、上記へテロ接合により高エネ
ルギーを選択的に受光する高感度素子を提供することに
ある。
A second object of the present invention is to provide a highly sensitive element that selectively receives high energy light through the heterojunction.

ZnSは禁制帯幅が3.6eVと大きくしかも直接遷移
型のバンド構造をもつため、緑色あるいは青色の発光材
料として注目されていたが、前述したように良好なpn
接合ができないため注入効率が低く、これ昔でMIS構
造のものが試作されているだけである。
Since ZnS has a large forbidden band width of 3.6 eV and a direct transition type band structure, it has attracted attention as a green or blue light emitting material, but as mentioned above, ZnS has a good pn
Since no bonding is possible, the injection efficiency is low, and only MIS structures have been prototyped in the past.

一方、カルコバイライト型結晶構造をもつI−II[−
V12族化合物半導体は構成元素により禁制帯幅が大幅
に変化し、■−■族化合物半導体と同じく直接遷移型の
バンド構造をもつため発光素子材料として有望視されて
いた。
On the other hand, I-II[-
The forbidden band width of V12 group compound semiconductors varies greatly depending on the constituent elements, and because they have a direct transition type band structure like the ■-■ group compound semiconductors, they have been viewed as promising materials for light-emitting devices.

そこで、本発明者らは、I−TII−VI2族化合物半
導体が[−VI族化印物半導体とバント構5造が似てい
ること、両者の格子定数に余り差のξないこと、更にI
−III−V12族化印吻半導体ではn型伝導が得ら
れること等の点を勘案し、n型■−■族化合物半導体と
カルコパイライト型のp型I−m−V12族化合物半導
体とのへテロ接合の形成を試みた。
Therefore, the present inventors found that the bunt structure 5 of the I-TII-VI group 2 compound semiconductor is similar to that of the [-VI group compound semiconductor, that there is not much difference ξ in the lattice constants of the two, and that
-III-V In consideration of the fact that n-type conduction can be obtained in the 12-group semiconductor, an n-type ■-■ group compound semiconductor and a chalcopyrite-type p-type I-m-V 12 group compound semiconductor are combined. An attempt was made to form a telojunction.

その結果、特にn型ZnS基板上にCuGaS2 とC
uAAS2の混晶、即ちCuGa1−xAAxs2を成
長させたところ、格子不整合が少なく良好なヘテロ接合
が形成でき、かつ、混晶比Xを変えることにより発光色
が緑色から青色、更には紫色1で変化する高効率の発光
素子が実現できたものである。
As a result, CuGaS2 and C
When a mixed crystal of uAAS2, that is, CuGa1-xAAxs2, was grown, a good heterojunction with little lattice mismatch could be formed, and by changing the mixed crystal ratio This makes it possible to realize a highly efficient light-emitting element that changes.

ちなみに、CuGaS2は禁制帯幅2.44eV。By the way, CuGaS2 has a forbidden band width of 2.44 eV.

格子定数5.35A、CuAAS2は禁制帯幅8.35
eV、格子定数5.33Aであって、両者の格子定数は
ほとんど等しく、従ってCuGaS2とCuAlS2の
混晶により結晶性を乱すことなく禁制帯幅を2.44e
Vから8.35eV寸で変化させることができ、緑色、
青色、紫色の発光材料として適していることがわかる。
Lattice constant 5.35A, forbidden band width 8.35 for CuAAS2
eV, and the lattice constant is 5.33A, and the lattice constants of both are almost the same. Therefore, the forbidden band width can be set to 2.44e without disturbing the crystallinity due to the mixed crystal of CuGaS2 and CuAlS2.
It can be changed from V to 8.35eV, green,
It can be seen that it is suitable as a blue and violet luminescent material.

寸た、基板となるZnS結晶はCuGaS2*−よびC
uAAS2と格子定数が非常に近く、従ってn型ZnS
とCuGa1−xAlX52との界面に良好なヘテロ接
合が形成できる。
In fact, the ZnS crystal that becomes the substrate is CuGaS2*- and C
The lattice constant is very close to uAAS2, so n-type ZnS
A good heterojunction can be formed at the interface between CuGa1-xAlX52 and CuGa1-xAlX52.

更にZnSの禁制帯幅は3.6eVと上記混晶のそれに
より太きいため発光は混晶側でおこり、従って、混晶比
を変えることにより発光波長が大幅に変り、緑色〜紫色
の発光素子が得られるわけである。
Furthermore, since the forbidden band width of ZnS is 3.6 eV, which is wider than that of the above-mentioned mixed crystal, light emission occurs on the mixed crystal side. Therefore, by changing the mixed crystal ratio, the emission wavelength changes significantly, and a green to violet light emitting element is produced. is obtained.

一方上記へテロ接合は受光素子としてもこれ1でにない
特徴をもってかり、CuGa1−xAAxs2の混晶比
を変えることにより有効に吸収される光の波長が変化す
るので緑、青等の高エネルギーの光を選択的に受光する
ことが出来る。
On the other hand, the above-mentioned heterojunction has unique characteristics as a light-receiving element, and by changing the mixed crystal ratio of CuGa1-xAAxs2, the wavelength of effectively absorbed light changes. Light can be selectively received.

またZnS結晶は3.6eVと禁制帯幅が太きいため緑
、青等の光に対しては透明であり、ZnS結晶測から光
を入射させれば入射光は有効にp−n接合に到達し受光
感度の高い素子となる。
In addition, ZnS crystal has a wide forbidden band width of 3.6 eV, so it is transparent to green, blue, etc. light, and if light is incident from a ZnS crystal measurement, the incident light will effectively reach the p-n junction. This results in an element with high light-receiving sensitivity.

以下、図面を参照しながら実施例を説明する。Examples will be described below with reference to the drawings.

実施例 1 高圧溶融法で成長させたAl添加ZnS単結晶を亜鉛中
で熱処理して低抵抗n型とし、(100)主面をもつウ
ェハを形成した。
Example 1 An Al-doped ZnS single crystal grown by high-pressure melting was heat-treated in zinc to form a low-resistance n-type crystal, and a wafer with a (100) main surface was formed.

そして、第1図に示すように、このn型ZnSウェハ1
1上に液相エピタキシャル(LPE)成長法によりp型
のCuGa、−xAlxs2 層12を成長させpn接
合13を形成した。
Then, as shown in FIG. 1, this n-type ZnS wafer 1
A p-type CuGa, -xAlxs2 layer 12 was grown on the substrate 1 by liquid phase epitaxial (LPE) growth to form a pn junction 13.

LPE成長には、溶液としてGa融液を用い、ソースと
しては合成したCuGaS2多結晶に少量のAAを添加
したものを用いた。
For LPE growth, a Ga melt was used as a solution, and a small amount of AA added to a synthesized CuGaS2 polycrystal was used as a source.

成長温度は1000℃で、ソース結晶とウェハとの間に
l mm厚のGa融液をかき、10℃/crrLの温度
勾配を持たせて等温成長を行った。
The growth temperature was 1000° C., a 1 mm thick Ga melt was poured between the source crystal and the wafer, and isothermal growth was performed with a temperature gradient of 10° C./crrL.

これにより厚さ約20μmの均質なCuGa1−XAl
X52層が得られた。
This results in a homogeneous CuGa1-XAl with a thickness of approximately 20 μm.
An X52 layer was obtained.

lの添加量は2モル優としたが、このとき成長層の混晶
比はx = 0.22であった。
The amount of 1 added was approximately 2 mol, and the mixed crystal ratio of the grown layer was x = 0.22.

等温成長であるため成長方向の混晶比Xの変化も少なく
、pn接合面も良好であった。
Since the growth was performed at an isothermal temperature, there was little change in the mixed crystal ratio X in the growth direction, and the pn junction surface was also good.

このようにしてヘテロ接合を形成したエピタキシャル・
ウェハをQ、 5 mm角のチップに切り出し、第2図
に示すように、nfjlLp測にそれぞれInを主成分
とするオーミック電極14,15を付け、To−18へ
ラダ16にp飼を上にしてマウントしてp([0の電極
15を端子17にボンディング接続し、最後にエポキシ
樹脂18をモールドした。
The epitaxial layer that forms a heterojunction in this way
The wafer was cut into Q, 5 mm square chips, and as shown in Fig. 2, ohmic electrodes 14 and 15 containing In as a main component were attached to the nfjlLp electrodes, respectively, and the chips were placed on the ladder 16 to the To-18 with the p side on top. The electrode 15 of p([0) was connected to the terminal 17 by bonding, and finally an epoxy resin 18 was molded.

