JPH0797633A - Production of galvanized steel sheet excellent in workability - Google Patents

Production of galvanized steel sheet excellent in workability

Info

Publication number
JPH0797633A
JPH0797633A JP24327293A JP24327293A JPH0797633A JP H0797633 A JPH0797633 A JP H0797633A JP 24327293 A JP24327293 A JP 24327293A JP 24327293 A JP24327293 A JP 24327293A JP H0797633 A JPH0797633 A JP H0797633A
Authority
JP
Japan
Prior art keywords
hot
heating
steel sheet
workability
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24327293A
Other languages
Japanese (ja)
Inventor
Kosaku Shioda
浩作 潮田
Kaoru Kawasaki
薫 川崎
Osamu Akisue
治 秋末
Makoto Tefun
誠 手墳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24327293A priority Critical patent/JPH0797633A/en
Publication of JPH0797633A publication Critical patent/JPH0797633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for producing a galvanized cold rolled steel sheet excellent in workability. CONSTITUTION:At the time of producing a steel strip as cold-rolled by using an inline annealing type continuous galvanizing equipment, it is rapidly subjected to auxiliary annealing at 820 to 910 deg.C in a short time at 100 to 2000 deg.C/s heating rate in the optional stage in the process of heating and soaking and is successively subjected to galvanizing treatment. Thus, the galvanized cold rolled steel sheet excellent in workability can stably and efficiently be produced compared to the conventional producing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ライン内焼鈍式の連続
溶融亜鉛メッキ設備において、加工性に優れた溶融亜鉛
メッキ鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-dip galvanized steel sheet having excellent workability in an in-line annealing type hot dip galvanizing equipment.

【0002】[0002]

【従来の技術】溶融亜鉛メッキ鋼板の深絞り性や張り出
し性などの加工性を改善する基本的な技術として、ライ
ン内焼鈍式の連続溶融亜鉛メッキ設備における高温焼鈍
技術がよく知られている。その場合、冷延ままの鋼帯を
アンコイルして連続溶融亜鉛メッキ設備に挿入し再結晶
焼鈍するが、そのパターンは基本的には、加熱、均熱、
冷却からなっており、加工性を向上するために焼鈍温度
を高温としている。また、加熱方式は、ガスバーナーに
よる直火式の加熱、あるいはラジアントチューブによる
輻射加熱である。
2. Description of the Related Art As a basic technique for improving the workability of hot-dip galvanized steel sheets such as deep drawability and overhanging property, a high temperature annealing technique in an in-line annealing type continuous hot dip galvanizing facility is well known. In that case, the cold-rolled steel strip is uncoiled and inserted into a continuous hot-dip galvanizing facility and recrystallization annealed, but the pattern is basically heating, soaking,
It consists of cooling, and the annealing temperature is high in order to improve workability. The heating method is direct-fired heating with a gas burner or radiant heating with a radiant tube.

【0003】一方、電気加熱の連続焼鈍への適用も知ら
れており、特開昭56−116830号公報、特開昭5
6−116831号公報、特開平2−166234号公
報、特開平4−154947号公報において開示されて
いる。しかし、従来の電気加熱法は、常温から再結晶温
度以上まで一気に加熱したり、通常の焼鈍炉と完全に分
離独立する形で従来の連続焼鈍炉と組み合わせている。
On the other hand, application of electric heating to continuous annealing is also known, and is disclosed in JP-A-56-116830 and JP-A-5-160830.
It is disclosed in JP-A-6-116831, JP-A-2-166234, and JP-A-4-154947. However, the conventional electric heating method is combined with the conventional continuous annealing furnace in such a manner that it is heated from room temperature to a temperature higher than the recrystallization temperature all at once or is completely separated and independent from the normal annealing furnace.

