JPH04266970A - Elastic modulus-variable material - Google Patents

Elastic modulus-variable material

Info

Publication number
JPH04266970A
JPH04266970A JP4911191A JP4911191A JPH04266970A JP H04266970 A JPH04266970 A JP H04266970A JP 4911191 A JP4911191 A JP 4911191A JP 4911191 A JP4911191 A JP 4911191A JP H04266970 A JPH04266970 A JP H04266970A
Authority
JP
Japan
Prior art keywords
elastic modulus
magnetic field
particles
action
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4911191A
Other languages
Japanese (ja)
Other versions
JP3058466B2 (en
Inventor
Toru Shiga
亨 志賀
Miharu Hirose
美治 広瀬
Akane Okada
岡田 茜
Norio Kurauchi
紀雄 倉内
Osami Uegakito
上垣外 修己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3049111A priority Critical patent/JP3058466B2/en
Publication of JPH04266970A publication Critical patent/JPH04266970A/en
Application granted granted Critical
Publication of JP3058466B2 publication Critical patent/JP3058466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a flexible polymer material changing its elastic modulus by the action of a magnetic field having higher safety than that of an electric field. CONSTITUTION:An elastic modulus-variable material is characterized by dispersing particles magnetically polarized by the action of a magnetic field in a flexible polymer material. The polymer material is a rubber or a gel, and the dispersing particles are the particles of one kind or more of metals, organic components and organic.inorganic composite materials which are magnetically polarized by the action of a magnetic field. The elastic modulus of the material is rapidly and reversibly changed by the application of the magnetic field, thereby permitting to safely apply the material to energy-transmitting or absorbing parts such as automotive clutches and dampers.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は弾性率可変材料に関し、
更に詳しくは、材料の弾性率(材料の剛性を反映する動
的弾性率および粘性を表す損失弾性率)が、外部磁場の
作用によって可逆的に変化し、しかも磁場の強さに応じ
て弾性率の変化の程度が連続的にかわり、このため、ク
ラッチ、ダンパ、ショックアブソーバ、エンジンマウン
トなどのエネルギーの伝達や吸収、防振用の自動車部品
等に適用し得る弾性率可変材料に関する。
[Field of Industrial Application] The present invention relates to a material with variable elastic modulus,
More specifically, the elastic modulus of a material (dynamic elastic modulus reflecting the material's stiffness and loss elastic modulus representing viscosity) changes reversibly under the action of an external magnetic field, and the elastic modulus changes depending on the strength of the magnetic field. The present invention relates to a variable elastic modulus material whose degree of change changes continuously, and which can therefore be applied to automobile parts for transmitting and absorbing energy and for vibration isolation, such as clutches, dampers, shock absorbers, and engine mounts.

【0002】0002

【従来の技術】近年、光、熱、電気などのエネルギーを
力学的エネルギーに変換する機能を有する高分子材料が
様々な分野へ応用されており、例えばU.S.P.32
15572号や特開昭57−132303号には、磁場
により粘性を変える磁性流体が開示されている。一方、
本件出願人は、電場の作用で弾性率が変化する性質を有
する粒子分散型の高分子材料(特願平1−227817
)を既に出願している。
BACKGROUND OF THE INVENTION In recent years, polymeric materials having the function of converting energy such as light, heat, electricity, etc. into mechanical energy have been applied to various fields. S. P. 32
No. 15572 and Japanese Unexamined Patent Publication No. 132303/1988 disclose magnetic fluids whose viscosity is changed by a magnetic field. on the other hand,
The applicant has proposed a particle-dispersed polymer material (patent application No. 1-227817) whose elastic modulus changes under the action of an electric field.
) has already been applied for.

【0003】しかし、上記の磁性流体は特定の形状を持
たない流動体であることなどから、自動車部品等に適用
し難い面がある。また、特願平1−227817号の高
分子材料はそのような欠点を持たない優れた材料である
が、マトリックスが電気絶縁性でなければならないとい
う制約があり、高電圧の電場を印加する場合には安全性
の配慮も必要になる。
However, since the magnetic fluid described above is a fluid that does not have a specific shape, it is difficult to apply it to automobile parts and the like. In addition, the polymer material disclosed in Japanese Patent Application No. 1-227817 is an excellent material that does not have such drawbacks, but there is a restriction that the matrix must be electrically insulating, which makes it difficult to apply a high voltage electric field. Safety considerations also need to be taken into account.

【0004】0004

【発明が解決しようとする課題】そこで本発明は、マト
リックスが固体であるために賦形性を有する可撓性材料
であって、そのマトリックスが電気絶縁性であるか否か
を問わず、且つ安全性の高い磁場の作用により弾性率が
変化する材料を提供することを課題とする。
[Problems to be Solved by the Invention] Therefore, the present invention provides a flexible material that has formability because the matrix is solid, regardless of whether the matrix is electrically insulating; The object of the present invention is to provide a material whose elastic modulus changes under the action of a highly safe magnetic field.

【0005】[0005]

【課題を解決するための手段】(着眼点)本発明者は、
磁場において磁気分極する微粒子の相互作用を利用する
ことにより上記の課題を解消し得ることに着眼して、本
発明を完成した。
[Means for solving the problem] (Point of view) The present inventors
The present invention was completed by focusing on the fact that the above problems can be solved by utilizing the interaction of fine particles that are magnetically polarized in a magnetic field.

【0006】(本発明の構成)上記の課題を解決するた
めの本発明の構成は、可撓性を有する高分子材料に、磁
場の作用により磁気分極する粒子が分散している弾性率
可変材料である。
(Structure of the present invention) The structure of the present invention for solving the above-mentioned problems is a flexible polymer material having a variable elastic modulus material in which particles that are magnetically polarized by the action of a magnetic field are dispersed. It is.

【0007】[0007]

【作用】本発明の弾性率可変材料は、もともと一定の弾
性率を有する可撓性の材料であるが、これに磁場を印加
すると、その作用により分散粒子内に存在する磁気モー
メントが磁力線の方向に沿った一定方向を向いて、分散
粒子が磁気的に分極するため、分散粒子間に連鎖的な磁
気的結合が、例えば網目状に形成される。この連鎖的な
磁気的結合の結合力により、材料の動的弾性率と損失弾
性率とが増大して、その弾性率が高くなる。逆に、磁場
を除去すると、分散粒子間の磁気的結合が解消され、材
料の弾性率が元のレベルまで低下する。このような作用
は、マトリックスである高分子材料が電気絶縁性である
か否かに関係なく起こる。
[Function] The variable elastic modulus material of the present invention is originally a flexible material with a constant elastic modulus, but when a magnetic field is applied to it, the magnetic moment existing within the dispersed particles is shifted in the direction of the magnetic field lines. Since the dispersed particles are magnetically polarized in a certain direction along , a chain of magnetic bonds is formed between the dispersed particles, for example, in the form of a network. The binding force of this chain of magnetic coupling increases the dynamic elastic modulus and loss modulus of the material, increasing its elastic modulus. Conversely, when the magnetic field is removed, the magnetic coupling between the dispersed particles is dissolved and the elastic modulus of the material decreases to its original level. This effect occurs regardless of whether or not the matrix polymeric material is electrically insulating.

【0008】磁場の印加に対する弾性率変化の応答性は
極めて良好である。また弾性率変化の度合いは磁場の強
さに対応するため、磁場の強さを連続的に変化させると
、弾性率も連続的に変化して行く。このような応答性の
良さや、磁場の強さに対応する弾性率変化量の関係は、
上記のメカニズムより常に一定のものであり、磁場の連
続的な印加による劣化も、経時的な劣化も起こし難い。
[0008] The response of the change in elastic modulus to the application of a magnetic field is extremely good. Furthermore, since the degree of change in the elastic modulus corresponds to the strength of the magnetic field, when the strength of the magnetic field is continuously changed, the elastic modulus also changes continuously. The relationship between such good responsiveness and the amount of change in elastic modulus corresponding to the strength of the magnetic field is
Due to the above mechanism, it is always constant, and is unlikely to deteriorate due to continuous application of a magnetic field or over time.

【0009】[0009]

【発明の効果】本発明の弾性率可変材料は、使用に適し
た特定の形状に加工できる可撓性材料であり、磁場の作
用により弾性率が変化するので、例えばクラッチ、ダン
パ、ショックアブソーバ、エンジンマウントなどのエネ
ルギーの伝達や吸収、防振を行う自動車部品等に適用で
きる。その際、磁場の強さを調節することにより弾性率
の変化量を連続的に且つ任意にコントロールすることも
できる。また、弾性率を変化させるために高圧の電場を
印加する必要がなく、安全である。更に、本発明の弾性
率可変材料を使用した部品は、応答性と耐久性が優れる
Effects of the Invention The variable elastic modulus material of the present invention is a flexible material that can be processed into a specific shape suitable for use, and the elastic modulus changes due to the action of a magnetic field, so it can be used in clutches, dampers, shock absorbers, etc. It can be applied to automobile parts such as engine mounts that transmit and absorb energy and provide vibration isolation. At this time, the amount of change in the elastic modulus can be continuously and arbitrarily controlled by adjusting the strength of the magnetic field. Furthermore, it is safe because there is no need to apply a high-voltage electric field to change the elastic modulus. Furthermore, parts using the variable elastic modulus material of the present invention have excellent responsiveness and durability.

【0010】0010

【実施例】〔実施の態様〕本発明は、例えば次のような
態様において実施することができる。
[Embodiments] [Embodiments] The present invention can be carried out, for example, in the following embodiments.

【0011】マトリックスとして用いられる可撓性の高
分子材料としては、ゴム状あるいはゲル状の高分子材料
が用いられる。例えば、エチレン−プロピレンゴム、ブ
タジエンゴム、イソプレンゴム、シリコンゴムや、これ
らのゴムを溶媒等で膨潤させたゲルは室温で可撓性を有
する。ポリビニルアルコール、ポリアクリルアミド、ポ
リスチレン、ポリアルキルチオフェンなどのゴム以外の
高分子ゲルも使用できる。また、エチレン−酢酸ビニル
共重合体、ポリウレタン、ポリプロピレン等は、予想さ
れる使用温度においてゴム状あるいはゲル状を呈する。
[0011] As the flexible polymer material used as the matrix, a rubber-like or gel-like polymer material is used. For example, ethylene-propylene rubber, butadiene rubber, isoprene rubber, silicone rubber, and gels obtained by swelling these rubbers with a solvent or the like are flexible at room temperature. Polymer gels other than rubber, such as polyvinyl alcohol, polyacrylamide, polystyrene, and polyalkylthiophene, can also be used. Furthermore, ethylene-vinyl acetate copolymers, polyurethane, polypropylene, etc. exhibit a rubber-like or gel-like state at expected operating temperatures.

【0012】分散粒子は、磁場の作用により磁気分極す
る性質を有するものであれば良く、例えば純鉄、電磁軟
鉄、方向性ケイ素鋼、Mn−Znフェライト、Ni−Z
nフェライト、マグネタイト、コバルト、ニッケル等の
金属、4−メトキシベンジリデン−4−アセトキシアニ
リン、トリアミノベンゼン重合体等の有機物、フェライ
ト分散異方性プラスチック等の有機・無機複合体などを
用いてなる粒子、またはこれらの2種以上を用いてなる
粒子が使用される。
The dispersed particles may be any material as long as it has the property of being magnetically polarized by the action of a magnetic field, such as pure iron, electromagnetic soft iron, grain-oriented silicon steel, Mn-Zn ferrite, Ni-Z
Particles made using metals such as n-ferrite, magnetite, cobalt, and nickel, organic substances such as 4-methoxybenzylidene-4-acetoxyaniline and triaminobenzene polymers, and organic/inorganic composites such as ferrite-dispersed anisotropic plastics. , or particles using two or more of these are used.

【0013】分散粒子の形状は、球形、針状、平板状な
どの定型的なものの他、不定型のものでも良く、特段の
制約はない。分散粒子の粒径も制限がないが、特に望ま
しいのは、一般的に微粒子として観念されるようなもの
(例えば、0.01〜500ミクロン程度の粒径のもの
)である。
[0013] The shape of the dispersed particles is not limited to regular shapes such as spherical, acicular, and tabular shapes, but may also be irregular shapes. There is no restriction on the particle size of the dispersed particles, but particularly desirable ones are those that are generally considered to be fine particles (for example, particles with a particle size of about 0.01 to 500 microns).

【0014】分散粒子は、その表面を界面活性剤や撥水
剤で処理したものでも差支えなく、さらに中実粒子、中
空粒子のいずれの形態においても使用できる。
[0014] The dispersed particles may have their surfaces treated with a surfactant or a water repellent, and furthermore, they can be used in the form of either solid particles or hollow particles.

【0015】マトリックスである可撓性の高分子材料内
における分散粒子の分散状態については、分散粒子が相
互に接触してつながりを持った状態のみでなく、分散粒
子が相互に接触していなくても、磁場を印加した際に実
質的に相互に接触した状態になるような分散状態でも良
い。要するに、磁場を印加した際に分散粒子間に磁気的
結合が連鎖的に形成されるような分散状態であれば良い
Regarding the dispersion state of the dispersed particles in the flexible polymeric material that is the matrix, there are not only states in which the dispersed particles are in contact with each other and are connected, but also states in which the dispersed particles are not in contact with each other. Alternatively, they may be in a dispersed state in which they are substantially in contact with each other when a magnetic field is applied. In short, any dispersion state is sufficient as long as a magnetic bond is formed between the dispersed particles in a chain manner when a magnetic field is applied.

【0016】以上のような分散粒子の分散状態を実現し
、且つ分散粒子過剰による材料の物性の悪化を避けるた
めには、弾性率可変材料中における分散粒子の分散濃度
が、体積分率で5〜60%の範囲にあることが望ましい
。なお、分散粒子をマトリックスである高分子材料中に
均一に分散させることもでき、また、意図的に不均一に
分散させることもできる。後者の場合、例えばマトリッ
クスの特定の部分と他の部分とで分散密度を異ならせた
り、マトリックスの全体にわたりあるいは一部において
分散密度を傾斜状に設定したりして、マトリックスの弾
性率変化が特異なパターンの下に起こるようにすること
ができる。
In order to realize the above-described dispersed state of the dispersed particles and to avoid deterioration of the physical properties of the material due to an excess of dispersed particles, the dispersion concentration of the dispersed particles in the elastic modulus variable material should be set at a volume fraction of 5. It is desirable that it be in the range of ~60%. Note that the dispersed particles can be uniformly dispersed in the polymeric material that is the matrix, or can be intentionally dispersed non-uniformly. In the latter case, for example, by making the dispersion density different between certain parts of the matrix and other parts, or by setting the dispersion density in a gradient shape over the entire matrix or in a part, the elastic modulus change of the matrix is unique. It can be made to occur under a certain pattern.

【0017】〔実施例〕次に本発明の実施例を説明する
。各実施例の弾性率可変材料は粘弾性スペクトロメータ
(岩本製作所製)を用いて性能評価を行った。評価にあ
たっては、サンドイッチ構造の平行平板プレート間に本
発明の弾性率可変材料を置いた後、平板と垂直な方向に
磁場を印加して内側の平板を10Hzの周波数で振動さ
せた。この状態において外側の平板プレートにかかるト
ルクを測定した。そして測定されたトルクから動的剪断
弾性率と損失剪断弾性率を求め、磁場の印加前と印加後
の比により評価した。
[Example] Next, an example of the present invention will be described. The performance of the variable elastic modulus material of each Example was evaluated using a viscoelastic spectrometer (manufactured by Iwamoto Seisakusho). In the evaluation, the variable elastic modulus material of the present invention was placed between parallel flat plates of a sandwich structure, and then a magnetic field was applied in a direction perpendicular to the flat plates to vibrate the inner flat plate at a frequency of 10 Hz. In this state, the torque applied to the outer flat plate was measured. Then, the dynamic shear modulus and the loss shear modulus were determined from the measured torque, and evaluated by the ratio before and after the application of the magnetic field.

【0018】(実施例1)速硬化型2液反応性シリコン
ゴムの反応液20gに粒径150μmの電解鉄粉60g
を単純混合して室温にてゴム化を行った。こうして粒子
分散型の可撓性高分子材料として得られた本発明の弾性
率可変材料は、320Gの磁場において室温にて動的剪
断弾性率を50%、損失剪断弾性率を65%、それぞれ
速やかに増加させた。
(Example 1) 60 g of electrolytic iron powder with a particle size of 150 μm is added to 20 g of a reaction solution of a fast-curing two-component reactive silicone rubber.
were simply mixed and rubberized at room temperature. The elastic modulus variable material of the present invention thus obtained as a particle-dispersed flexible polymeric material quickly exhibits a dynamic shear modulus of 50% and a loss shear modulus of 65% at room temperature in a 320 G magnetic field. increased to

【0019】(実施例2)加熱タイプの2液反応型シリ
コンゲルの反応液20gに粒径50μmのカルボニル鉄
粉41gを混合し、これをシャーレに移した後、永久磁
石の上において鉄粉を結合させた。この状態で70°C
に加熱して粒子分散型シリコンゲルである本発明の弾性
率可変材料を得た。これに740Gの磁場を印加すると
、50°Cにて動的剪断弾性率が7.8kPaから21
.5kPaへ約2.8倍向上し、また損失剪断弾性率が
5.3kPaから18.2kPaへ約3.4倍向上した
。これらの変化は速やかに起こり、また磁場を除くと速
やかに初期の値に戻った。
(Example 2) 41 g of carbonyl iron powder with a particle size of 50 μm was mixed with 20 g of a heating type two-component reactive silicone gel reaction solution, and after transferring this to a Petri dish, the iron powder was placed on a permanent magnet. Combined. 70°C in this state
The elastic modulus variable material of the present invention, which is a particle-dispersed silicone gel, was obtained by heating to . When a 740G magnetic field is applied to this, the dynamic shear modulus changes from 7.8kPa to 21kPa at 50°C.
.. The loss shear modulus was improved by about 2.8 times from 5.3 kPa to 18.2 kPa, and about 3.4 times from 5.3 kPa to 18.2 kPa. These changes occurred rapidly, and the values quickly returned to their initial values when the magnetic field was removed.

【0020】(実施例の評価)上記のように、本発明に
係る実施例1,2の弾性率可変材料は、磁場の作用によ
り弾性率が可逆的且つ速やかに、しかも満足できる程度
に変化した。
(Evaluation of Examples) As described above, the modulus of elasticity of the variable elastic modulus materials of Examples 1 and 2 according to the present invention changed reversibly and rapidly under the action of a magnetic field, and to a satisfactory degree. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  可撓性を有する高分子材料に、磁場の
作用により磁気分極する粒子が分散していることを特徴
とする弾性率可変材料。
1. A material with variable elastic modulus, characterized in that particles that are magnetically polarized by the action of a magnetic field are dispersed in a flexible polymeric material.
JP3049111A 1991-02-20 1991-02-20 Variable modulus material Expired - Fee Related JP3058466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049111A JP3058466B2 (en) 1991-02-20 1991-02-20 Variable modulus material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049111A JP3058466B2 (en) 1991-02-20 1991-02-20 Variable modulus material

Publications (2)

Publication Number Publication Date
JPH04266970A true JPH04266970A (en) 1992-09-22
JP3058466B2 JP3058466B2 (en) 2000-07-04

Family

ID=12821959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049111A Expired - Fee Related JP3058466B2 (en) 1991-02-20 1991-02-20 Variable modulus material

Country Status (1)

Country Link
JP (1) JP3058466B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607996A (en) * 1994-10-05 1997-03-04 Ford Motor Company Electrorheological elastomers useful as variable stiffness articles
US6944920B2 (en) 2002-10-19 2005-09-20 General Motors Corporation Electrostatically releasable fastening system and method of use
US6973701B2 (en) 2002-10-19 2005-12-13 General Motors Corporation Releasable fastening system based on ionic polymer metal composites and method of use
US6983517B2 (en) 2002-10-19 2006-01-10 General Motors Corporation Releasable fastener system
US7013538B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Electroactive polymer releasable fastening system and method of use
US7013536B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Releasable fastener systems and processes
US7020938B2 (en) 2002-10-19 2006-04-04 General Motors Corporation Magnetorheological nanocomposite elastomer for releasable attachment applications
US7032282B2 (en) 2002-10-19 2006-04-25 General Motors Corporation Releasable fastener system
US7140081B2 (en) 2002-10-19 2006-11-28 General Motors Corporation Releasable fastener system
US7146690B2 (en) 2002-10-19 2006-12-12 General Motors Corporation Releasable fastener system
US7261834B2 (en) 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
US7308738B2 (en) 2002-10-19 2007-12-18 General Motors Corporation Releasable fastener systems and processes
KR101303142B1 (en) * 2010-05-31 2013-09-02 인하대학교 산학협력단 Propeller shaft center bearing vibration decrease system
JP2015166857A (en) * 2014-02-12 2015-09-24 本田技研工業株式会社 Vehicle vibration noise reduction device
JP2015227020A (en) * 2014-06-02 2015-12-17 本田技研工業株式会社 Elastic modulus variable material and production method thereof
US9581505B2 (en) 2013-06-18 2017-02-28 Honda Motor Co., Ltd. Sensor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607996A (en) * 1994-10-05 1997-03-04 Ford Motor Company Electrorheological elastomers useful as variable stiffness articles
US7140081B2 (en) 2002-10-19 2006-11-28 General Motors Corporation Releasable fastener system
US7032282B2 (en) 2002-10-19 2006-04-25 General Motors Corporation Releasable fastener system
US6983517B2 (en) 2002-10-19 2006-01-10 General Motors Corporation Releasable fastener system
US7013538B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Electroactive polymer releasable fastening system and method of use
US7146690B2 (en) 2002-10-19 2006-12-12 General Motors Corporation Releasable fastener system
US7020938B2 (en) 2002-10-19 2006-04-04 General Motors Corporation Magnetorheological nanocomposite elastomer for releasable attachment applications
US6973701B2 (en) 2002-10-19 2005-12-13 General Motors Corporation Releasable fastening system based on ionic polymer metal composites and method of use
US6944920B2 (en) 2002-10-19 2005-09-20 General Motors Corporation Electrostatically releasable fastening system and method of use
US7013536B2 (en) 2002-10-19 2006-03-21 General Motors Corporation Releasable fastener systems and processes
US7308738B2 (en) 2002-10-19 2007-12-18 General Motors Corporation Releasable fastener systems and processes
US7261834B2 (en) 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
KR101303142B1 (en) * 2010-05-31 2013-09-02 인하대학교 산학협력단 Propeller shaft center bearing vibration decrease system
US9581505B2 (en) 2013-06-18 2017-02-28 Honda Motor Co., Ltd. Sensor device
DE112014002890B4 (en) * 2013-06-18 2018-07-12 Honda Motor Co., Ltd. sensor device
JP2015166857A (en) * 2014-02-12 2015-09-24 本田技研工業株式会社 Vehicle vibration noise reduction device
JP2015227020A (en) * 2014-06-02 2015-12-17 本田技研工業株式会社 Elastic modulus variable material and production method thereof

Also Published As

Publication number Publication date
JP3058466B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JPH04266970A (en) Elastic modulus-variable material
Khimi et al. Comparison of dynamic properties of magnetorheological elastomers with existing antivibration rubbers
Khimi et al. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/natural rubber magnetorheological elastomers
US7608197B2 (en) Magnetorheological elastomers and use thereof
US8123971B2 (en) Magnetorheological elastomers (MREs) with polynorbornene as a carrier medium, processes for producing such elastomer composites and their use
CN107227023B (en) Magnetorheological elastomer composition, method for producing same, and vibration absorbing device incorporating same
Li et al. Research and applications of MR elastomers
US5300355A (en) Vibration damping material
Fuchs et al. Surface polymerization of iron particles for magnetorheological elastomers
Wang et al. Magnetorheological elastomers based on isobutylene–isoprene rubber
JPH0525316A (en) Material having magnetic response
EP0667029A1 (en) Thixotropic magnetorheological materials
CN106674421B (en) A kind of preparation method of shock resistance shear thickening liquid gel
Zhang et al. High-performance hybrid magnetorheological materials: preparation and mechanical properties
Li et al. pH/temperature double responsive behaviors and mechanical strength of laponite‐crosslinked poly (DEA‐co‐DMAEMA) nanocomposite hydrogels
Shu et al. High performance magnetorheological elastomers strengthened by perpendicularly interacted flax fiber and carbonyl iron chains
JP5783862B2 (en) Magnetic field responsive resin composition, production method thereof and use thereof
CN112937013A (en) High-thermal-conductivity and three-level shape memory multilayer structure flexible film and preparation method thereof
Zhang et al. Development and dynamic performance test of magnetorheological material for recoil of gun
Song et al. Study on dynamic mechanical properties of magnetorheological elastomers based on natural rubber/thermoplastic elastomer hybrid matrix
JPH0391541A (en) Variable modulus material
KR101567307B1 (en) Variable friction molding and variable friction structure
Shenoy et al. A novel method for dynamic characterization of angular displacement-dependent viscoelastic properties of magnetorheological elastomer under torsional loading conditions
Nagashima et al. Magnetorheological effect for bimodal magnetic elastomers
Nugay et al. Swelling and static–dynamic mechanical behavior of mica‐reinforced linear and star‐branched polybutadiene composites

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees