JP3002567B2 - Manufacturing method of chromium carbide ceramics - Google Patents

Manufacturing method of chromium carbide ceramics

Info

Publication number
JP3002567B2
JP3002567B2 JP3175722A JP17572291A JP3002567B2 JP 3002567 B2 JP3002567 B2 JP 3002567B2 JP 3175722 A JP3175722 A JP 3175722A JP 17572291 A JP17572291 A JP 17572291A JP 3002567 B2 JP3002567 B2 JP 3002567B2
Authority
JP
Japan
Prior art keywords
chromium carbide
weight
carbide
powder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3175722A
Other languages
Japanese (ja)
Other versions
JPH05849A (en
Inventor
豊 平島
啓 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP3175722A priority Critical patent/JP3002567B2/en
Publication of JPH05849A publication Critical patent/JPH05849A/en
Application granted granted Critical
Publication of JP3002567B2 publication Critical patent/JP3002567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化クロム系セラミッ
クスの製造法に関する。
BACKGROUND OF THE INVENTION This invention is, chromium carbide-based ceramic
It relates to the method of manufacturing grape .

【0002】本発明によって製造された炭化クロム系セ
ラミックスは、耐熱衝撃性と耐酸化性に優れる高強度な
セラミックスであるため、熱衝撃及び衝撃を受けるよう
な機械部品、溶融金属に対する耐食性部材等での用途が
期待されるものである。
[0002] The chromium carbide cell manufactured according to the present invention
Since Lamix is a high-strength ceramic having excellent thermal shock resistance and oxidation resistance, it is expected to be used as a mechanical component subjected to thermal shock and impact, a corrosion-resistant member against molten metal, and the like.

【0003】[0003]

【従来の技術】炭化クロム系セラミックスは、従来、ニ
ッケルやコバルトの金属粉や、各種の酸化物、窒化物、
硼化物、炭化物、リン化物を焼結助剤として焼結したも
のが提案されている(例えば特開昭59−107058
号公報)。また、周期律表第Va族に属する金属の炭化
物と炭化ケイ素ウィスカーの複合物も知られている(例
えば特開平2−164770号公報)。
2. Description of the Related Art Conventionally, chromium carbide-based ceramics have been used in the form of nickel or cobalt metal powder, various oxides, nitrides,
There has been proposed a material obtained by sintering boride, carbide or phosphide as a sintering aid (for example, Japanese Patent Application Laid-Open No. Sho 59-107058).
No.). Further, a composite of a carbide of a metal belonging to Group Va of the periodic table and a whisker of silicon carbide is also known (for example, JP-A-2-164770).

【0004】[0004]

【発明が解決しようとする課題】しかし、焼結助剤とし
て金属粉を用いると高温下で分解し易く、強度、耐酸化
性に劣る。また、周期律表第Va族に属する金属の炭化
物と炭化ケイ素ウィスカーを複合すると、強度と靱性は
向上するが、耐熱衝撃性、耐酸化性が充分でなく、実用
上問題がある。
However, when metal powder is used as a sintering aid, it is easily decomposed at high temperatures, and is inferior in strength and oxidation resistance. Further, when a carbide of a metal belonging to Group Va of the periodic table is combined with silicon carbide whiskers, strength and toughness are improved, but thermal shock resistance and oxidation resistance are not sufficient, and there is a problem in practical use.

【0005】本発明は、上記に鑑みてなされたものであ
り、その目的は、炭化クロム粉末に、周期律表第IVa
族に属する金属の炭化物と炭化ケイ素ウイスカーとを添
加してなる混合原料粉末を焼結することによって、強
度、靱性、耐酸化性を向上させた炭化クロム系セラミッ
クスを製造する方法において、上記混合原料粉末に更に
炭素を混入せしめて耐熱衝撃性を改善することである。
[0005] The present invention has been made in view of the above.
The purpose is to add chromium carbide powder to Periodic Table IVa
Group carbide and silicon carbide whiskers
By sintering the added mixed raw material powder,
Chromium carbide ceramics with improved strength, toughness and oxidation resistance
In the method for producing mix, the mixed raw material powder is further added
The purpose is to improve thermal shock resistance by incorporating carbon.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、周
期律表第IVa族に属する金属の炭化物から選ばれた1
種以上0.5〜50重量%、炭化ケイ素ウィスカー30
重量%以下、及び残部が実質的に炭化クロムからなる混
合原料粉末を焼結する方法において、上記混合原料に更
に炭素2〜10重量%を混入することを特徴とする炭化
クロム系セラミックスの製造法である。
That is, the present invention relates to a compound selected from the group consisting of carbides of metals belonging to Group IVa of the periodic table.
0.5 to 50% by weight or more, silicon carbide whisker 30
Wt% or less, with the balance being substantially chromium carbide.
In the method of sintering the mixed raw material powder,
Characterized by mixing 2 to 10% by weight of carbon into carbon
This is a method for producing chromium ceramics.

【0007】以下、さらに詳しく本発明について説明す
る。
Hereinafter, the present invention will be described in more detail.

【0008】本発明において、複合材として周期律表第
IVa族に属する金属の炭化物、すなわちTiC、Zr
C、HfC等を選んだ理由は、これらが炭化クロムの焼
結性を促進するだけではなく、強度、耐酸化性を高める
働きをするからである。TiC、ZrC、HfC等の純
度は99%以上が好ましく、平均粒径は10μm以下特
に1μm以下が好ましい。TiC、ZrC、HfC等の
少なくとも1種以上の混合原料粉末中における含有量
は、0.5 〜50重量%好ましくは5〜30重量%で
ある。0.5重量%未満では焼結性、強度等が充分でな
く、一方、50重量%を越えると母材となる炭化クロム
本来の特性が損なわれる。
In the present invention, as a composite material, a carbide of a metal belonging to Group IVa of the periodic table, ie, TiC, Zr
C and HfC are selected because they not only promote the sinterability of chromium carbide, but also enhance the strength and oxidation resistance. The purity of TiC, ZrC, HfC or the like is preferably 99% or more, and the average particle diameter is preferably 10 μm or less, particularly preferably 1 μm or less. The content in at least one or more mixed raw material powders of TiC, ZrC, HfC and the like is 0.5 to 50% by weight, preferably 5 to 30% by weight. If it is less than 0.5% by weight, sinterability and strength are not sufficient, while if it exceeds 50% by weight, the original properties of chromium carbide as a base material are impaired.

【0009】炭化ケイ素ウィスカーは、母材炭化クロム
の強度及び靱性を向上させるために強化材として複合化
されるものであり、直径0.1〜2μm、長さ10〜5
00μmの性状を有するSiC針状単結晶ウィスカーが
好ましい。炭化ケイ素ウィスカーの混合原料粉末中の存
在量は、30重量%以下好ましくは5〜20重量%であ
る。30重量%を越えると焼結組織の緻密化が困難とな
る。
The silicon carbide whiskers are compounded as a reinforcing material to improve the strength and toughness of the base material chromium carbide, and have a diameter of 0.1 to 2 μm and a length of 10 to 5 μm.
A needle-like SiC single crystal whisker having a property of 00 μm is preferable. The content of silicon carbide whiskers in the mixed raw material powder is 30% by weight or less, preferably 5 to 20% by weight. If it exceeds 30% by weight, it becomes difficult to densify the sintered structure.

【0010】炭素は、母材炭化クロムの耐熱衝撃性を向
上させるために添加されるもので、カーボンブラック、
活性炭素、塩化ビニリデン炭、砂糖炭、セルローズ炭、
アセトンフルフラール樹脂炭、フェノールホルムアルデ
ヒド炭、低質炭、木炭等の非晶質炭素の使用が好まし
く、平均粒径は1μm以下特に0.5μm以下が好まし
い。このような非晶質炭素については特開昭63−11
2465号公報に記載されている。炭素の混合原料粉末
中における存在量は2〜10重量%である。2重量%未
満では耐熱衝撃性を充分に改善することができず、また
10重量%を越えると焼結性、強度等が不充分となる。
[0010] Carbon is added to improve the thermal shock resistance of the base material chromium carbide, and carbon black,
Activated carbon, vinylidene chloride charcoal, sugar charcoal, cellulose charcoal,
It is preferable to use amorphous carbon such as acetone furfural resin charcoal, phenol formaldehyde charcoal, low quality charcoal, charcoal, etc., and the average particle size is preferably 1 μm or less, particularly preferably 0.5 μm or less. Such amorphous carbon is disclosed in JP-A-63-11.
No. 2,465. The amount of carbon in the mixed raw material powder is 2 to 10% by weight. 2% by weight
If it is less than 10% , the thermal shock resistance cannot be sufficiently improved, and if it exceeds 10% by weight, sinterability, strength and the like will be insufficient.

【0011】炭化クロム粉末は、純度99%以上が好ま
しく、平均粒径は10μm以下特に1μm以下が好まし
い。炭化クロムには、Cr32以外にCr73、Cr4
C等が知られているが、それらはCr32と同様に使用
できる。
The chromium carbide powder preferably has a purity of 99% or more and an average particle diameter of 10 μm or less, particularly preferably 1 μm or less. Chromium carbide includes Cr 7 C 3 and Cr 4 in addition to Cr 3 C 2
Although C and the like are known, they can be used similarly to Cr 3 C 2 .

【0012】上記成分は、ボールミルのような通常の物
理的混合手段を用いて均質に混合した後、焼結する。焼
結は、真空中、アルゴン、ヘリウム、窒素等の中性又は
還元性の雰囲気下でホットプレス法、常圧焼結法、HI
P法によって行うことができ、焼成温度は1400〜1
800℃、焼成時間は0.5〜6時間程度である。
The above components are homogeneously mixed using a conventional physical mixing means such as a ball mill, and then sintered. The sintering is performed under a neutral or reducing atmosphere such as argon, helium, or nitrogen in a vacuum, hot press method, normal pressure sintering method, HI
P method, and the firing temperature is 1400 to 1
At 800 ° C., the firing time is about 0.5 to 6 hours.

【0013】[0013]

【実施例】以下、実施例と比較例をあげてさらに具体的
に本発明を説明する。
The present invention will be described below more specifically with reference to examples and comparative examples.

【0014】実施例1〜3 比較例1〜17 平均粒径1〜2μmのCr32粉末、TiC粉末、Zr
C粉末、HfC粉末及びNbC粉末、平均粒径0.5μ
m、長さ30〜50μmのSiCウィスカー、並びに炭
素として平均粒径0.5μmのアセチレンブラックを表
1に示す割合でボールミルで混合した後、窒素雰囲気
下、表1に示す条件でホットプレス焼結した。それらの
焼結体について、以下に従う物性を測定した。それらの
結果を表2に示す。
Examples 1 to 3 Comparative Examples 1 to 17 Cr 3 C 2 powder, TiC powder, Zr having an average particle size of 1 to 2 μm
C powder, HfC powder and NbC powder, average particle size 0.5μ
m, SiC whiskers having a length of 30 to 50 μm, and acetylene black having an average particle diameter of 0.5 μm as carbon were mixed in a ball mill at a ratio shown in Table 1, and then hot-press sintered under a nitrogen atmosphere under the conditions shown in Table 1. did. The physical properties according to the following were measured for those sintered bodies. Table 2 shows the results.

【0015】(1) 相対密度はアルキメデス法で測定
した。 (2) 曲げ強さはJIS R1601に準拠し、3点
曲げ強さを測定した。 (3) 破壊靱性はJIS R1607に準拠し、IF
(Indentation Fracture)法で測
定した。 (4) 耐熱衝撃性は急冷強度測定法で求めた。供試体
は3×4×40mmの曲げ強さ試験片を用い、電気炉内
で所定の温度で加熱し、1時間保持後、炉の下に設置し
てある50℃の水中へ投下させて試験片を急冷した。そ
の試験片の曲げ強さを測定し、強度が低下した時の加熱
温度と水の温度(50℃)との差をΔTとした。 (5) 耐酸化性は大気中1200℃で100 時間保
持した後の状態から目視判定した。 ○・・・良好 △・・・やや不良 ×・・・かなり
不良
(1) The relative density was measured by the Archimedes method. (2) The bending strength was measured according to JIS R1601, and the three-point bending strength was measured. (3) Fracture toughness conforms to JIS R1607, IF
(Indentation Fracture) method. (4) Thermal shock resistance was determined by a quenching strength measurement method. The test specimen is a 3x4x40mm bending strength test piece, heated at a predetermined temperature in an electric furnace, held for 1 hour, and dropped into 50 ° C water placed under the furnace for testing. The pieces were quenched. The bending strength of the test piece was measured, and the difference between the heating temperature when the strength was reduced and the temperature of water (50 ° C.) was defined as ΔT. (5) Oxidation resistance was visually judged from the state after holding at 1200 ° C. in the air for 100 hours. ○ ・ ・ ・ Good △ ・ ・ ・ Somewhat bad × ・ ・ ・ Not so bad

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明によって製造された炭化クロム系
セラミックスは、緻密で強度、破壊靱性、耐熱衝撃性、
耐酸化性に優れた性質を有するので、例えば、金属加工
用押出ダイス、スキッドボタン、ガイドローラ、熱電対
保護管等の用途が期待できる。また、金属と同様に放電
加工ができるので複雑形状品にも容易に対応することが
できる。
The chromium carbide system produced according to the present invention
Ceramics are dense, strong, fracture toughness, thermal shock resistance,
Since it has excellent resistance to oxidation, it can be expected to be used for, for example, extrusion dies for metal working, skid buttons, guide rollers, thermocouple protection tubes, and the like. In addition, since electric discharge machining can be performed in the same manner as metal, it is possible to easily cope with products having complicated shapes.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/56 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C04B 35/56

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周期律表第IVa族に属する金属の炭化
物から選ばれた1種以上0.5〜50重量%、炭化ケイ
素ウィスカー30重量%以下、及び残部が実質的に炭化
クロムからなる混合原料粉末を焼結する方法において、
上記混合原料粉末に更に炭素2〜10重量を混入するこ
とを特徴とする炭化クロム系セラミックスの製造法。
1. A mixture comprising at least one selected from the group consisting of carbides of metals belonging to Group IVa of the periodic table in an amount of 0.5 to 50% by weight, silicon carbide whiskers of 30% by weight or less, and the balance substantially consisting of chromium carbide. In the method of sintering the raw material powder ,
Further mix 2-10 weight of carbon into the above mixed raw material powder.
A method for producing chromium carbide-based ceramics, characterized by:
JP3175722A 1991-06-21 1991-06-21 Manufacturing method of chromium carbide ceramics Expired - Fee Related JP3002567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175722A JP3002567B2 (en) 1991-06-21 1991-06-21 Manufacturing method of chromium carbide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175722A JP3002567B2 (en) 1991-06-21 1991-06-21 Manufacturing method of chromium carbide ceramics

Publications (2)

Publication Number Publication Date
JPH05849A JPH05849A (en) 1993-01-08
JP3002567B2 true JP3002567B2 (en) 2000-01-24

Family

ID=16001098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175722A Expired - Fee Related JP3002567B2 (en) 1991-06-21 1991-06-21 Manufacturing method of chromium carbide ceramics

Country Status (1)

Country Link
JP (1) JP3002567B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049978B1 (en) * 2016-05-17 2016-12-21 冨士ダイス株式会社 Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material

Also Published As

Publication number Publication date
JPH05849A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US3775137A (en) Refractory diboride materials
GB2180557A (en) Erosion-resistant silicon carbide composite sinters
JPH0116791B2 (en)
EP0170889A2 (en) ZrB2 Composite sintered material
US4963516A (en) SiC complex sintered bodies and production thereof
JP3002567B2 (en) Manufacturing method of chromium carbide ceramics
EP0311043B1 (en) Chromium carbide sintered body
JPS63225579A (en) Ceramic tool material
EP0311044B1 (en) Sintered body having high corrosion resistance containing ZrB2.
US5244621A (en) Process for shaping ceramic composites
JP2588215B2 (en) Ceramic sintered body
EP0435064B1 (en) Process for shaping ceramic composites
JPH06263540A (en) Composite compact and its production
JPS63218584A (en) Ceramic sintered body
JPS6144768A (en) High strength boride sintered body
JP2706302B2 (en) Method for producing high-density silicon nitride sintered body
JP2665755B2 (en) Method for producing β-sialon composite ceramics
JP3152558B2 (en) Particle-dispersed silicon nitride sintered body and method for producing the same
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JP3414835B2 (en) Metal particle-dispersed aluminum oxide-based sintered body and method for producing the same
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JPH0788255B2 (en) Silicon carbide sintered body and method for producing the same
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JP2699697B2 (en) Method for producing silicon carbide / silicon nitride composite sintered body
JPH0672059B2 (en) High corrosion resistance sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees