JP3058466B2 - Variable modulus material - Google Patents

Variable modulus material

Info

Publication number
JP3058466B2
JP3058466B2 JP3049111A JP4911191A JP3058466B2 JP 3058466 B2 JP3058466 B2 JP 3058466B2 JP 3049111 A JP3049111 A JP 3049111A JP 4911191 A JP4911191 A JP 4911191A JP 3058466 B2 JP3058466 B2 JP 3058466B2
Authority
JP
Japan
Prior art keywords
elastic modulus
magnetic field
dispersed
particles
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3049111A
Other languages
Japanese (ja)
Other versions
JPH04266970A (en
Inventor
亨 志賀
美治 広瀬
茜 岡田
紀雄 倉内
修己 上垣外
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3049111A priority Critical patent/JP3058466B2/en
Publication of JPH04266970A publication Critical patent/JPH04266970A/en
Application granted granted Critical
Publication of JP3058466B2 publication Critical patent/JP3058466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は弾性率可変材料に関し、
更に詳しくは、材料の弾性率(材料の剛性を反映する動
的弾性率および粘性を表す損失弾性率)が、外部磁場の
作用によって可逆的に変化し、しかも磁場の強さに応じ
て弾性率の変化の程度が連続的にかわり、このため、ク
ラッチ、ダンパ、ショックアブソーバ、エンジンマウン
トなどのエネルギーの伝達や吸収、防振用の自動車部品
等に適用し得る弾性率可変材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable elasticity material,
More specifically, the elastic modulus of a material (dynamic elastic modulus that reflects the rigidity of the material and loss elastic modulus that represents viscosity) changes reversibly by the action of an external magnetic field, and furthermore, the elastic modulus changes according to the strength of the magnetic field. The present invention relates to a variable elastic modulus material that can be applied to automobile parts for transmitting and absorbing energy, such as clutches, dampers, shock absorbers, and engine mounts, and for damping vibrations.

【0002】[0002]

【従来の技術】近年、光、熱、電気などのエネルギーを
力学的エネルギーに変換する機能を有する高分子材料が
様々な分野へ応用されており、例えばU.S.P.32155
72号や特開昭57−132303号には、磁場により
粘性を変える磁性流体が開示されている。一方、本件出
願人は、電場の作用で弾性率が変化する性質を有する粒
子分散型の高分子材料(特願平1−227817)を既
に出願している。
2. Description of the Related Art In recent years, polymer materials having a function of converting energy such as light, heat and electricity into mechanical energy have been applied to various fields, for example, US Pat.
No. 72 and JP-A-57-132303 disclose a magnetic fluid whose viscosity is changed by a magnetic field. On the other hand, the present applicant has already filed an application for a particle-dispersed polymer material (Japanese Patent Application No. 1-227817) having the property of changing the elastic modulus by the action of an electric field.

【0003】しかし、上記の磁性流体は特定の形状を持
たない流動体であることなどから、自動車部品等に適用
し難い面がある。また、特願平1−227817号の高
分子材料はそのような欠点を持たない優れた材料である
が、マトリックスが電気絶縁性でなければならないとい
う制約があり、高電圧の電場を印加する場合には安全性
の配慮も必要になる。
[0003] However, the above-mentioned magnetic fluid is a fluid that does not have a specific shape. Further, the polymer material disclosed in Japanese Patent Application No. 1-227817 is an excellent material having no such disadvantages, but has a restriction that the matrix must be electrically insulating. Requires safety considerations.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、マト
リックスが固体であるために賦形性を有する可撓性材料
であって、そのマトリックスが電気絶縁性であるか否か
を問わず、且つ安全性の高い磁場の作用により弾性率が
変化する材料を提供することを課題とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a flexible material having a shape-forming property because the matrix is solid, regardless of whether the matrix is electrically insulating or not. An object of the present invention is to provide a material whose elastic modulus is changed by the action of a magnetic field having high safety.

【0005】[0005]

【課題を解決するための手段】(着眼点)本発明者は、
磁場において磁気分極する微粒子の相互作用を利用する
ことにより上記の課題を解消し得ることに着眼して、本
発明を完成した。
[Means for Solving the Problems] (Points of Interest)
The present invention has been completed by focusing on the fact that the above-mentioned problem can be solved by utilizing the interaction of fine particles which are magnetically polarized in a magnetic field.

【0006】(本発明の構成) 上記課題を解決するための本発明の構成は、可撓性を有
する固体の高分子材料中に磁場の作用により磁気分極す
る粒子が磁場印加前に相互に接触してつながりを持った
状態でおよび/または相互に接触していなくても磁場を
印加した際に粒子間に磁気的結合が連鎖的に形成される
ような状態で分散している弾性率可変材料である。
(Structure of the Present Invention) According to the structure of the present invention for solving the above-mentioned problem, particles which are magnetically polarized by the action of a magnetic field in a flexible solid polymer material contact each other before applying a magnetic field. And connected
A magnetic field in a state and / or without mutual contact
Magnetic coupling is formed between particles when applied
The elastic modulus variable material is dispersed in such a state .

【0007】[0007]

【作用】本発明の弾性率可変材料は、もともと一定の弾
性率を有する可撓性の材料であるが、これに磁場を印加
すると、その作用により分散粒子内に存在する磁気モー
メントが磁力線の方向に沿った一定方向を向いて、分散
粒子が磁気的に分極するため、分散粒子間に連鎖的な磁
気的結合が、例えば網目状に形成される。この連鎖的な
磁気的結合の結合力により、材料の動的弾性率と損失弾
性率とが増大して、その弾性率が高くなる。逆に、磁場
を除去すると、分散粒子間の磁気的結合が解消され、材
料の弾性率が元のレベルまで低下する。このような作用
は、マトリックスである高分子材料が電気絶縁性である
か否かに関係なく起こる。
The variable elastic modulus material of the present invention is a flexible material having a constant elastic modulus from the beginning. When a magnetic field is applied to the material, the magnetic moment existing in the dispersed particles is caused by the action of the magnetic field to the direction of the line of magnetic force. , The dispersed particles are magnetically polarized in a certain direction, so that a continuous magnetic coupling is formed between the dispersed particles, for example, in a network. The dynamic elastic modulus and the loss elastic modulus of the material increase due to the coupling force of the chain magnetic coupling, and the elastic modulus increases. Conversely, when the magnetic field is removed, the magnetic coupling between the dispersed particles is broken, and the elastic modulus of the material decreases to its original level. Such an action occurs regardless of whether or not the polymer material serving as the matrix is electrically insulating.

【0008】磁場の印加に対する弾性率変化の応答性は
極めて良好である。また弾性率変化の度合いは磁場の強
さに対応するため、磁場の強さを連続的に変化させる
と、弾性率も連続的に変化して行く。このような応答性
の良さや、磁場の強さに対応する弾性率変化量の関係
は、上記のメカニズムより常に一定のものであり、磁場
の連続的な印加による劣化も、経時的な劣化も起こし難
い。
The response of the change in the elastic modulus to the application of a magnetic field is very good. Further, since the degree of change in the elastic modulus corresponds to the strength of the magnetic field, if the strength of the magnetic field is changed continuously, the elastic modulus also changes continuously. The relationship between such good responsiveness and the amount of change in the elastic modulus corresponding to the strength of the magnetic field is always constant from the above mechanism. Hard to wake up.

【0009】[0009]

【発明の効果】本発明の弾性率可変材料は、使用に適し
た特定の形状に加工できる可撓性材料であり、磁場の作
用により弾性率が変化するので、例えばクラッチ、ダン
パ、ショックアブソーバ、エンジンマウントなどのエネ
ルギーの伝達や吸収、防振を行う自動車部品等に適用で
きる。その際、磁場の強さを調節することにより弾性率
の変化量を連続的に且つ任意にコントロールすることも
できる。また、弾性率を変化させるために高圧の電場を
印加する必要がなく、安全である。更に、本発明の弾性
率可変材料を使用した部品は、応答性と耐久性が優れ
る。
The variable elastic modulus material of the present invention is a flexible material which can be processed into a specific shape suitable for use. Since the elastic modulus is changed by the action of a magnetic field, for example, a clutch, a damper, a shock absorber, The present invention can be applied to automobile parts for transmitting, absorbing and damping energy, such as engine mounts. At this time, the amount of change in the elastic modulus can be continuously and arbitrarily controlled by adjusting the strength of the magnetic field. Further, there is no need to apply a high-voltage electric field to change the elastic modulus, which is safe. Furthermore, components using the elastic modulus variable material of the present invention have excellent responsiveness and durability.

【0010】[0010]

【実施例】〔実施の態様〕本発明は、例えば次のような
態様において実施することができる。
[Embodiments] The present invention can be implemented, for example, in the following embodiments.

【0011】マトリックスとして用いられる可撓性の高
分子材料としては、ゴム状あるいはゲル状の高分子材料
が用いられる。例えば、エチレン−プロピレンゴム、ブ
タジエンゴム、イソプレンゴム、シリコンゴムや、これ
らのゴムを溶媒等で膨潤させたゲルは室温で可撓性を有
する。ポリビニルアルコール、ポリアクリルアミド、ポ
リスチレン、ポリアルキルチオフェンなどのゴム以外の
高分子ゲルも使用できる。また、エチレン−酢酸ビニル
共重合体、ポリウレタン、ポリプロピレン等は、予想さ
れる使用温度においてゴム状あるいはゲル状を呈する。
As the flexible polymer material used as the matrix, a rubber-like or gel-like polymer material is used. For example, ethylene-propylene rubber, butadiene rubber, isoprene rubber, silicon rubber, and a gel obtained by swelling these rubbers with a solvent or the like have flexibility at room temperature. Polymer gels other than rubber, such as polyvinyl alcohol, polyacrylamide, polystyrene, and polyalkylthiophene, can also be used. In addition, ethylene-vinyl acetate copolymer, polyurethane, polypropylene and the like exhibit a rubbery or gelled state at an expected use temperature.

【0012】分散粒子は、磁場の作用により磁気分極す
る性質を有するものであれば良く、例えば純鉄、電磁軟
鉄、方向性ケイ素鋼、Mn−Znフェライト、Ni−Z
nフェライト、マグネタイト、コバルト、ニッケル等の
金属、4−メトキシベンジリデン−4−アセトキシアニ
リン、トリアミノベンゼン重合体等の有機物、フェライ
ト分散異方性プラスチック等の有機・無機複合体などを
用いてなる粒子、またはこれらの2種以上を用いてなる
粒子が使用される。
The dispersed particles may be those having a property of magnetic polarization by the action of a magnetic field, such as pure iron, electromagnetic soft iron, directional silicon steel, Mn-Zn ferrite, Ni-Z
Particles using metals such as n-ferrite, magnetite, cobalt and nickel, organic substances such as 4-methoxybenzylidene-4-acetoxyaniline, and triaminobenzene polymer, and organic-inorganic composites such as ferrite-dispersed anisotropic plastics. Or, particles using two or more of these are used.

【0013】分散粒子の形状は、球形、針状、平板状な
どの定型的なものの他、不定型のものでも良く、特段の
制約はない。分散粒子の粒径も制限がないが、特に望ま
しいのは、一般的に微粒子として観念されるようなもの
(例えば、0.01〜500ミクロン程度の粒径のも
の)である。
The shape of the dispersed particles may be a fixed shape such as a spherical shape, a needle shape, or a flat shape, or may be an irregular shape, and there is no particular limitation. There is no limitation on the particle size of the dispersed particles, but particularly desirable are those generally conceived as fine particles (for example, those having a particle size of about 0.01 to 500 microns).

【0014】分散粒子は、その表面を界面活性剤や撥水
剤で処理したものでも差支えなく、さらに中実粒子、中
空粒子のいずれの形態においても使用できる。
The dispersed particles may be those whose surface has been treated with a surfactant or a water repellent, and may be used in any form of solid particles or hollow particles.

【0015】マトリックスである可撓性の高分子材料内
における分散粒子の分散状態については、分散粒子が相
互に接触してつながりを持った状態のみでなく、分散粒
子が相互に接触していなくても、磁場を印加した際に実
質的に相互に接触した状態になるような分散状態でも良
い。要するに、磁場を印加した際に分散粒子間に磁気的
結合が連鎖的に形成されるような分散状態であれば良
い。
Regarding the dispersed state of the dispersed particles in the flexible polymer material which is the matrix, not only the dispersed particles are in contact with each other but have a connection, but also the dispersed particles are not in contact with each other. May also be in a dispersed state such that they are substantially in contact with each other when a magnetic field is applied. In short, any dispersion state may be used as long as magnetic coupling is formed in a chain between dispersed particles when a magnetic field is applied.

【0016】以上のような分散粒子の分散状態を実現
し、且つ分散粒子過剰による材料の物性の悪化を避ける
ためには、弾性率可変材料中における分散粒子の分散濃
度が、体積分率で5〜60%の範囲にあることが望まし
い。なお、分散粒子をマトリックスである高分子材料中
に均一に分散させることもでき、また、意図的に不均一
に分散させることもできる。後者の場合、例えばマトリ
ックスの特定の部分と他の部分とで分散密度を異ならせ
たり、マトリックスの全体にわたりあるいは一部におい
て分散密度を傾斜状に設定したりして、マトリックスの
弾性率変化が特異なパターンの下に起こるようにするこ
とができる。
In order to realize the above-mentioned dispersion state of the dispersed particles and to prevent the physical properties of the material from being deteriorated due to the excess of the dispersed particles, the dispersion concentration of the dispersed particles in the elastic modulus variable material must be 5% by volume. Desirably, it is within the range of 60%. The dispersed particles can be uniformly dispersed in the polymer material as the matrix, or can be intentionally unevenly dispersed. In the latter case, the change in the elastic modulus of the matrix is peculiar, for example, by making the dispersion density different between a specific part of the matrix and other parts, or by setting the dispersion density to be inclined over the whole or part of the matrix. Can happen under any pattern.

【0017】〔実施例〕次に本発明の実施例を説明す
る。各実施例の弾性率可変材料は粘弾性スペクトロメー
タ(岩本製作所製)を用いて性能評価を行った。評価に
あたっては、サンドイッチ構造の平行平板プレート間に
本発明の弾性率可変材料を置いた後、平板と垂直な方向
に磁場を印加して内側の平板を10Hzの周波数で振動
させた。この状態において外側の平板プレートにかかる
トルクを測定した。そして測定されたトルクから動的剪
断弾性率と損失剪断弾性率を求め、磁場の印加前と印加
後の比により評価した。
[Embodiment] Next, an embodiment of the present invention will be described. The performance of the elastic modulus variable material in each example was evaluated using a viscoelastic spectrometer (manufactured by Iwamoto Seisakusho). In the evaluation, after the elastic modulus variable material of the present invention was placed between parallel plate plates having a sandwich structure, a magnetic field was applied in a direction perpendicular to the plate to vibrate the inner plate at a frequency of 10 Hz. In this state, the torque applied to the outer flat plate was measured. The dynamic shear modulus and the loss shear modulus were determined from the measured torque, and evaluated by the ratio before and after the application of the magnetic field.

【0018】(実施例1)速硬化型2液反応性シリコン
ゴムの反応液20gに粒径150μmの電解鉄粉60g
を単純混合して室温にてゴム化を行った。こうして粒子
分散型の可撓性高分子材料として得られた本発明の弾性
率可変材料は、320Gの磁場において室温にて動的剪
断弾性率を50%、損失剪断弾性率を65%、それぞれ
速やかに増加させた。
EXAMPLE 1 60 g of electrolytic iron powder having a particle size of 150 μm was added to 20 g of a reaction liquid of a quick-curing two-component reactive silicone rubber.
Was simply mixed and rubberized at room temperature. The variable elastic modulus material of the present invention thus obtained as a particle-dispersed flexible polymer material has a dynamic shear modulus of 50% and a loss shear modulus of 65% at room temperature under a magnetic field of 320 G, and each has a rapid change. Increased.

【0019】(実施例2)加熱タイプの2液反応型シリ
コンゲルの反応液20gに粒径50μmのカルボニル鉄
粉41gを混合し、これをシャーレに移した後、永久磁
石の上において鉄粉を結合させた。この状態で70°C
に加熱して粒子分散型シリコンゲルである本発明の弾性
率可変材料を得た。これに740Gの磁場を印加する
と、50°Cにて動的剪断弾性率が7.8kPaから2
1.5kPaへ約2.8倍向上し、また損失剪断弾性率
が5.3kPaから18.2kPaへ約3.4倍向上し
た。これらの変化は速やかに起こり、また磁場を除くと
速やかに初期の値に戻った。
Example 2 41 g of carbonyl iron powder having a particle size of 50 μm was mixed with 20 g of a reaction liquid of a heating-type two-liquid reaction type silicon gel, and the mixture was transferred to a petri dish. Combined. 70 ° C in this state
To obtain a particle-dispersed silicon gel of the present invention, which is a particle-dispersed silicon gel. When a magnetic field of 740 G is applied thereto, the dynamic shear modulus at 50 ° C. changes from 7.8 kPa to 2
It improved about 2.8 times to 1.5 kPa, and the shear shear modulus improved about 3.4 times from 5.3 kPa to 18.2 kPa. These changes occurred quickly and quickly returned to their initial values when the magnetic field was removed.

【0020】(実施例の評価)上記のように、本発明に
係る実施例1,2の弾性率可変材料は、磁場の作用によ
り弾性率が可逆的且つ速やかに、しかも満足できる程度
に変化した。
(Evaluation of Example) As described above, the elastic modulus of the elastic modulus variable materials of Examples 1 and 2 according to the present invention changed reversibly, quickly and satisfactorily by the action of a magnetic field. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上垣外 修己 愛知県愛知郡長久手町大字長湫字横道41 番地の1株式会社 豊田中央研究所内 審査官 藤本 保 (56)参考文献 特開 昭59−155446(JP,A) 特開 平2−124978(JP,A) 特開 昭61−87733(JP,A) 特開 昭57−145150(JP,A) 特公 昭49−2324(JP,B1) 特公 昭36−8628(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C08L 1/00 - 101/16 C08K 3/00 - 13/08 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor, Osamu Uegaki, 41, Ochi-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi, Japan Investigator, Toyota Central R & D Laboratories Co., Ltd. Tamotsu Fujimoto (56) (JP, A) JP-A-2-124978 (JP, A) JP-A-61-87733 (JP, A) JP-A-57-145150 (JP, A) JP-B-49-2324 (JP, B1) No. 36-8628 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C08L 1/00-101/16 C08K 3/00-13/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可撓性を有する固体の高分子材料中に磁
場の作用により磁気分極する粒子が磁場印加前に相互に
接触してつながりを持った状態でおよび/または相互に
接触していなくても磁場を印加した際に粒子間に磁気的
結合が連鎖的に形成されるような状態で分散しているこ
とを特徴とする弾性率可変材料。
1. Particles which are magnetically polarized by the action of a magnetic field in a flexible solid polymer material are mutually reciprocated before applying a magnetic field.
In contact and connected and / or mutually
Even when they are not in contact with each other, they
A variable elastic modulus material which is dispersed in a state where bonds are formed in a chain .
JP3049111A 1991-02-20 1991-02-20 Variable modulus material Expired - Fee Related JP3058466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049111A JP3058466B2 (en) 1991-02-20 1991-02-20 Variable modulus material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049111A JP3058466B2 (en) 1991-02-20 1991-02-20 Variable modulus material

Publications (2)

Publication Number Publication Date
JPH04266970A JPH04266970A (en) 1992-09-22
JP3058466B2 true JP3058466B2 (en) 2000-07-04

Family

ID=12821959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049111A Expired - Fee Related JP3058466B2 (en) 1991-02-20 1991-02-20 Variable modulus material

Country Status (1)

Country Link
JP (1) JP3058466B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607996A (en) * 1994-10-05 1997-03-04 Ford Motor Company Electrorheological elastomers useful as variable stiffness articles
US7013536B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Releasable fastener systems and processes
US7146690B2 (en) 2002-10-19 2006-12-12 General Motors Corporation Releasable fastener system
US6944920B2 (en) 2002-10-19 2005-09-20 General Motors Corporation Electrostatically releasable fastening system and method of use
US7140081B2 (en) 2002-10-19 2006-11-28 General Motors Corporation Releasable fastener system
US7032282B2 (en) 2002-10-19 2006-04-25 General Motors Corporation Releasable fastener system
US6983517B2 (en) 2002-10-19 2006-01-10 General Motors Corporation Releasable fastener system
US6973701B2 (en) 2002-10-19 2005-12-13 General Motors Corporation Releasable fastening system based on ionic polymer metal composites and method of use
US7308738B2 (en) 2002-10-19 2007-12-18 General Motors Corporation Releasable fastener systems and processes
US7013538B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Electroactive polymer releasable fastening system and method of use
JP4015983B2 (en) 2002-10-19 2007-11-28 ゼネラル・モーターズ・コーポレーション Magnetorheological nanocomposite elastomer for releasable accessories
US7261834B2 (en) 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
KR101303142B1 (en) * 2010-05-31 2013-09-02 인하대학교 산학협력단 Propeller shaft center bearing vibration decrease system
DE112014002890B4 (en) * 2013-06-18 2018-07-12 Honda Motor Co., Ltd. sensor device
JP6475503B2 (en) * 2014-02-12 2019-02-27 本田技研工業株式会社 Vehicle vibration noise reduction device
JP6082713B2 (en) * 2014-06-02 2017-02-15 本田技研工業株式会社 Elastic modulus variable material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04266970A (en) 1992-09-22

Similar Documents

Publication Publication Date Title
JP3058466B2 (en) Variable modulus material
Morillas et al. Magnetorheology: a review
Khimi et al. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/natural rubber magnetorheological elastomers
Qiao et al. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly (styrene-b-ethylene-ethylenepropylene-b-styrene) matrix
US20090173908A1 (en) Magnetorheological Elastomers (MREs) with Polynorbornene as a Carrier Medium, Processes for Producing Such Elastomer Composites and Their Use
Wang et al. Magnetorheological elastomers based on isobutylene–isoprene rubber
US20080318045A1 (en) Magnetorheological Elastomers and Use Thereof
CN106674421B (en) A kind of preparation method of shock resistance shear thickening liquid gel
Li et al. Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers
Li et al. pH/temperature double responsive behaviors and mechanical strength of laponite‐crosslinked poly (DEA‐co‐DMAEMA) nanocomposite hydrogels
JPH0525316A (en) Material having magnetic response
Wang et al. Formation of core–shell structured complex microparticles during fabrication of magnetorheological elastomers and their magnetorheological behavior
JP5783862B2 (en) Magnetic field responsive resin composition, production method thereof and use thereof
Lu et al. Effect of carbon black with large particle size on dynamic mechanical analysis of magnetorheological elastomers (MREs)
Mitsumata et al. Anisotropy in longitudinal modulus of polymer gels containing ferrite
Song et al. Study on dynamic mechanical properties of magnetorheological elastomers based on natural rubber/thermoplastic elastomer hybrid matrix
Mitsumata et al. Compressive modulus of ferrite containing polymer gels
JPH0641530B2 (en) Material with variable elastic modulus
JP2824922B2 (en) Vibration absorbing member
JPH0471108A (en) Pressure sensitive conductive elastomer
JPH10279753A (en) Impact and vibration-absorbing gel material
JPH07118549A (en) Constant-modulus material
JPH04253109A (en) Deformable conductive elastomer
Masłowski et al. Magnetic (ethylene–octene) elastomer composites obtained by extrusion
TWI464255B (en) Friction variable molded body and friction variable structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees