JPH0798981B2 - Method for producing oxidation-resistant tungsten-based sintered alloy - Google Patents

Method for producing oxidation-resistant tungsten-based sintered alloy

Info

Publication number
JPH0798981B2
JPH0798981B2 JP62020033A JP2003387A JPH0798981B2 JP H0798981 B2 JPH0798981 B2 JP H0798981B2 JP 62020033 A JP62020033 A JP 62020033A JP 2003387 A JP2003387 A JP 2003387A JP H0798981 B2 JPH0798981 B2 JP H0798981B2
Authority
JP
Japan
Prior art keywords
powder
based sintered
temperature
sintered alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62020033A
Other languages
Japanese (ja)
Other versions
JPS63186837A (en
Inventor
良成 天野
一夫 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62020033A priority Critical patent/JPH0798981B2/en
Publication of JPS63186837A publication Critical patent/JPS63186837A/en
Publication of JPH0798981B2 publication Critical patent/JPH0798981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐酸化性に優れたタングステン基焼結合金の
製造方法に関する。
The present invention relates to a method for producing a tungsten-based sintered alloy having excellent oxidation resistance.

〔従来の技術〕[Conventional technology]

タングステン(W)基焼結合金は熱膨張係数が小さく且
つ延性を有するため、セラミツクと金属の接合緩衝材等
として使用されている。
Since the tungsten (W) -based sintered alloy has a small coefficient of thermal expansion and ductility, it is used as a buffer material for joining ceramics and metals.

即ち、セラミツクスと金属とは熱膨張係数が大きく異な
るため、両者をロウ付け接合すると接合個所近傍に歪が
残り、脆いセラミツクが破壊する結果となる。この破壊
を防止する目的で、熱膨張係数がセラミツクのそれに近
いW、Mo、W基焼結合金を緩衝材として使用することが
知られている(特開昭61-127674号公報)。
That is, since the ceramics and the metal have greatly different coefficients of thermal expansion, brazing and joining the two causes a strain to remain in the vicinity of the joint, resulting in the breakage of the brittle ceramic. For the purpose of preventing this destruction, it is known to use a W, Mo, W-based sintered alloy having a thermal expansion coefficient close to that of ceramics as a buffer material (Japanese Patent Laid-Open No. 61-127674).

又W基焼結合金は、その高硬度と熱衝撃に耐える靭性を
利用して、ダイキヤスト金型等の高温成型用部材として
の用途が知られている(特開昭47-33018号公報)。
Further, W-based sintered alloys are known to be used as high-temperature molding members such as die cast dies by utilizing their high hardness and toughness to withstand thermal shock (Japanese Patent Application Laid-Open No. 47-33018).

しかし、従来のW基焼結合金は耐酸化性が低く、特に約
600℃以上の温度では酸化が急激に進行する欠点があつ
た。この為、接合緩衝材や高温成型用部材として十分な
信頼性ないし耐久性が得られなかつた。特に、セラミツ
クと金属の複合体については高温酸化性雰囲気中での接
合界面強度の信頼性を向上させることが強く望まれてお
り、この要望を満たしセラミツクス−金属複合体の用途
を広げる為にも、複合緩衝材の耐酸化性の改善が急務と
されている。
However, conventional W-based sintered alloys have low oxidation resistance, and
At a temperature of 600 ° C or higher, there was a drawback that the oxidation proceeded rapidly. Therefore, sufficient reliability or durability as a joining cushioning material or a member for high temperature molding cannot be obtained. In particular, regarding the composite of ceramic and metal, it is strongly desired to improve the reliability of the bonding interface strength in a high temperature oxidizing atmosphere, and in order to meet this demand, also to expand the use of the ceramic-metal composite. There is an urgent need to improve the oxidation resistance of composite cushioning materials.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上記した従来の事情に鑑み、低熱膨張係数と十
分な延性を保持しながら、優れた耐酸化性を併せ持つた
W基焼結合金を提供することを目的とする。
In view of the above conventional circumstances, it is an object of the present invention to provide a W-based sintered alloy having both a low coefficient of thermal expansion and sufficient ductility while having excellent oxidation resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の耐酸化性W基焼結合金の製造方法は、85〜95重
量%のW粉末と、Ni:Feの重量比が1:1〜4:1である残部
のNi粉末及びFe粉末とからなる混合粉末の成形体を還元
性雰囲気中においてNi-Fe相の溶融温度より20℃〜60℃
だけ高い温度で焼結し、得られたW基焼結体に1420℃〜
1500℃の温度でクロムを拡散させることを特徴とする。
The method for producing an oxidation-resistant W-based sintered alloy of the present invention comprises: 85 to 95% by weight of W powder and the balance of Ni powder and Fe powder having a Ni: Fe weight ratio of 1: 1 to 4: 1. 20 to 60 ℃ from the melting temperature of Ni-Fe phase in a reducing atmosphere
Sintered at a very high temperature, the resulting W-based sintered body has a temperature of 1420 ° C
It is characterized by diffusing chromium at a temperature of 1500 ° C.

クロムの拡散には各種の手段が考えられるが、少なくと
もW基焼結合金の表面層にクロムの拡散層を形成できれ
ば良い。簡単で有効な手段としては、例えばクロム粉末
とアルミナ粉末を1:4〜9:1、好ましくは4:1の割合で混
合した混合粉末中に焼結体を埋め込み、上記1420℃〜15
00℃の温度に加熱する方法がある。
Various means can be considered for the diffusion of chromium, but it is sufficient that at least a chromium diffusion layer can be formed on the surface layer of the W-based sintered alloy. As a simple and effective means, for example, the sintered body is embedded in a mixed powder obtained by mixing chromium powder and alumina powder in a ratio of 1: 4 to 9: 1, preferably 4: 1, and the above 1420 ° C to 15
There is a method of heating to a temperature of 00 ° C.

〔作用〕[Action]

原料の混合粉末において、W含有量が85重量%未満では
焼結中に変形がおこり又合金の熱膨張係数が大きくな
る。W含有量が逆に95重量%を超えるとNi-Feバインダ
ー層が少なくなるので合金の延性が低下する。又、合金
の延性については、Ni-Feの重量比が1:1〜4:1の範囲内
であれば望ましい延性が得られ、この重量比が2:1のと
き最大となる。尚、原料粉末中には不可避的な不純物が
含まれるが、例えば酸素は0.05重量%以下及び炭素は0.
005重量%以下含有されても良い。
When the W content in the mixed powder of raw materials is less than 85% by weight, deformation occurs during sintering and the thermal expansion coefficient of the alloy increases. On the contrary, if the W content exceeds 95% by weight, the Ni-Fe binder layer is reduced and the ductility of the alloy decreases. Regarding the ductility of the alloy, if the weight ratio of Ni-Fe is in the range of 1: 1 to 4: 1, the desired ductility is obtained, and it becomes maximum when this weight ratio is 2: 1. Although the raw material powder contains inevitable impurities, for example, oxygen is 0.05% by weight or less and carbon is 0.
It may be contained in an amount of 005% by weight or less.

上記混合粉末は通常1.0〜1.5ton/cm2の圧力で型押しし
て、所望形状の成形体とする。成形体の焼結は還元性雰
囲気、好ましくは水素雰囲気中で行ない、焼結温度はNi
-Fe相の溶融温度より20℃〜60℃だけ高い温度範囲とす
る。焼結温度がこの範囲を超えると焼結中に変形が生じ
る為である。又、焼結時間は成形体の形状により異なる
が、W粒子径が20〜100μmとなるように設定すること
が好ましい。
The mixed powder is usually pressed at a pressure of 1.0 to 1.5 ton / cm 2 to obtain a molded product having a desired shape. The compact is sintered in a reducing atmosphere, preferably a hydrogen atmosphere, and the sintering temperature is Ni.
-Temperature range is 20 ℃ to 60 ℃ higher than the melting temperature of Fe phase. This is because if the sintering temperature exceeds this range, deformation occurs during sintering. Although the sintering time varies depending on the shape of the compact, it is preferable to set the W particle diameter to 20 to 100 μm.

上記の組成と焼結条件により、伸び率10%以上の延性を
有する焼結体(合金)が得られる。
With the above composition and sintering conditions, a sintered body (alloy) having an elongation of 10% or more can be obtained.