このようにして作った発光ダイオードの端子17.19
間に順方向電流20mAを流すと発光波長約500nm
の鮮明な緑色発光を示し、その発光効率は約0.2%で
あった。
Terminal 17.19 of the light emitting diode made in this way
When a forward current of 20 mA is passed between the two, the emission wavelength is approximately 500 nm.
It exhibited clear green light emission, and its luminous efficiency was about 0.2%.

これは従来のGaP緑色発光素子の効率0.05〜0.
1咎に比べて非常に高い。
This is the efficiency of the conventional GaP green light emitting device of 0.05 to 0.
This is very high compared to 1 sin.

実施例 2 AA添加量を変える以外は実施例−1と同様にして3種
類のエピタキシャル成長を行い、それぞれダイオードを
形成して発光波長と発光効率を測定した。
Example 2 Three types of epitaxial growth were performed in the same manner as in Example-1 except that the amount of AA added was changed, and diodes were formed for each, and the emission wavelength and luminous efficiency were measured.

この結果を実施例−1の場合と併せて第3図、第4図に
示す。
The results are shown in FIG. 3 and FIG. 4 together with the case of Example-1.

A[の添加量を多くすることにより混晶比Xが大きく彦
り、これに伴って発光波長は短波長側にシフトし、緑色
から青色の発光を得ることができた。
By increasing the amount of A[ added, the mixed crystal ratio X increased significantly, and accordingly, the emission wavelength shifted to the shorter wavelength side, making it possible to obtain light emission from green to blue.

なお、前述したようにCuGa1−xAlx52 の禁
制帯幅(2,44〜3.35 e V )がZnSの禁
制帯幅(3,6eV)より小さいので、CuGa、−x
AlxS2層側で発光させることが望1しく、従って発
光効率を高めるには良質のp型CuGa1xAlxS2
層を成長させることが重要なポイントとなる。
Note that, as mentioned above, the forbidden band width (2,44 to 3.35 eV) of CuGa1-xAlx52 is smaller than that of ZnS (3,6 eV), so CuGa, -x
It is desirable to emit light on the AlxS2 layer side, and therefore, to increase the luminous efficiency, use a high quality p-type CuGa1xAlxS2 layer.
The important point is to grow the layers.

このためにはLPE成長法が適しているというのが、本
発明者らの結論である。
It is the conclusion of the present inventors that the LPE growth method is suitable for this purpose.

そして、CuGaS2層へLPE成長を行うには1面内
での不均一成長を防ぐため厚さが薄い溶液を用いること
(2)成長方向の成分変化、特に混晶比Xの変化を小さ
くするために等温成長を行うこと、(3)Sは蒸気圧が
高いためソースのCuGaS2には多結晶を用いること
、(4)成長溶液としては不純物混入を防ぐため、成長
層の構成元素であるGaの融液を用いること、等が重要
なポイントとなる。
In order to perform LPE growth on the CuGaS2 layer, a thin solution should be used to prevent non-uniform growth within one plane. (2) In order to reduce the change in composition in the growth direction, especially the change in the mixed crystal ratio X. (3) Since S has a high vapor pressure, a polycrystalline CuGaS2 source should be used; (4) The growth solution should be made of Ga, which is a constituent element of the growth layer, in order to prevent impurity contamination. The important point is to use a melt.

【図面の簡単な説明】 第1図はこの発明の一実施例にあ・けるエピタキシャル
・ウェハを示す図、第2図はそのウエノ・からチップを
切り出しヘッダにマウントして作った発光素子の構造を
示す図、第3図あ・よび第4図はエピタキシャル成長層
の混晶比Xを変えて得られた発光素子についてそれぞれ
発光波良知よび発光効率を測定したデータを示す図であ
る。 11・・・n型ZnSウ−11−ハ 12・ p型Cu
Ga1−XAlX52層、13・・・pn接合、14.
15−・・オーミック電極、16・・・To−18ヘツ
ダ、17゜19・・・端子、18・・・エポキシ樹脂。
[Brief Description of the Drawings] Fig. 1 is a diagram showing an epitaxial wafer prepared in an embodiment of the present invention, and Fig. 2 is a structure of a light-emitting device made by cutting out a chip from the wafer and mounting it on a header. Figures 3A and 4 are diagrams showing data obtained by measuring the luminous intensity and luminous efficiency of light emitting devices obtained by changing the mixed crystal ratio X of the epitaxially grown layer. 11... n-type ZnS woo-11-ha 12. p-type Cu
Ga1-XAlX52 layer, 13... pn junction, 14.
15--ohmic electrode, 16--To-18 header, 17°19-- terminal, 18-- epoxy resin.

Claims (1)

【特許請求の範囲】[Claims] 1 n型ZnSとp型CuGa1−xAA?xS2との
へテロ接合を備えたことを特徴とする光半導体素子。
1 n-type ZnS and p-type CuGa1-xAA? An optical semiconductor device characterized by having a heterojunction with xS2.
JP51063039A 1976-05-31 1976-05-31 optical semiconductor device Expired JPS5846875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51063039A JPS5846875B2 (en) 1976-05-31 1976-05-31 optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51063039A JPS5846875B2 (en) 1976-05-31 1976-05-31 optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS52146580A JPS52146580A (en) 1977-12-06
JPS5846875B2 true JPS5846875B2 (en) 1983-10-19

Family

ID=13217781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51063039A Expired JPS5846875B2 (en) 1976-05-31 1976-05-31 optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS5846875B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108875A (en) * 1984-10-31 1986-05-27 Yanmar Diesel Engine Co Ltd Ignition device of internal-combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135750U (en) * 1981-02-20 1982-08-24
JPS58165386A (en) * 1982-03-26 1983-09-30 Hiroshi Kukimoto Semiconductor light emitting element and manufacture thereof
JP5294565B2 (en) * 2006-03-17 2013-09-18 キヤノン株式会社 Light emitting device and method for manufacturing light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108875A (en) * 1984-10-31 1986-05-27 Yanmar Diesel Engine Co Ltd Ignition device of internal-combustion engine

Also Published As

Publication number Publication date
JPS52146580A (en) 1977-12-06

Similar Documents

Publication Publication Date Title
JP3270476B2 (en) Ohmic contacts, II-VI compound semiconductor devices, and methods of manufacturing these devices
JPH02177577A (en) Light emitting diode
KR19990008420A (en) A double heterojunction light emitting diode having a gallium nitride active layer
JPH0511426B2 (en)
JPH0268968A (en) Compound semiconductor light-emitting device
US4183035A (en) Inverted heterojunction photodiode
JPS5846875B2 (en) optical semiconductor device
GB2033155A (en) Light emissive diode structure
US5091758A (en) Semiconductor light-emitting devices
JPS59225580A (en) Semiconductor light emitting diode and manufacture thereof
JPS5918877B2 (en) optical semiconductor device
JPH01128517A (en) Epitaxial wafer
Nuese et al. Efficient 1.06-µm emission from In x Ga 1-x As electroluminescent diodes
JP2001068730A (en) AlGaInP LIGHT EMITTING DIODE
JP3353703B2 (en) Epitaxial wafer and light emitting diode
JPS62172766A (en) Semiconductor light emitting device and manufacture thereof
JPS62268169A (en) Infrared light emitting diode
JPH04137771A (en) Semiconductor device
JPS6048915B2 (en) Injection type light emitting semiconductor device and its manufacturing method
Yahata et al. Accelerated degradation in GaP and GaAs x P l− x (x= 0.15∼ 0.32) visible leds by contaminant Cu during forward bias operation
JP2545212B2 (en) Blue light emitting element
JPS62211971A (en) Semiconductor light emitting device
JPH11177119A (en) Photodiode and its manufacture
JPS6351552B2 (en)
Edmond et al. SiC-based UV photodiodes and light-emitting diodes