【0004】[0004]

【発明が解決しようとする課題】溶融亜鉛メッキ鋼板の
加工性を改善するために通常の連続溶融亜鉛メッキ設備
で高温焼鈍すると、1)ヒートバックルや板破断などの
通板性が劣化する、2)表面疵などが発生し表面品位が
劣化する、3)エネルギーコストが上昇する、4)異品
種、異グレードの鋼板の製造に伴い焼鈍温度の変更が必
要となるために生産性が低下する、などの問題が生じ
る。一方、従来の電気加熱法では、1)加熱温度範囲が
広いため電気エネルギーコストが高くなる、2)二つの
加熱方法を分離独立して使用するために設備費が高くな
る問題がある。
When high-temperature annealing is performed in a normal continuous hot-dip galvanizing facility in order to improve the workability of hot-dip galvanized steel sheet, 1) the passability such as heat buckle and sheet breakage deteriorates. ) Surface defects occur and surface quality deteriorates, 3) energy cost rises, 4) productivity declines because it is necessary to change the annealing temperature with the production of steel sheets of different grades and grades, Such problems occur. On the other hand, in the conventional electric heating method, there is a problem that 1) the heating temperature range is wide and the electric energy cost is high, and 2) the two heating methods are used separately and independently, and the equipment cost is high.

【0005】本発明は、このような従来技術の課題を有
利に解決するものであって、再結晶焼鈍中の任意の段階
で急速かつ短時間の補助的な加熱をすることにより、加
工性に優れた溶融亜鉛メッキ鋼板の製造法を提供するこ
とを目的とする。
The present invention advantageously solves the problems of the prior art as described above, and it is possible to improve workability by performing auxiliary heating rapidly and for a short time at any stage during recrystallization annealing. An object is to provide an excellent hot-dip galvanized steel sheet manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、冷延ままの鋼帯をアンコイルしてライン内
焼鈍式の連続溶融亜鉛メッキ設備で溶融亜鉛メッキ鋼板
を製造するにあたり、鋼帯を再結晶温度以上で加熱し還
元雰囲気中で表面を還元する途中の任意の段階に、加熱
速度が100〜2000℃/sで820〜910℃の温度
範囲まで急速かつ短時間の昇温を補助的に行い、その後
冷却し溶融亜鉛メッキを施し、必要に応じて続いて再加
熱しメッキ層の合金化処理を行うことを特徴とする加工
性に優れた溶融亜鉛メッキ鋼板の製造方法である。
Means for Solving the Problems In order to achieve the above object, the present invention provides an uncoiled cold rolled steel strip to produce a hot dip galvanized steel sheet in an in-line annealing type continuous hot dip galvanizing equipment. Rapid and short-time heating to a temperature range of 820 to 910 ° C at a heating rate of 100 to 2000 ° C / s at any stage in the process of reducing the surface in a reducing atmosphere by heating the steel strip at a recrystallization temperature or higher. The method of manufacturing a hot-dip galvanized steel sheet with excellent workability, characterized in that it is subjected to an auxiliary treatment, then cooled and subjected to hot-dip galvanizing, and if necessary, subsequently re-heated to alloy the plating layer. is there.

【0007】以下、図面に基づいて本発明を説明する。
図1は、本発明による実施例を模式的に示す図である。
図中aは、冷延ままの鋼帯をアンコイルして加熱する段
階であり、その加熱パターンは加熱速度が1〜200℃
/s、到達温度が500〜900℃である。図中bとe
は、鋼帯を均熱する段階であり、均熱温度は500〜9
00℃、保持時間は0〜300sであるが、実際には必
ずしも一定の温度でない。図中cは、本発明の最も特徴
とするところであり、通電加熱などにより急速かつ短時
間の昇温をする段階である。加熱速度は100〜200
0℃/sであり820〜910℃まで加熱する。図中d
は、加熱後の冷却の段階であり、空冷あるいは強制冷却
する。図中fは、均熱後の徐冷却の段階である。図中g
は、それに続いて不活性ガスで溶融亜鉛浴に浸漬するま
で冷却する段階である。図中hで溶融亜鉛メッキした
後、iの段階で常温まで冷却する。これは、メッキ層で
Zn−Feの合金化反応が伴わない溶融亜鉛メッキ鋼板
の製造方法である。一方、溶融亜鉛浴に浸漬した後、図
中jで再加熱しメッキ層で合金化反応させ、その後kの
段階で室温まで冷却するのが、合金化溶融亜鉛メッキ鋼
板の製造方法である。
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram schematically showing an embodiment according to the present invention.
In the figure, a is a step of uncoiling and heating the as-rolled steel strip, and the heating pattern has a heating rate of 1 to 200 ° C.
/ s, ultimate temperature is 500 ~ 900 ℃. B and e in the figure
Is a stage of soaking the steel strip, and the soaking temperature is 500 to 9
Although the temperature is 00 ° C. and the holding time is 0 to 300 s, the temperature is not always constant. In the figure, c is the most characteristic feature of the present invention, and is a stage in which the temperature is raised rapidly and in a short time by electric heating. Heating rate is 100-200
The temperature is 0 ° C / s, and heating is performed to 820 to 910 ° C. D in the figure
Is a stage of cooling after heating, and air cooling or forced cooling is performed. In the figure, f is the stage of gradual cooling after soaking. G in the figure
Is a subsequent cooling step with an inert gas until immersed in the molten zinc bath. After hot dip galvanizing at h in the figure, it is cooled to room temperature at the stage of i. This is a method for producing a hot-dip galvanized steel sheet in which a Zn—Fe alloying reaction does not occur in the plating layer. On the other hand, the method for producing an alloyed hot-dip galvanized steel sheet is to immerse it in the hot-dip galvanized bath, reheat it at j in the figure to cause an alloying reaction in the plating layer, and then cool it to room temperature at the step k.

【0008】なお、本発明に用いる鋼を表1に例示す
る。
The steels used in the present invention are shown in Table 1.

【表1】 [Table 1]

【0009】すなわち重量%で、Cは0.0003〜
0.05%であり、0.0003%未満であると著しい
コスト上昇を招き、また0.05%超になると成形性が
劣る。Siは、0.005〜1.5%であり、0.00
5%未満はコスト上昇となり、また1.5%超は加工性
や表面処理性に問題が生じる。Mnは、0.03〜3%
であり、0.03%未満になると熱間脆化が発生し、ま
た3%超は加工性に問題が生じる。Pは、0.001〜
0.2%であり、0.001%未満にするには著しいコ
スト上昇が生じ、また0.2%超になると脆化が生じ
る。Sは、0.001〜0.02%である。0.001
%未満にするには、コストが著しく上昇する。0.02
%以上になると、熱間脆化が発生する。Alは、脱酸の
ために0.005〜0.2%添加する。0.2%超にな
ると加工性が劣化する。Ti,NbはCやNを固定する
ために必要に応じて添加する。その添加量は、0〜0.
1%とする。0.1%超となると、かえって加工性が劣
化する。Nは、0.0003〜0.0050%であり、
0.0003%未満は到達が困難であり、一方0.00
50%超となると加工性が著しく劣化する。Bは、必要
に応じて添加し、添加量は0.0040%以下である。
0.0040%超になると加工性が劣化する。
That is, in% by weight, C is 0.0003-
It is 0.05%, and if it is less than 0.0003%, the cost is remarkably increased, and if it exceeds 0.05%, the formability is deteriorated. Si is 0.005 to 1.5%, and 0.00
If it is less than 5%, the cost will increase, and if it exceeds 1.5%, there will be problems in workability and surface treatment. Mn is 0.03 to 3%
If it is less than 0.03%, hot embrittlement occurs, and if it exceeds 3%, there is a problem in workability. P is 0.001 to
It is 0.2%, and if it is less than 0.001%, a significant cost increase occurs, and if it exceeds 0.2%, embrittlement occurs. S is 0.001 to 0.02%. 0.001
If it is less than%, the cost increases significantly. 0.02
When it is more than 0.1%, hot embrittlement occurs. Al is added in 0.005 to 0.2% for deoxidation. If it exceeds 0.2%, workability deteriorates. Ti and Nb are added as needed to fix C and N. The amount added is 0 to 0.
1% If it exceeds 0.1%, the workability deteriorates. N is 0.0003 to 0.0050%,
Less than 0.0003% is difficult to reach, while 0.00
If it exceeds 50%, the workability is significantly deteriorated. B is added as necessary, and the addition amount is 0.0040% or less.
If it exceeds 0.0040%, the workability deteriorates.

【0010】以上のような鋼を、図1のパターンで熱処
理するが、主な熱履歴の条件範囲は、表2に示す通りで
ある。
The above-mentioned steel is heat-treated in the pattern shown in FIG. 1. The main heat history condition ranges are as shown in Table 2.

【表2】 [Table 2]

【0011】図1中aで、加熱速度が1℃/s未満では生
産性が悪く、また直火式加熱や輻射加熱では200℃/s
超は困難となる。また到達温度が、500℃未満では、
未再結晶の状態であり、一方900℃超にすると高温焼
鈍の問題点、すなわち通板性や表面疵の問題が発生す
る。到達温度での保定時間が、300s超になると生産
性が悪い。図中cの急速短時間の加熱は、本発明の特徴
とするところであり、加熱速度が100℃/s未満では加
熱に時間がかかりすぎ、一方2000℃/s超になると制
御が困難である。図中dは、急速加熱後、電気パワーを
offの状態とし、鋼帯温度が炉温に近づく過程を意味
するが、その後の均熱炉での焼鈍の温度と時間は、表2
の範囲とし、それから外れると、生産性が劣化したり、
通板性に問題が生じたりする。また、図中f以降の熱履
歴は通常のものと変わりはなく、合金化処理を伴う場合
と伴わない場合の両方を含む。
In FIG. 1, a, if the heating rate is less than 1 ° C./s, the productivity is poor, and in the case of direct heating or radiant heating, 200 ° C./s.
Super becomes difficult. Also, if the reached temperature is less than 500 ° C,
It is in a non-recrystallized state, and on the other hand, if it exceeds 900 ° C., there arises a problem of high temperature annealing, that is, a problem of threadability and surface defects. If the retention time at the ultimate temperature exceeds 300 s, the productivity will be poor. The rapid heating for a short time in c in the figure is a feature of the present invention. If the heating rate is less than 100 ° C./s, it takes too long to heat, while if it exceeds 2000 ° C./s, control is difficult. In the figure, d indicates a process in which the electric power is turned off after the rapid heating and the steel strip temperature approaches the furnace temperature. The temperature and time of the subsequent annealing in the soaking pit are shown in Table 2.
If it is out of the range, productivity will deteriorate,
There may be a problem with the plateability. Further, the thermal history after f in the figure is the same as the normal one, and includes both cases with and without alloying treatment.

【0012】図2および図3には、製品板のランクフォ
ード値(r値)と伸びに及ぼす急速短時間焼鈍温度の影
響を示す。用いた鋼は、C:0.0028%、Si:
0.02%、Mn:0.15%、P:0.011%、
S:0.009%、Al:0.045%、Ti:0.0
15%、Nb:0.008%、N:0.0018%の化
学組成からなる。スラブ加熱温度:1180℃、熱延仕
上げ温度:920℃で4.0mm厚に熱間圧延したのち、
710℃で巻取った。続いて酸洗した後、0.8mmまで
冷間圧延し、次の条件でライン内焼鈍式の合金化溶融亜
鉛メッキの処理に供した。ここで図1のa(加熱速
度):10℃/s、b:770℃×20s、c:700℃
/sで種々の温度まで加熱、d:空冷、e:770℃、
f:7℃/s(650℃まで)、g:40℃/s、h:47
0℃の溶融亜鉛浴(0.1%Alを含有)に2s浸漬、
j:20℃/sで520℃まで加熱し20s均熱、k:平
均冷却速度20℃/sで室温まで冷却である。その後、
0.8%の調質圧延の後、引張試験に供した。
2 and 3 show the influence of the rapid short-time annealing temperature on the Rankford value (r value) and elongation of the product sheet. The steel used is C: 0.0028%, Si:
0.02%, Mn: 0.15%, P: 0.011%,
S: 0.009%, Al: 0.045%, Ti: 0.0
The chemical composition is 15%, Nb: 0.008%, N: 0.0018%. Slab heating temperature: 1180 ° C, hot rolling finishing temperature: 920 ° C, after hot rolling to a thickness of 4.0 mm,
It was wound at 710 ° C. Then, after pickling, it was cold-rolled to 0.8 mm and subjected to in-line annealing type hot dip galvanizing under the following conditions. Here, in FIG. 1, a (heating rate): 10 ° C./s, b: 770 ° C. × 20 s, c: 700 ° C.
/ s to various temperatures, d: air cooling, e: 770 ℃,
f: 7 ° C / s (up to 650 ° C), g: 40 ° C / s, h: 47
Immerse in a molten zinc bath (containing 0.1% Al) at 0 ° C for 2s,
j: heating to 520 ° C. at 20 ° C./s and soaking for 20 s; k: cooling to room temperature at an average cooling rate of 20 ° C./s. afterwards,
It was subjected to a tensile test after temper rolling of 0.8%.

【0013】図2のcにおける最高到達温度と平均r値
との関係を、および図3に同温度と伸び(El)との関
係を示した。図2,図3から明らかなように、短時間の
補助的な加熱が、著しくr値や伸びを改善していること
がわかる。すなわち、到達温度が820〜910℃の本
発明範囲で製造すると、r値は1.6〜2.4で、伸び
は44〜53%となり加工性に極めて優れた合金化溶融
亜鉛メッキ冷延鋼板が製造できる。
The relationship between the maximum temperature reached and the average r value in FIG. 2c is shown, and the relationship between the temperature and the elongation (El) is shown in FIG. As is clear from FIGS. 2 and 3, it can be seen that the supplementary heating for a short time significantly improves the r value and the elongation. That is, when manufactured in the range of the present invention where the ultimate temperature is 820 to 910 ° C, the r value is 1.6 to 2.4, the elongation is 44 to 53%, and the alloyed hot dip galvanized cold rolled steel sheet is extremely excellent in workability. Can be manufactured.

【0014】[0014]

【発明の効果】本発明を適用することにより、1)ヒー
トバックルや板破断などがなく通板性が良好となる、
2)表面疵などの発生もなく鋼板の表面品位が向上す
る、3)グレードの異なる鋼板を製造する場合でも炉温
を一定にできるので生産性が改善される、4)電気加熱
する温度範囲が狭いので電気エネルギー消費量が低減す
る、などが可能となる。また、本発明はライン内焼鈍式
のアルミメッキなどの冷延鋼板の製造にも適用が可能で
あり、その適用範囲も広い。したがって、本発明の工業
的意義は極めて大きい。
EFFECTS OF THE INVENTION By applying the present invention, 1) there is no heat buckle, plate breakage, etc.
2) The surface quality of the steel sheet improves without the occurrence of surface defects, 3) The productivity can be improved because the furnace temperature can be kept constant even when manufacturing steel sheets of different grades, and 4) the temperature range for electric heating can be improved. Since it is narrow, it is possible to reduce the electric energy consumption. Further, the present invention can be applied to the production of cold-rolled steel sheet such as in-line annealing type aluminum plating, and its application range is wide. Therefore, the industrial significance of the present invention is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱処理パターンを模式的に示す図。FIG. 1 is a diagram schematically showing a heat treatment pattern of the present invention.

【図2】本発明実施例の最高到達温度と平均r値との関
係を示す図。
FIG. 2 is a graph showing the relationship between the maximum temperature reached and the average r value in the example of the present invention.

【図3】本発明実施例の最高到達温度と伸びとの関係を
示す図。
FIG. 3 is a graph showing the relationship between the maximum temperature reached and the elongation in the example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 手墳 誠 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Tezaba 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Stock of Kimitsu Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷延ままの鋼帯をアンコイルしてライン
内焼鈍式の連続溶融亜鉛メッキ設備で溶融亜鉛メッキ鋼
板を製造するにあたり、鋼帯を再結晶温度以上で加熱し
還元雰囲気中で表面を還元する途中の任意の段階に、加
熱速度が100〜2000℃/sで820〜910℃の温
度範囲まで急速かつ短時間の昇温を補助的に行い、その
後冷却し溶融亜鉛メッキを施すことを特徴とする加工性
に優れた溶融亜鉛メッキ鋼板の製造方法。
1. When a cold rolled steel strip is uncoiled to produce a hot dip galvanized steel sheet in an in-line annealing type continuous hot dip galvanizing equipment, the steel strip is heated at a recrystallization temperature or higher and the surface is kept in a reducing atmosphere. At any stage in the middle of reducing, a supplementary rapid and short time heating up to a temperature range of 820 to 910 ° C at a heating rate of 100 to 2000 ° C / s, and then cooling and hot dip galvanizing And a method for producing a hot-dip galvanized steel sheet having excellent workability.
【請求項2】 溶融亜鉛メッキを施した後、続いて再加
熱しメッキ層の合金化処理を行うことを特徴とする請求
項1記載の加工性に優れた溶融亜鉛メッキ鋼板の製造方
法。
2. The method for producing a hot-dip galvanized steel sheet having excellent workability according to claim 1, wherein after the hot-dip galvanizing, re-heating is performed to alloy the plated layer.
JP24327293A 1993-09-29 1993-09-29 Production of galvanized steel sheet excellent in workability Pending JPH0797633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24327293A JPH0797633A (en) 1993-09-29 1993-09-29 Production of galvanized steel sheet excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24327293A JPH0797633A (en) 1993-09-29 1993-09-29 Production of galvanized steel sheet excellent in workability

Publications (1)

Publication Number Publication Date
JPH0797633A true JPH0797633A (en) 1995-04-11

Family

ID=17101404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24327293A Pending JPH0797633A (en) 1993-09-29 1993-09-29 Production of galvanized steel sheet excellent in workability

Country Status (1)

Country Link
JP (1) JPH0797633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220651A (en) * 2001-01-29 2002-08-09 Nkk Corp Method for manufacturing hot-dip galvanized steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220651A (en) * 2001-01-29 2002-08-09 Nkk Corp Method for manufacturing hot-dip galvanized steel sheet
JP4631176B2 (en) * 2001-01-29 2011-02-16 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet

Similar Documents

Publication Publication Date Title
JP4804996B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability, powdering property and slidability
JP2008523243A (en) Method of melt dip coating high strength steel strip
JPS6045689B2 (en) Method for manufacturing cold rolled steel sheet with excellent press formability
JP3002379B2 (en) Manufacturing method of high-strength cold-rolled galvannealed steel sheets for automobiles with excellent formability, paint bake hardenability and little change in paint bake hardenability
JP3855678B2 (en) Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability
JP4422645B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability
US6902829B2 (en) Coated steel alloy product
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2004323944A (en) Hot dip galvanized steel sheet for quenching, its production method, and its use
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPH0797633A (en) Production of galvanized steel sheet excellent in workability
US3228810A (en) Method for producing highly ductile metallic coated ferrous sheet and strip
JPS6046167B2 (en) Method for manufacturing high-strength cold-rolled steel sheets for deep scratching that are non-aging and have excellent paint-baking hardenability through continuous annealing
JPS6036624A (en) Production of cold rolled steel sheet for deep drawing
JPH0797632A (en) Production of cold rolled steel sheet and galvanized steel sheet excellent in workability and hardenability in coating/baking
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
TWI751002B (en) Hot dip galvanized steel material with high formability and method of manufacturing the same
US4191600A (en) Method of continuously heat-treating steel sheet or strip
KR940000872B1 (en) Method for making a hot-dipped zinc coating steel sheet with an excellent workability and plating properties
CN113584403A (en) Process method for improving deep drawing performance of hot-dip galvanized IF steel
JP2571585B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing
JPH08170123A (en) Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet
KR20230093636A (en) Galvanized steel sheet having excellent coating adhesion and method for manufacturing thereof
JP2951241B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability and enamel properties
JP2000273611A (en) Galvannealed steel sheet and production thereof