JPH0797526A - Material having variable modulus of elasticity - Google Patents

Material having variable modulus of elasticity

Info

Publication number
JPH0797526A
JPH0797526A JP26567293A JP26567293A JPH0797526A JP H0797526 A JPH0797526 A JP H0797526A JP 26567293 A JP26567293 A JP 26567293A JP 26567293 A JP26567293 A JP 26567293A JP H0797526 A JPH0797526 A JP H0797526A
Authority
JP
Japan
Prior art keywords
temperature
phase transition
elastic modulus
water
elasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26567293A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Shibayama
充弘 柴山
Ichiro Igarashi
一郎 五十嵐
Chihi Go
馳飛 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP26567293A priority Critical patent/JPH0797526A/en
Publication of JPH0797526A publication Critical patent/JPH0797526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a material having variable modulus of elasticity useful for clutch and shock absorber of automobile, artificial. muscle, etc., showing volume phase transition caused by change of temperature in water, forming by dehydration to a specific ratio, having excellent handleability, safety and responsiveness. CONSTITUTION:This material having a variable modulus of elasticity is obtained by dehydrating a polymer get showing volume phase transition in water caused by temperature change, preferably one selected from an N-substituted alkyl(meth)acrylamide, its derivative, its copolymer, polyvinyl methyl ether, partially saponified substance of polyvinyl acetate, methyl cellulose and a copolymer of sodium allylacetate and acrylamide to <=35wt.% water content and shows a constant volume in a gas irrespective of temperature and a modulus of elasticity to cause reversible change at >=the phase transition temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は弾性率可変材料、さらに
詳しく言えば、温度により材料の弾性率が可逆的に変化
する熱応答性弾性率可変材料に関する。本発明の弾性率
可変材料は、例えば、自動車のクラッチ、ショックアブ
ソーバ等の力学的エネルギーの伝達もしくは吸収を行な
う装置、あるいはソフトマニピュレータ、人口筋肉等に
適用し得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material having a variable elastic modulus, and more particularly to a material having a variable thermoresponsive elastic modulus in which the elastic modulus of the material reversibly changes with temperature. INDUSTRIAL APPLICABILITY The elastic modulus variable material of the present invention can be applied to, for example, an automobile clutch, a device for transmitting or absorbing mechanical energy such as a shock absorber, a soft manipulator, an artificial muscle or the like.

【0002】[0002]

【従来の技術】自動車をはじめとする輸送装置において
は、カップリング、クラッチ、ダンパ、ショックアブソ
ーバ、エンジンマウント等にエネルギー伝達ないしエネ
ルギー吸収を効率的に行ない得る材料が必要である。こ
うした材料としては、従来、エネルギー伝達には剛性材
料の組合せや粘性流体、エネルギー吸収には可撓性材料
等が用いられている。しかし、これらは装置構成が複雑
であり、動作の滑らかさという点で必ずしも満足の行く
ものではない。また、機械産業においては、より広範囲
な分野での自動化を進めるため、人間の手指の動きのよ
うなより繊細で円滑な動きを実現し得る材料が望まれて
いる。かかる材料は人口筋肉として医療分野での応用も
期待されるものであるが、コンパクトな構成で効率的か
つ俊敏に動作する材料は未だ得られていない。
2. Description of the Related Art In a transportation device such as an automobile, a material capable of efficiently transmitting or absorbing energy is required for a coupling, a clutch, a damper, a shock absorber, an engine mount and the like. As such materials, conventionally, a combination of rigid materials and viscous fluids have been used for energy transmission, and a flexible material etc. have been used for energy absorption. However, these devices have complicated device configurations and are not always satisfactory in terms of smooth operation. Further, in the machine industry, in order to promote automation in a wider range of fields, a material capable of realizing more delicate and smooth movements such as movements of human fingers is desired. Although such a material is expected to be applied to the medical field as an artificial muscle, a material that operates efficiently and swiftly with a compact structure has not been obtained yet.

【0003】近年、電気、磁気などの刺激に応じて弾性
率が変化し得る機能性高分子材料が開発され、上記の各
分野への応用が検討されている。例えば、電気的刺激に
より感応する材料として電場の作用で電気分極をする材
料を絶縁性可撓性高分子材料に分散してなるもの(特開
平 3-91541号公報)、磁気的刺激に感応する材料として
磁場の作用で磁気分極をする材料を可撓性高分子材料に
分散してなるもの(特開平4-266970号公報、同特開平 5
-25316号公報)などが知られている。
In recent years, a functional polymer material having an elastic modulus that can be changed in response to a stimulus such as electric or magnetic has been developed, and its application to each of the above fields is being studied. For example, as a material that is sensitive to an electrical stimulus, a material that is electrically polarized by the action of an electric field is dispersed in an insulating flexible polymer material (JP-A-3-91541), which is sensitive to a magnetic stimulus. A material in which a material that is magnetically polarized by the action of a magnetic field is dispersed in a flexible polymer material (JP-A-4-266970, JP-A-5-26970).
-25316 gazette) etc. are known.

【0004】上記のうち、特開平 3-91541号と特開平4-
266970号および特開平 5-25316号記載の高分子材料は、
電気分極あるいは磁気分極する粒子が不可欠であり、ま
たこれら粒子を高分子材料に分散させる工程や電磁場を
印加する工程等も必要となるため、コストが高くなる。
さらに、特開平 3-91541号の電場応答性弾性率可変材料
においては、そのマトリックス高分子が電気絶縁性でな
ければならないという制約があり、高電場を印加する
時、安全性の配慮も必要になる。
Among the above, JP-A-3-91541 and JP-A-4-91541
266970 and the polymer material described in JP-A-5-25316,
Particles that are electrically polarized or magnetically polarized are indispensable, and a step of dispersing these particles in a polymer material, a step of applying an electromagnetic field, and the like are also required, resulting in high cost.
Further, in the electric field responsive elastic modulus variable material of Japanese Patent Laid-Open No. 3-91541, there is a restriction that the matrix polymer has to be electrically insulating, and it is necessary to consider safety when applying a high electric field. Become.

【0005】最近、N−イソプロピルアクリルアミド
(NIPA)−水系ゲルの弾性率が熱的刺激に対して応
答性を有するとの報告がなされている(J.Chem. Phys.,
95(5),3949〜3957(1991))。NIPA−水系ゲルは温度
によって臨界的に、つまり相転移として体積変化を示す
ものとして知られており、具体的には転移温度を超える
際には水の放出を伴なって収縮が、転移温度を下る際に
は水の吸収を伴なって膨潤が起こる。上記報文は、かか
る相転移に際して転移温度前後1℃の範囲でNIPA−
水系ゲルの弾性率が大きく変化する旨を報告したもので
ある。
Recently, it has been reported that the elastic modulus of N-isopropylacrylamide (NIPA) -aqueous gel is responsive to thermal stimuli (J. Chem. Phys.,
95 (5), 3949-3957 (1991)). The NIPA-water-based gel is known to show a volume change as a phase transition, that is, critically with temperature. Specifically, when the transition temperature is exceeded, shrinkage accompanied by the release of water causes the transition temperature to change. When descending, swelling occurs with absorption of water. The above-mentioned report states that the NIPA-
It is reported that the elastic modulus of the water-based gel changes greatly.

【0006】上記報文による系は比較的低コストで得ら
れるものであり、弾性率は数十倍に変化する。しかし、
この弾性率変化は、相転移に際して液体(ここでは水)
の吸収・放出を伴なって進行するものであるから、実用
に用いようとすればゲル体のシールが不可欠となる。さ
らに、水の吸収・放出が律速段階となるため、応答性を
高めるためにはゲルの寸法や形状が制限される。このた
め、自動車部品等の実用には適用し難い。
The system according to the above report is obtained at a relatively low cost, and the elastic modulus changes several tens of times. But,
This change in elastic modulus is due to the liquid (here, water) during the phase transition.
Since it progresses with absorption and release of gel, sealing of the gel body is indispensable for practical use. Furthermore, since absorption and release of water are rate-determining steps, the size and shape of the gel are limited in order to enhance the responsiveness. Therefore, it is difficult to apply it to practical use of automobile parts and the like.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、従来
技術の問題点に鑑み、取扱性に優れ、製造および制御が
容易な、弾性率が可逆的に変化する低コスト材料を提供
することにある。
In view of the problems of the prior art, it is an object of the present invention to provide a low cost material which has excellent handleability, is easy to manufacture and control, and has a reversible elastic modulus change. It is in.

【0008】[0008]

【課題を解決するための手段】本発明者らは、NIPA
−水系ゲルに代表される不連続的な体積変化、すなわち
相転移を示す高分子ゲルを様々な条件下においてその挙
動を注意深く観察した。その結果、含水量を特定の値以
下に低減した収縮相にあるゲルは、気体中(すなわち水
中から取り出した状態)で、温度によらず体積が一定で
あること、および体積相転移温度以上の温度領域で、温
度変化にしたがって可逆的に弾性率が変化することを見
出し本発明を完成するに至った。
SUMMARY OF THE INVENTION The present inventors have developed a NIPA.
The behavior of a polymer gel showing a discontinuous volume change, that is, a phase transition represented by an aqueous gel, was carefully observed under various conditions. As a result, the gel in the contracted phase with the water content reduced below a specific value has a constant volume in gas (that is, a state of being taken out from water) regardless of temperature, In the temperature range, the inventors have found that the elastic modulus reversibly changes according to the temperature change, and completed the present invention.

【0009】[0009]

【発明の構成】すなわち、本発明は以下の弾性率可変材
料を提供する。 (1)水中において温度変化による体積相転移を示す高
分子ゲルを含水量35重量%以下まで脱水してなる、気
体中において温度によらず体積が一定であり、弾性率が
相転移温度以上では可逆的に変化する弾性率可変材料。 (2)高分子ゲルが、N−置換アルキル(メタ)アクリ
ルアミド、その誘導体びこれらの共重合体、ポリ酢酸ビ
ニルの部分けん化物、メチルセルロース、ポリビニルメ
チルエーテル並びにアリル酢酸ナトリウムとアクリルア
ミドの共重合体から選択される上記(1)に記載の弾性
率可変材料。
That is, the present invention provides the following elastic modulus variable material. (1) A polymer gel that exhibits a volume phase transition due to a temperature change in water is dehydrated to a water content of 35% by weight or less. In a gas, the volume is constant regardless of the temperature, and the elastic modulus is equal to or higher than the phase transition temperature. A variable elastic material that changes reversibly. (2) The polymer gel is selected from N-substituted alkyl (meth) acrylamides, their derivatives and copolymers thereof, partially saponified polyvinyl acetate, methyl cellulose, polyvinyl methyl ether, and copolymers of sodium allyl acetate and acrylamide. The elastic modulus variable material according to (1) above.

【0010】本発明において使用される高分子ゲルは、
一般的には、分子中に親水部と疎水部とを併せ持ち、そ
の材料固有の相転移温度で水の吸収・放出による体積相
転移を示す高分子材料である。これらの高分子材料は、
水の存在下において、相転移温度より低い温度では、そ
の親水部は水素結合により水に溶解し、疎水部も疎水性
水和により水に溶解しているため膨潤状態にある。とこ
ろが、これを相転移温度以上に昇温すると、水素結合が
破壊されて脱水和し疎水部同士の会合が優勢となって収
縮状態になる。
The polymer gel used in the present invention is
Generally, it is a polymer material having both a hydrophilic part and a hydrophobic part in the molecule and exhibiting a volume phase transition due to absorption / release of water at a phase transition temperature peculiar to the material. These polymeric materials
In the presence of water, at a temperature lower than the phase transition temperature, the hydrophilic part is dissolved in water by hydrogen bond, and the hydrophobic part is also dissolved in water by hydrophobic hydration, and thus is in a swollen state. However, when the temperature is raised above the phase transition temperature, hydrogen bonds are broken and dehydrated, and the association between the hydrophobic parts becomes predominant, resulting in a contracted state.

【0011】かかる性質を有する材料としては、例え
ば、N−置換アルキル(メタ)アクリルアミド、その誘
導体及びこれらの共重合体、ポリ酢酸ビニルの部分けん
化物、メチルセルロース、ポリビニルメチルエーテル並
びにアリル酢酸ナトリウムとアクリルアミドの共重合体
等のゲルが挙げられる。
Materials having such properties include, for example, N-substituted alkyl (meth) acrylamides, their derivatives and copolymers thereof, partially saponified polyvinyl acetate, methyl cellulose, polyvinyl methyl ether, sodium allyl acetate and acrylamide. Examples thereof include gels such as copolymers.

【0012】本発明で用いる高分子ゲルにおいては、そ
の含水率を35重量%以下とすることが必要である。3
5重量%以下の含水率とすることにより、相転移温度以
上十〜数十℃の範囲内で弾性率が可逆的に変化するとい
う特異な性質が発現する。材料の含水率が35重量%を
越えるゲルは応答性が遅い。なお、高分子ゲルの含水量
はゲルの架橋密度及び脱水時の放置時間によって調整す
ることができ、本発明の範囲内の含水量とすることがで
きる。脱水は好ましくは相転移温度付近で行なう。相転
移温度から大きく外れた温度で脱水を行なうと表面と内
部との収縮速度の差が大きく、内部の水の吐出しが不十
分であったり、ゲルが変形して所望の形状が得られな
い。
The polymer gel used in the present invention must have a water content of 35% by weight or less. Three
By setting the water content to 5% by weight or less, the peculiar property that the elastic modulus reversibly changes within the range of not less than the phase transition temperature and 10 to several tens of degrees Celsius appears. Gels having a water content of more than 35% by weight have slow responsiveness. The water content of the polymer gel can be adjusted by the cross-linking density of the gel and the standing time during dehydration, and can be a water content within the range of the present invention. Dehydration is preferably performed near the phase transition temperature. When dehydration is performed at a temperature that is far from the phase transition temperature, the difference in the contraction speed between the surface and the inside is large, the discharge of water inside is insufficient, or the gel deforms and the desired shape cannot be obtained. .

【0013】本発明の含水ゲルは空気中など気体中で使
用する。水中においては相転移温度以下において水を吸
収するため含水率を上記の範囲とすることができない。
また、水中では相転移温度の付近で水分の放出や吸収に
伴ないゲルの体積が変化するため自動車部品等に適用し
にくくなる。なお、弾性率変化は相転移温度以上でのみ
発現するが、気体中で使用する限り、相転移温度以下に
あっても吸水が起こらないだけで特に使用に支障はな
い。一旦、相転移温度以下におかれても相転移温度以上
に昇温すれば、再び弾性率変化が発現する。
The hydrogel of the present invention is used in a gas such as air. Since water absorbs water below the phase transition temperature in water, the water content cannot be within the above range.
Further, in water, the volume of the gel changes in the vicinity of the phase transition temperature due to the release and absorption of water, which makes it difficult to apply to automobile parts and the like. The elastic modulus change appears only above the phase transition temperature, but as long as it is used in a gas, even if the temperature is below the phase transition temperature, water absorption does not occur and there is no particular problem in use. Even if the temperature is below the phase transition temperature, when the temperature rises above the phase transition temperature, the elastic modulus changes again.

【0014】本発明の弾性率可変材料の相転移温度は、
材料の構造によるが、通常0〜80℃の範囲である。相
転移温度の調整は既知の方法により行なうことができ
る。具体的には(i) 材料を構成している高分子の化学構
造の設計、(ii)有機または無機塩、界面活性剤等の助剤
などを挙げることができる。(i) の例としては、N−置
換アルキル(メタ)アクリルアミドにおいてそのアルキ
ル置換基の形状や長さを変化させる、ポリ酢酸ビニルに
おいてそのけん化度を変化させる、共重合体ゲルにおい
てその共重合組成比を変化させる等の手法が考えられ
る。(ii)については、NIPAゲルの場合、アルカリ金
属やアルカリ土類金属のハロゲン化物等を添加すると一
般的には相転移温度が上昇し、ドデシル硫酸ナトリウム
のような界面活性剤を添加すると添加量に応じて相転移
温度は複雑な変化を示すことが知られている(高分子加
工,39巻,580〜584,1990年)。また、ポリビ
ニルメチルエーテルの場合、その相転移温度は通常32
〜40℃の範囲内であるが、この水溶液に、例えば塩化
ナトリウムや塩化カルシウム等の無機塩類、酢酸ナトリ
ウムやクエン酸ナトリウム等の有機塩類、アルギン酸ナ
トリウムやポリアクリル酸ナトリウム等の高分子電解質
等を添加することにより、相転移温度を低下させること
ができ、また、メタノール、エタノール、エチレングリ
コール、グリセリン等の水溶性アルコール類やアセトン
等の水溶性ケトン類を添加することによって、相転移温
度を上昇させることもできる。
The phase transition temperature of the elastic modulus variable material of the present invention is
Depending on the structure of the material, it is usually in the range of 0 to 80 ° C. The phase transition temperature can be adjusted by a known method. Specific examples include (i) design of chemical structure of polymer constituting the material, (ii) organic or inorganic salt, auxiliary agent such as surfactant, and the like. Examples of (i) include changing the shape and length of the alkyl substituent in N-substituted alkyl (meth) acrylamide, changing the degree of saponification in polyvinyl acetate, and its copolymer composition in copolymer gel. A method such as changing the ratio can be considered. Regarding (ii), in the case of NIPA gel, the phase transition temperature generally rises when an alkali metal or alkaline earth metal halide or the like is added, and the addition amount when a surfactant such as sodium dodecyl sulfate is added. It is known that the phase transition temperature changes intricately according to the above (Polymer Processing, 39, 580-584, 1990). In the case of polyvinyl methyl ether, its phase transition temperature is usually 32.
Within the range of up to 40 ° C., the aqueous solution may be charged with, for example, inorganic salts such as sodium chloride and calcium chloride, organic salts such as sodium acetate and sodium citrate, and polymer electrolytes such as sodium alginate and sodium polyacrylate. The phase transition temperature can be lowered by adding it, and the phase transition temperature can be raised by adding water-soluble alcohols such as methanol, ethanol, ethylene glycol and glycerin or water-soluble ketones such as acetone. You can also let it.

【0015】なお、本発明の弾性率可変材料における弾
性率及びその変化の度合は材料の含水率、架橋密度を適
宜選ぶことによりコントロールできる。基本的には架橋
密度が低いほど或いは含水率が高いほど弾性率は小さく
なるが、反面、弾性率変化の度合は大きくなる。含水率
は上記のとおり脱水時の放置時間及び架橋密度により変
化させることができる。また、架橋密度は架橋剤の選択
等、既知の方法にしたがって調整することができる。
The elastic modulus and the degree of change in the elastic variable material of the present invention can be controlled by appropriately selecting the water content and the crosslink density of the material. Basically, the lower the crosslink density or the higher the water content, the smaller the elastic modulus, but on the other hand, the larger the degree of change in elastic modulus becomes. As described above, the water content can be changed by the standing time during dehydration and the crosslink density. The crosslinking density can be adjusted according to a known method such as selection of a crosslinking agent.

【0016】また、材料の弾性率のほかに、強度、熱あ
るいは電気伝導性など性能を向上させるためには所望に
より既知の各種添加剤、例えば、金属粉末、酸化鉄、カ
ーボンブラック、繊維などのフィラーを添加することも
できる。
If desired, in addition to the elastic modulus of the material, various known additives such as metal powder, iron oxide, carbon black and fiber are added in order to improve the performance such as strength, heat or electric conductivity. Fillers can also be added.

【0017】本発明の弾性率可変材料には、上記のよう
に種々の応用が可能であるが、基本的には、材料がそれ
自体の温度を感じながら弾性率を変化させるインテリジ
ェントタイプの材料として、あるいは、材料温度を外部
から、例えばヒーター等を用いて積極的に変化させるこ
とにより弾性率を制御する受動型の材料として使用する
ことができる。
The elastic modulus variable material of the present invention can be applied in various ways as described above, but basically, it is an intelligent type material that changes elastic modulus while the material feels its own temperature. Alternatively, it can be used as a passive material in which the elastic modulus is controlled by positively changing the material temperature from the outside by using, for example, a heater.

【0018】[0018]

【実施例】以下、実施例を比較例を挙げて、本発明を説
明するが、以下は例示であって、本発明の範囲を限定す
るものではない。なお、実施例において弾性率の評価に
あたっては、動的粘弾性測定装置レオスペクトラーDV
E−4((株)レオロジ社製)を用いて下記の条件で弾
性率の変化を測定した。 測定条件: 温度範囲 20〜60℃ 昇温速度 0.5℃/min 測定モード 圧縮 測定周波数 合成波(1,2,4,8,16,32,64,128,256H
z) 振幅 20−40μ 静荷重 20−40g 試料のサイズ 円盤状(直径13.0mm,厚み 4.1m
m)
EXAMPLES The present invention will be described below with reference to examples, but the following are examples and do not limit the scope of the present invention. In addition, in the evaluation of the elastic modulus in Examples, a dynamic viscoelasticity measuring device Rheospectr DV
A change in elastic modulus was measured under the following conditions using E-4 (manufactured by Rheology Co., Ltd.). Measurement conditions: Temperature range 20-60 ℃ Temperature rising rate 0.5 ℃ / min Measurement mode Compressed measurement frequency Synthetic wave (1,2,4,8,16,32,64,128,256H
z) Amplitude 20-40μ Static load 20-40g Sample size Disc shape (diameter 13.0mm, thickness 4.1m
m)

【0019】実施例1 ポリN−イソプロピルアクリルアミドの 0.69mol/lの水
溶液にN,N′−メチレンビスアクリルアミド(架橋
剤)0.00862mol/l、過硫酸アンモニウム(反応開始剤)
0.00175mol/l、N,N,N′,N′−テトラメチレンジ
アミン(反応促進剤)0.008mol/lを加え、重合温度20
℃、時間16hの条件下で膨潤状態の材料を製造した。
得られた材料を34.0℃の恒温水中で数日放置することに
より、体積収縮を起こさせた。なお、このものの体積相
転移温度は33.6℃であった。収縮状態の材料を水中から
取り出し、余分な水分をさらに除去して、水分含有量が
25.1重量%の感温性弾性率可変材料を作製した。
Example 1 N, N'-methylenebisacrylamide (crosslinking agent) 0.00862 mol / l, ammonium persulfate (reaction initiator) was added to a 0.69 mol / l aqueous solution of poly-N-isopropylacrylamide.
0.00175 mol / l, N, N, N ', N'-tetramethylenediamine (reaction accelerator) 0.008 mol / l were added, and the polymerization temperature was 20.
A material in a swollen state was produced under conditions of ° C and a time of 16 hours.
The obtained material was left to stand in constant temperature water at 34.0 ° C for several days to cause volume contraction. The volume phase transition temperature of this product was 33.6 ° C. Remove the shrunken material from the water to further remove excess water and reduce the water content.
A 25.1 wt% variable temperature-sensitive elastic modulus material was prepared.

【0020】この材料を粘弾性測定機によって弾性率
E′(MPa)の温度依存性を測定した。図1にlog
E′と温度との関係を示す。図1から、相転移温度以上
十数℃の領域で、弾性率が急激に上昇していることがわ
かる。また、弾性率変化は100 倍に及び、弾性率の最大
値は1.0 MPaを超えており筋肉の弾性率(1.5 〜5M
Pa)に匹敵する。また、上記ゲルについて温度上昇時
および下降時の両方について粘弾性測定を繰り返したと
ころ、若干のヒステリシスは観察されたものの、弾性率
が温度変化に応じて可逆的に変化することが確認され
た。
The temperature dependence of the elastic modulus E '(MPa) of this material was measured by a viscoelasticity measuring machine. Log in Figure 1
The relationship between E'and temperature is shown. From FIG. 1, it can be seen that the elastic modulus sharply increases in the range of the phase transition temperature and a few tens of degrees Celsius or higher. The change in elastic modulus is 100 times, and the maximum value of elastic modulus exceeds 1.0 MPa, and the elastic modulus of muscle (1.5 to 5M
Equivalent to Pa). Further, when the viscoelasticity measurement was repeated for the above gel both when the temperature increased and when the temperature decreased, it was confirmed that the elastic modulus reversibly changed with temperature change, although some hysteresis was observed.

【0021】実施例2 ポリN−イソプロピルアクリルアミドの 0.575mol/l と
ジメチルアクリルアミド0.115mol/lの水溶液に、N,
N′−メチレンビスアクリルアミド(架橋剤)0.00224m
ol/l、過硫酸アンモニウム(反応開始剤)0.00175mol/
l、N,N,N′,N′−テトラメチレンジアミン(反
応促進剤)0.008mol/lを加え、重合温度20℃、時間1
6hの条件下で膨潤状態の共重合体材料を製造した。得
られた材料を41.5℃の恒温水中で数日放置することによ
り、体積収縮を起こさせた。含水量および体積相転移温
度はそれぞれ28.5重量%、41.1℃であった。収縮状態の
材料を実施例1と同様に処理してから粘弾性測定を行な
った。結果を図2に示す。また、上記ゲルについて温度
上昇時および下降時の両方について粘弾性測定を繰り返
したところ、若干のヒステリシスは観察されたものの、
弾性率が温度変化に応じて可逆的に変化することが確認
された。
Example 2 An aqueous solution of 0.575 mol / l of poly-N-isopropylacrylamide and 0.115 mol / l of dimethylacrylamide was added with N,
N'-methylenebisacrylamide (crosslinking agent) 0.00224m
ol / l, ammonium persulfate (reaction initiator) 0.00175 mol /
Add 0.008 mol / l of l, N, N, N ′, N′-tetramethylenediamine (reaction accelerator), polymerization temperature 20 ° C., time 1
A swollen copolymer material was produced under the conditions of 6 h. The obtained material was left in constant temperature water at 41.5 ° C. for several days to cause volume contraction. The water content and volume phase transition temperature were 28.5% by weight and 41.1 ° C, respectively. The material in the contracted state was treated in the same manner as in Example 1, and then the viscoelasticity was measured. The results are shown in Figure 2. Further, when the viscoelasticity measurement was repeated for both the temperature rise and the temperature fall of the gel, although some hysteresis was observed,
It was confirmed that the elastic modulus reversibly changes with changes in temperature.

【0022】[0022]

【発明の効果】本発明の含水ゲルは磁性体や電気分極性
材料等を内添する必要がないため製造が簡単である。ま
た、使用に際しては液中で用いたり高電圧等の印加を必
要としないため、取扱性・安全性に優れている。このた
め、材料それ自体の製造コストが廉価であるばかりでな
く、各種装置に用いる場合でもシール材を用いずに空気
中で使用することができるなど装置構成が簡単に済みコ
ストを低く抑えることが可能であると期待される。さら
に、実現できる弾性率の変化が大きく応答性にも優れて
おり、寸法や形状についての制限も少ないため、エネル
ギー伝導・吸収材料やメカノケミカル材料として応用す
るのに特に有用である。
The hydrogel of the present invention is easy to manufacture because it is not necessary to internally add a magnetic substance, an electrically polarizable material or the like. In addition, it is excellent in handleability and safety because it does not require application in liquid or application of high voltage when used. Therefore, not only the manufacturing cost of the material itself is low, but also when it is used for various devices, it can be used in the air without using a sealing material, and the device configuration is simple and the cost can be kept low. Expected to be possible. Furthermore, since the change in elastic modulus that can be realized is large and the response is excellent, and there are few restrictions on the size and shape, it is particularly useful for application as an energy conducting / absorbing material or a mechanochemical material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1によって得られた、感温性弾
性率可変材料の粘弾性測定機によって画かれた、弾性率
(E′)の温度依存性を表わす図である。
FIG. 1 is a diagram showing the temperature dependence of elastic modulus (E ′), which was determined by a viscoelasticity measuring instrument for a temperature-sensitive elastic modulus variable material obtained in Example 1 of the present invention.

【図2】本発明の実施例2によって得られた、感温性弾
性率可変材料の粘弾性測定機によって画かれた、弾性率
(E′)の温度依存性を表わす図である。
FIG. 2 is a diagram showing the temperature dependence of the elastic modulus (E ′), which is obtained by the viscoelasticity measuring instrument for the temperature-sensitive elastic modulus variable material obtained in Example 2 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中において温度変化による体積相転移
を示す高分子ゲルを含水量35重量%以下まで脱水して
なる、気体中において温度によらず体積が一定であり弾
性率が相転移温度以上で可逆的に変化する弾性率可変材
料。
1. A polymer gel which exhibits a volume phase transition due to a temperature change in water is dehydrated to a water content of 35% by weight or less, and has a constant volume in a gas regardless of temperature and an elastic modulus of at least the phase transition temperature. A variable elastic material that changes reversibly with temperature.
【請求項2】 高分子ゲルが、N−置換アルキル(メ
タ)アクリルアミド、その誘導体及びこれらの共重合
体、ポリビニルメチルエーテル、ポリ酢酸ビニルの部分
けん化物、メチルセルロース、並びにアリル酢酸ナトリ
ウムとアクリルアミドの共重合体から選択される請求項
1に記載の弾性率可変材料。
2. A polymer gel comprising an N-substituted alkyl (meth) acrylamide, a derivative thereof and a copolymer thereof, polyvinyl methyl ether, a partially saponified product of polyvinyl acetate, methyl cellulose, and a copolymer of sodium allyl acetate and acrylamide. The elastic modulus variable material according to claim 1, which is selected from polymers.
JP26567293A 1993-09-29 1993-09-29 Material having variable modulus of elasticity Pending JPH0797526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26567293A JPH0797526A (en) 1993-09-29 1993-09-29 Material having variable modulus of elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26567293A JPH0797526A (en) 1993-09-29 1993-09-29 Material having variable modulus of elasticity

Publications (1)

Publication Number Publication Date
JPH0797526A true JPH0797526A (en) 1995-04-11

Family

ID=17420393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26567293A Pending JPH0797526A (en) 1993-09-29 1993-09-29 Material having variable modulus of elasticity

Country Status (1)

Country Link
JP (1) JPH0797526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098764A (en) * 2000-04-25 2001-11-08 스미도모 고무 고교 가부시기가이샤 A fender and a production method for the same
CN116038665A (en) * 2023-02-03 2023-05-02 东北电力大学 Flexible variable-rigidity artificial muscle device construction process of trunk-imitating multi-joint structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098764A (en) * 2000-04-25 2001-11-08 스미도모 고무 고교 가부시기가이샤 A fender and a production method for the same
CN116038665A (en) * 2023-02-03 2023-05-02 东北电力大学 Flexible variable-rigidity artificial muscle device construction process of trunk-imitating multi-joint structure
CN116038665B (en) * 2023-02-03 2023-08-15 东北电力大学 Flexible variable-rigidity artificial muscle device construction process of trunk-imitating multi-joint structure

Similar Documents

Publication Publication Date Title
Yao et al. Synthesis and water absorbency of the copolymer of acrylamide with anionic monomers
AU2011244756B2 (en) Composition for well cementing comprising a compounded elastomer swelling additive
US4446261A (en) Process for preparation of high water-absorbent polymer beads
JPS6136974B2 (en)
US20070088100A1 (en) Superabsorbent polymer aqueous paste and coating
US5900437A (en) Hydrophilic/oleophilic microcellular foam and method for making same
JP3877195B2 (en) Pressure-resistant water-absorbing resin, disposable diaper using the same, water-absorbing resin and production method thereof
Li et al. pH/temperature double responsive behaviors and mechanical strength of laponite‐crosslinked poly (DEA‐co‐DMAEMA) nanocomposite hydrogels
CN101161689A (en) Method for preparing rapid-responding and high mechanical performance hydrogel
JP4369060B2 (en) Hydrogels for superabsorbent polymers
CN114316144B (en) High-strength self-restorable multifunctional conductive hydrogel with temperature/pH dual response and preparation method and application thereof
US4194998A (en) Highly absorbent polyhydroxy polymer graft copolymers without saponification
Zhang et al. Novel Self‐Healing, Shape‐Memory, Tunable Double‐Layer Actuators Based on Semi‐IPN and Physical Double‐Network Hydrogels
JP3058466B2 (en) Variable modulus material
CN109970917A (en) A kind of super absorbent resin and preparation method thereof containing montmorillonite
JPH0797526A (en) Material having variable modulus of elasticity
CN105968389A (en) Polyaspartic acid/polyacrylic acid interpenetrating network hydrogel and preparation method thereof
JP5200213B2 (en) Polymer gel and method for producing the same
JPH01113406A (en) Manufacture of highly water-absorptive polymer
JP3713514B2 (en) Super absorbent powder with high absorption capacity and high capillary absorption capacity
JPH07118549A (en) Constant-modulus material
Tripathi et al. Preparation and evaluation of composite microspheres of polyacrylamide‐grafted polysaccharides
JPH04120176A (en) Water absorbing agent and production thereof
JPH0828216B2 (en) Gelling agent for gel cathode of alkaline battery
JP5202903B2 (en) Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group