得られた焼結体へのクロムの拡散は1420℃〜1500℃の温
度で実施する。処理温度が1420℃未満では焼結体中、特
にW粒子中への拡散が遅く、十分な耐酸化性が得られ
ず、又1500℃を超えると合金の変形が著しくなるからで
ある。クロム拡散層の厚さは処理温度と処理時間により
制御することができ、例えば1420℃の温度で30分間処理
すると厚さ1mmのクロム拡散層が形成される。
Diffusion of chromium into the obtained sintered body is performed at a temperature of 1420 ° C to 1500 ° C. This is because if the treatment temperature is lower than 1420 ° C, diffusion into the sintered body, especially W particles, is slow and sufficient oxidation resistance cannot be obtained, and if it exceeds 1500 ° C, the deformation of the alloy becomes remarkable. The thickness of the chromium diffusion layer can be controlled by the treatment temperature and the treatment time. For example, a treatment at a temperature of 1420 ° C. for 30 minutes forms a chromium diffusion layer having a thickness of 1 mm.

尚、上記したクロム粉末とアルミナ粉末を利用して拡散
を行なう方法においては、クロム粉末は均一な拡散を保
障するために100メツシユ以下のものが好ましい。又、
アルミナ粉末はW基焼結合金とアルミナ粉末の焼付きを
防止するために用いるのであるから、他の安定なセラミ
ツク粉末で代用することもできる。
In the method of diffusion using the chromium powder and alumina powder described above, the chromium powder is preferably 100 mesh or less in order to ensure uniform diffusion. or,
Since the alumina powder is used to prevent the seizure of the W-based sintered alloy and the alumina powder, other stable ceramic powder can be used instead.

〔実施例〕〔Example〕

191kgのW粉末と、6kgのNi粉末及び3kgのFe粉末を、ア
トライターにて溶媒としてアルコールを用いて5時間混
合した。アルコールを真空除去した後の混合粉末の粒度
は平均粒径2.2μmであつて、炭素含有量が0.003重量%
及び酸素含有量が0.02重量%であつた。
191 kg of W powder, 6 kg of Ni powder and 3 kg of Fe powder were mixed in an attritor for 5 hours using alcohol as a solvent. The particle size of the mixed powder after vacuum removal of alcohol was 2.2 μm and the carbon content was 0.003% by weight.
And the oxygen content was 0.02% by weight.

この混合粉末に、メチレンクロライドに溶解したカンハ
ーを0.2重量%だけ混合した後、金型を用いて1ton/cm2
で加圧して成形体を得た。次に、この成形体をN2雰囲
気中で500℃で中焼してカンハーを除去した後、水素焼
結炉にて1460℃で3時間焼結した。得られた焼結体は直
径10mm及び長さ50mmであり、W粒子の平均粒径は60μm
であつて、引張強度は60kg/mm2及び伸び率は25%であつ
た。この焼結体の金属組織を第1図に100倍の顕微鏡写
真で示した。
To this mixed powder, 0.2% by weight of Kanha dissolved in methylene chloride was mixed, and then 1 ton / cm 2 was applied using a mold.
A pressure was applied to obtain a molded body. Next, this molded body was subjected to intermediate firing at 500 ° C. in an N 2 atmosphere to remove the Kanha, and then sintered at 1460 ° C. for 3 hours in a hydrogen sintering furnace. The obtained sintered body has a diameter of 10 mm and a length of 50 mm, and the average particle size of W particles is 60 μm.
The tensile strength was 60 kg / mm 2 and the elongation was 25%. The metallographic structure of this sintered body is shown in FIG. 1 as a 100 × micrograph.

次に、焼結体を直径9mm及び厚さ5mmの円板状に切削加工
し、−325メツシユのクロム粉末20gと−325メツシユの
アルミナ粉末5gとの混合粉末中に埋め込み、水素焼結炉
で1460℃で30分間加熱処理した。得られた焼結合金のCr
拡散層の金属組織を第2図に100倍の顕微鏡写真で示し
た。Cr拡散層の厚さは約1mmであり、その金属組織は第
1図の状態から大幅に変化しており、Ni-Feバインダー
相及びW粒子相にCrが均一に拡散していることが判る。
Next, the sintered body was cut into a disk shape with a diameter of 9 mm and a thickness of 5 mm, and embedded in a mixed powder of 20 g of chrome powder of -325 mesh and 5 g of alumina powder of -325 mesh, in a hydrogen sintering furnace. Heat treatment was performed at 1460 ° C. for 30 minutes. Cr of the obtained sintered alloy
The metallographic structure of the diffusion layer is shown in FIG. 2 as a 100 × micrograph. The thickness of the Cr diffusion layer is about 1 mm, and its metallographic structure has changed significantly from the state shown in Fig. 1, and it can be seen that Cr is uniformly diffused in the Ni-Fe binder phase and the W particle phase. .

このようにして得られたW基焼結合金を、大気中におい
て温度を変えて加熱し、酸化増量を測定した。比較例と
して、焼結体のまゝでCr拡散処理を行なわない試料につ
いても同様にして酸化増量を測定した。結果を下表に要
約した。Cr拡散処理 本発明例 比較例 600℃×2h 0 9×10-6g/mm2 700℃×2h 0 82×10-6g/mm2 800℃×2h 0 210×10-6g/mm2 900℃×2h 20×10-6g/mm2 650×10-6g/mm2 上記の結果から、本発明のCr拡散処理したW基焼結合金
は高温においても極めて優れた耐酸化性を有することが
判る。
The W-based sintered alloy thus obtained was heated in the air at different temperatures, and the amount of increased oxidation was measured. As a comparative example, the amount of oxidation increase was measured in the same manner for a sample that did not undergo Cr diffusion treatment up to the sintered body. The results are summarized in the table below. Cr diffusion treatment Present invention example Comparative example 600 ° C × 2h 09 × 10 -6 g / mm 2 700 ° C × 2h 0 82 × 10 -6 g / mm 2 800 ° C × 2h 0 210 × 10 -6 g / mm 2 900 ° C. × 2 h 20 × 10 -6 g / mm 2 650 × 10 -6 g / mm 2 From the above results, the Cr-diffused W-based sintered alloy of the present invention has extremely excellent oxidation resistance even at high temperatures. You know that you have.

〔発明の効果〕〔The invention's effect〕

本発明によれば、W基焼結合金の表面にCr拡散層を形成
するので、低熱膨張係数と十分な延性を保持しながら、
優れた耐酸化性を併せ持つたW基焼結合金を提供するこ
とができる。
According to the present invention, since the Cr diffusion layer is formed on the surface of the W-based sintered alloy, while maintaining a low thermal expansion coefficient and sufficient ductility,
It is possible to provide a W-based sintered alloy that also has excellent oxidation resistance.

従つて、本発明によるW基焼結合金をセラミツクと金属
の接合緩衝材として使用すれば、接合は延性をもつた内
部合金で行ないながら、他の露出部分等は耐酸化性に優
れたCr拡散層となるので、高温酸化性雰囲気中での接合
界面強度の信頼性を向上させることができる。又、高温
成型用部材として高温の溶湯が直接触れる部分に使用す
れば、抗折力があり耐熱性で耐高温酸化性に優れ、十分
な信頼性ないし耐久性を具えた金型等を作成できる。
Therefore, when the W-based sintered alloy according to the present invention is used as a buffer material for bonding ceramics and metals, the bonding is performed by the internal alloy having ductility, while the other exposed portions are Cr diffusion excellent in oxidation resistance. Since it becomes a layer, the reliability of the bonding interface strength in a high temperature oxidizing atmosphere can be improved. Also, when used as a high-temperature molding member in a portion that is directly contacted with a high-temperature molten metal, it is possible to create a mold or the like that has bending resistance, heat resistance, high-temperature oxidation resistance, and sufficient reliability or durability. .

【図面の簡単な説明】 第1図は本発明方法における焼結終了後の焼結体の金属
組織を示す100倍の顕微鏡写真であり、第2図は本発明
方法により製造したW基焼結合金のCr拡散層の金属組織
を示す100倍の顕微鏡写真である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a 100 × photomicrograph showing the metallographic structure of a sintered body after completion of sintering in the method of the present invention, and FIG. 2 is a W-based firing bond produced by the method of the present invention. It is a 100 times micrograph showing the metal structure of the Cr diffusion layer of gold.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−133040(JP,A) 特開 昭52−37503(JP,A) 特開 昭47−33018(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-52-133040 (JP, A) JP-A-52-37503 (JP, A) JP-A-47-33018 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】85〜95重量%のW粉末と、Ni:Feの重量比
が1:1〜4:1である残部のNi粉末及びFe粉末とからなる混
合粉末の成形体を還元性雰囲気中においてNi-Fe相の溶
融温度より20〜60℃だけ高い温度で焼結し、得られた焼
結体に1420℃〜1500℃の温度でクロムを拡散させ、Ni-F
e結合相とタングステン粒子中にクロムを拡散させるこ
とを特徴とする耐酸化性タングステン基焼結合金の製造
方法。
1. A compacted body of a mixed powder comprising 85 to 95% by weight of W powder and the balance Ni powder and Ni powder having a weight ratio of Ni: Fe of 1: 1 to 4: 1 in a reducing atmosphere. Sintered at a temperature 20 to 60 ℃ higher than the melting temperature of the Ni-Fe phase, and diffused chromium into the resulting sintered body at a temperature of 1420 ℃ to 1500 ℃.
A method for producing an oxidation resistant tungsten-based sintered alloy, which comprises diffusing chromium in an e-bonded phase and tungsten particles.
JP62020033A 1987-01-29 1987-01-29 Method for producing oxidation-resistant tungsten-based sintered alloy Expired - Lifetime JPH0798981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020033A JPH0798981B2 (en) 1987-01-29 1987-01-29 Method for producing oxidation-resistant tungsten-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020033A JPH0798981B2 (en) 1987-01-29 1987-01-29 Method for producing oxidation-resistant tungsten-based sintered alloy

Publications (2)

Publication Number Publication Date
JPS63186837A JPS63186837A (en) 1988-08-02
JPH0798981B2 true JPH0798981B2 (en) 1995-10-25

Family

ID=12015754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020033A Expired - Lifetime JPH0798981B2 (en) 1987-01-29 1987-01-29 Method for producing oxidation-resistant tungsten-based sintered alloy

Country Status (1)

Country Link
JP (1) JPH0798981B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270339A (en) * 2006-03-30 2007-10-18 Fuji Dies Kk Metal mold for die casting and its peripheral member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107243A (en) * 1976-03-05 1977-09-08 Yoshinobu Kobayashi Surface treating process for cemented carbide
JPS5814502B2 (en) * 1976-04-30 1983-03-19 日本タングステン株式会社 High temperature oxidation treatment method for heavy alloys

Also Published As

Publication number Publication date
JPS63186837A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
US5059490A (en) Metal-ceramic composites containing complex ceramic whiskers
US4702885A (en) Aluminum alloy and method for producing the same
Tiegs et al. Ceramic composites with a ductile Ni3Al binder phase
JP2942834B2 (en) Fly ash-containing metal composite and method for producing the same
US4915902A (en) Complex ceramic whisker formation in metal-ceramic composites
JP4166821B2 (en) Powder metallurgical manufacturing method of composite material
US20040118547A1 (en) Machineable metal-matrix composite and method for making the same
JPH0798981B2 (en) Method for producing oxidation-resistant tungsten-based sintered alloy
EP2045346B1 (en) Method for producing a sintered composite sliding part
JPH0218374B2 (en)
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
KR19990080858A (en) Electrode Material, Manufacturing Method of Electrode Material and Manufacturing Method of Electrode
JPH0325499B2 (en)
JP3368600B2 (en) Manufacturing method of high heat resistant aluminum alloy
JP3183804B2 (en) Porous reinforced sintered body and method for producing the same, composite material using this porous reinforced sintered body and method for producing the same
JPS63255330A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPS6358900B2 (en)
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JPH01205041A (en) Fiber reinforced aluminum alloy composite material
JP3002567B2 (en) Manufacturing method of chromium carbide ceramics
JP3370467B2 (en) Ceramic deposited copper alloy and method for producing the same
JPH05263166A (en) Production of plain bearing alloy
USH1861H (en) Composite production with continuous metal and ceramic phases