JPH0796135A - Ozone decomposing device - Google Patents

Ozone decomposing device

Info

Publication number
JPH0796135A
JPH0796135A JP5241778A JP24177893A JPH0796135A JP H0796135 A JPH0796135 A JP H0796135A JP 5241778 A JP5241778 A JP 5241778A JP 24177893 A JP24177893 A JP 24177893A JP H0796135 A JPH0796135 A JP H0796135A
Authority
JP
Japan
Prior art keywords
temp
ozone
active carbon
heat
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5241778A
Other languages
Japanese (ja)
Inventor
Shoko Komori
詳弘 小森
Masaru Kozakura
優 小櫻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5241778A priority Critical patent/JPH0796135A/en
Publication of JPH0796135A publication Critical patent/JPH0796135A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To quantitatively determine the deterioration of a packing by providing a means for detecting the temp. of the heated packing at a part of an ozone decomposing device and monitoring the amt. of heat generated from the ozone decomposition reaction. CONSTITUTION:The temp. of glass wool 3 is detected by a temp. sensor 9, and the temp. of active carbon 4 is detected by temp. sensors 10 and 11. The temp. of the active carbon 4 is kept slightly higher than the temp. of the glass wool 3 (an exothermic reaction does not occur) by the heat of formation of the exothermic ozone decomposition reaction in a part of the active carbon 4, the heat of oxidation reaction of the active carbon itself, etc. Namely, the output differs between the sensor 9 on the reference side and the sensors 10 and 11 on the active carbon side. However, the exothermic reaction is weakened when the ozone decomposition capacity of the active carbon 4 is reduced, hence the amt. of generated heat is decreased, and the output difference between the sensor 9 and sensors 10 and 11 is reduced. Accordingly, the temp. difference is detected and amplified by an amplifier, the difference is indicated on a deterioration degree indicator, and the deterioration state is quantitatively grasped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高濃度のオゾンを利
用する装置、例えば数千ppmの濃度のオゾンを利用す
る化学発光式分析計や、数万ppmの濃度のオゾンを使
用する半導体製造工程における残存オゾンガスの分解器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device utilizing high concentration ozone, for example, a chemiluminescence analyzer utilizing ozone having a concentration of several thousands ppm, and semiconductor manufacturing using ozone having a concentration of tens of thousands ppm. The present invention relates to a decomposer for residual ozone gas in a process.

【0002】[0002]

【従来の技術】オゾンを分解する方法として、熱分解法
・薬液洗浄法・活性炭法・触媒法など各種の方法が知ら
れているが、分解効率・寿命などの面から、金属酸化物
系触媒を含んだ活性炭を耐蝕性の容器内に充填し、オゾ
ンを含むガスをこの容器を通過させることによってオゾ
ンを分解するものが広く使われている。
2. Description of the Related Art Various methods such as a thermal decomposition method, a chemical cleaning method, an activated carbon method, and a catalyst method are known as methods for decomposing ozone. However, from the viewpoint of decomposition efficiency and life, a metal oxide catalyst is used. It is widely used to fill the inside of a corrosion-resistant container with activated carbon containing, and to decompose ozone by passing a gas containing ozone through this container.

【0003】このオゾン分解器の構造は、例えば図1に
示すように防蝕処理したアルミ製の円筒状の容器1内の
ガス入口部2の近傍にガラスウール3などの適当なフィ
ルタを、その奥にオゾン分解試薬即ち金属酸化物系触媒
を含ませた活性炭4などを充填し、ガス排出口5をもつ
蓋6で閉塞した構造となっている。またある種のものは
容器の外側に発熱素子ポジスタ7,8を設け、ガラスウ
ールおよび活性炭を外から加熱し水分を除去するととも
に分解反応を促進させるようにしたものもある。 これ
により、入口部2から導入されたオゾンガスは、活性炭
4およびこれに含まれた触媒によって酸素に分解され無
害なガスとして排出口5から放出される。 このオゾン
の分解反応は次式に示すように発熱反応で、 203 →302 +68Kcal 1モル当たり150KJ(キロジュール)の生成熱を伴
う。
The structure of this ozone decomposing unit is, for example, as shown in FIG. 1, a suitable filter such as glass wool 3 is provided near the gas inlet 2 in a cylindrical aluminum container 1 which has been subjected to anticorrosion treatment. 1 is filled with an ozone decomposing reagent, that is, activated carbon 4 containing a metal oxide catalyst, and is closed by a lid 6 having a gas discharge port 5. In addition, there are some types in which heating element posistors 7 and 8 are provided outside the container to heat glass wool and activated carbon from the outside to remove water and accelerate the decomposition reaction. As a result, the ozone gas introduced from the inlet portion 2 is decomposed into oxygen by the activated carbon 4 and the catalyst contained therein, and is discharged from the outlet 5 as a harmless gas. This ozone decomposition reaction is an exothermic reaction as shown by the following equation, and is accompanied by heat of formation of 150 KJ (kilojoule) per mol of 20 3 → 30 2 +68 Kcal.

【0004】一般に数千ppmの濃度のオゾンを使用す
る化学発光式分析計などでは、化学発光反応室の出口流
路にこのオゾン分解器を取り付け、残存オゾンガスをこ
れで分解した後大気中に放出するようになっている。し
かし長期間使用している間にSO2 ガスなどの影響など
により充填剤の分解能力が劣化しオゾンが完全に分解さ
れずに一部のオゾンがそのまヽ大気中に排出されること
がある。
Generally, in a chemiluminescence analyzer using ozone of a concentration of several thousand ppm, this ozone decomposing device is attached to the exit passage of a chemiluminescence reaction chamber to decompose residual ozone gas and release it into the atmosphere. It is supposed to do. However, during long-term use, the decomposition ability of the filler deteriorates due to the effects of SO 2 gas, etc., and ozone may not be completely decomposed, and some ozone may be discharged into the atmosphere. .

【0005】オゾンのリークは人体にとって極めて有害
であることは当然であるが、例えば労働環境におけるそ
の許容限度は0.1ppm以下とされている外、オゾン
が主成分となる光化学オキシダントの環境基準は公害対
策基本法で0.06ppm以下と定められている。オゾ
ン分解器はこれらの基準をクリヤするように作られてい
るが実際の使用に際してはその保守・管理は極めて重要
な事項となっている。このオゾン分解器の劣化を判定す
るには、分解器の排出ガス中のオゾン濃度を紫外線吸収
法を用いた測定器などで測定する方法もあるが、装置が
極めて大がかりとなる欠点がある。即ち分解器自身で簡
単に劣化を判定できることが望まれるわけであるが、従
来はその手段が全くなかったので、経験によって使用時
間から劣化を推定し早めに分解器を取り替えるか、充填
剤をリフレッシュするなどが行われていた。
Obviously, ozone leakage is extremely harmful to the human body. For example, the permissible limit in the working environment is 0.1 ppm or less, and the environmental standard for photochemical oxidants whose main component is ozone is According to the Basic Law for Pollution Control, it is specified to be 0.06 ppm or less. Ozone decomposers are designed to meet these standards, but their maintenance and management are extremely important in actual use. In order to determine the deterioration of the ozone decomposer, there is a method of measuring the ozone concentration in the exhaust gas of the decomposer with a measuring device using an ultraviolet absorption method, but there is a drawback that the device becomes extremely large. In other words, it is desirable that the decomposer itself be able to easily determine deterioration, but in the past there was no means for doing so, so experience has been used to estimate deterioration from the time of use and the decomposer should be replaced early or the filler should be refreshed. It was done.

【0006】[0006]

【発明が解決しようとする課題】本発明は以上に鑑み、
オゾン分解器自身で、その充填剤の劣化を定量的に判定
できるようにし、必要に応じて劣化警報を出せるように
企図したものである。
In view of the above, the present invention has been made.
This is intended to enable the ozone decomposer itself to quantitatively determine the deterioration of the filler, and to issue a deterioration alarm if necessary.

【0007】[0007]

【課題を解決するための手段】本発明はオゾンの分解時
の発熱反応に着目し、オゾン分解器の充填剤の分解能力
が劣化すると、前述の分解反応に伴う発熱量が低下する
ことを利用し、この発熱量の低下を検出、モニタするこ
とによって、オゾン分解器の劣化を定量的に計測するよ
うにしたものである。
The present invention focuses on the exothermic reaction during the decomposition of ozone, and utilizes the fact that if the decomposition ability of the filler of the ozone decomposer deteriorates, the amount of heat generated by the decomposition reaction decreases. However, the deterioration of the ozone decomposer is quantitatively measured by detecting and monitoring the decrease in the calorific value.

【0008】[0008]

【作用】オゾン分解用充填剤を収容した容器の一部に、
1個または複数個の温度センサを取り付けるか又は発熱
量の異常低下を検出する機能を付加することにより、オ
ゾン分解発熱反応の異常をモニタしこれによって劣化度
を表示するか又は劣化が所定の限界に達したことを警報
する。
[Function] In a part of the container containing the filler for ozone decomposition,
By attaching one or more temperature sensors or by adding a function to detect an abnormal decrease in the calorific value, the abnormality of the ozone decomposition exothermic reaction can be monitored and the degree of deterioration can be displayed or the deterioration can reach a predetermined limit. Warn that has reached.

【0009】[0009]

【実施例】図1は本発明の1実施例の構造図で、符号1
〜8は従来技術の項で述べたとおりであるので説明を省
略する。本実施例では導入されるオゾンガスに水分が含
まれていると、充填剤の分解能が悪くなるので、容器の
外側に複数の発熱素子ポジスタを貼り付け、これに電流
を供給して充填剤を80℃程度の一定温度に加熱して、
水分をとばすとともに分解反応を促進するようにしたも
のである。
1 is a structural diagram of one embodiment of the present invention, in which reference numeral 1
8 are the same as those described in the section of the prior art, so the description thereof will be omitted. In this embodiment, if the introduced ozone gas contains water, the resolution of the filler deteriorates. Therefore, a plurality of heat-generating element posistors are attached to the outside of the container, and an electric current is supplied to the heat-generating element posistor to add 80% of the filler. Heat to a constant temperature of about ℃,
It is designed to accelerate the decomposition reaction while removing water.

【0010】9,10,11はそれぞれ容器1に取り付
けた温度センサで、9はグラスウール部分3の温度を検
出し、10,11は活性炭4の部分の温度を検出する。
Reference numerals 9, 10 and 11 denote temperature sensors attached to the container 1, 9 detects the temperature of the glass wool portion 3, and 10 and 11 detect the temperature of the activated carbon 4 portion.

【0011】図2はこれらセンサによる温度モニタリン
グ回路の1例を示したもので、12は差動増巾器、13
は劣化度指示計、14は劣化警報回路である。
FIG. 2 shows an example of a temperature monitoring circuit using these sensors, 12 is a differential amplifier, and 13 is a differential amplifier.
Is a deterioration indicator, and 14 is a deterioration alarm circuit.

【0012】図の構造においてこれが正常に動作してい
るときは、活性炭部におけるオゾン分解発熱反応に伴う
生成熱ならびに活性炭の酸化反応による熱などによっ
て、この部分の温度はグラスウールの部分(発熱反応が
起らない)の温度に較べて若干高い(数度C)状態に維
持される。即ち基準側温度センサ9と活性炭側温度セン
サ10,11との間に出力差が生じる。
In the structure shown in the figure, when this is operating normally, the temperature of this part is due to the heat generated by the ozone decomposition exothermic reaction in the activated carbon part and the heat caused by the oxidation reaction of the activated carbon. The temperature is maintained slightly higher (several degrees C) than the temperature that does not occur. That is, an output difference occurs between the reference side temperature sensor 9 and the activated carbon side temperature sensors 10 and 11.

【0013】しかし活性炭のオゾン分解能が劣化すると
当然発熱反応が弱くなるので発熱量が低下し、温度セン
サ10,11の出力が9の出力と同レベルになる。即ち
センサ9と10,11との間の出力差が小さくなる。こ
れらの温度差は2〜3℃程度と小さいが高感度温度セン
サで十分検出できるので図2に示すようにその出力差を
差動増巾器12で増巾検出し、劣化度指示計13に表示
させることにより、劣化状態を定量的に把握できる。又
この出力を予め定めた基準レベルと比較し、所定レベル
以下になったときリレー15を作動して警報器16の接
点を働かせることにより警報を出すこともできる。
However, when the ozone decomposing ability of the activated carbon is deteriorated, the exothermic reaction is naturally weakened so that the calorific value is reduced and the outputs of the temperature sensors 10 and 11 become the same level as the output of 9. That is, the output difference between the sensors 9 and 10, 11 is reduced. Although these temperature differences are small at about 2 to 3 ° C, they can be sufficiently detected by the high-sensitivity temperature sensor. Therefore, the output difference is detected by the differential amplifier 12 as shown in FIG. By displaying it, the deterioration state can be grasped quantitatively. It is also possible to issue an alarm by comparing this output with a predetermined reference level and operating the relay 15 to activate the contact of the alarm device 16 when the output falls below a predetermined level.

【0014】以上の実施例では、オゾン分解に伴う発熱
反応を容器に付設した温度センサ又はサーミスタなどで
検出する例について説明したが、例示したような発熱素
子ポジスタ7,8によって充填剤3,4を一定温度に昇
温加熱するものでは、その定温加熱のための消費電流の
変化を検出することによって反応熱の大小を計測するこ
とができる。即ち活性炭によるオゾン分解反応が正常に
行われているときは、その反応熱のためにポジスタ8の
消費電流が発熱反応が起らない部分にあるポジスタ7の
電流に較べて若干小さくなるのに対し、活性炭の劣化が
進行すると発熱が小さくなりその結果ポジスタ8の消費
電流が増え、遂にはポジスタ7の消費電流と同じレベル
になる。従って発熱素子8の電流の変化または両発熱素
子7,8の電流の差を検出することにより、前述と同様
に劣化の程度を計測することができる。
In the above embodiments, the exothermic reaction due to ozone decomposition is detected by the temperature sensor or thermistor attached to the container. However, the fillers 3, 4 are made by the heat generating element posistors 7, 8 as illustrated. In the case of heating by heating to a constant temperature, the magnitude of reaction heat can be measured by detecting the change in current consumption for the constant temperature heating. That is, when the ozone decomposition reaction by the activated carbon is normally performed, the current consumption of the posistor 8 becomes slightly smaller than the current of the posistor 7 in the portion where the exothermic reaction does not occur due to the reaction heat. As the deterioration of the activated carbon progresses, heat generation decreases, and as a result, the current consumption of the posistor 8 increases and finally reaches the same level as the current consumption of the posistor 7. Therefore, the degree of deterioration can be measured in the same manner as described above by detecting the change in the current of the heating element 8 or the difference between the currents of the heating elements 7 and 8.

【0015】[0015]

【発明の効果】以上のように本発明はオゾン分解器自身
にシンプルな構成を付加するだけで、充填剤の劣化を連
続的にモニタできるので、オゾン分解器の取替・保守を
タイミング良く確実に行える外、この劣化信号を利用し
てオゾン分解器の自動交換を行なうこともできる。
As described above, according to the present invention, the deterioration of the filler can be continuously monitored by simply adding a simple structure to the ozone decomposing unit itself, so that the replacement and maintenance of the ozone decomposing unit can be performed with good timing. In addition to the above, the ozone decomposing unit can be automatically replaced by using the deterioration signal.

【0016】また残存オゾンの不慮の排出事故なども完
全に防ぐことができるなど、安全性、環境保護の面でも
優れた効果をもたらすものである。
In addition, it is possible to completely prevent accidental discharge of residual ozone, and the like, which brings excellent effects in terms of safety and environmental protection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明オゾン分解器の一実施例の構成を示す断
面図である。
FIG. 1 is a cross-sectional view showing the configuration of an embodiment of an ozone decomposer of the present invention.

【図2】オゾンの分解時の発熱状態を検出モニタするた
めの電気回路図である。
FIG. 2 is an electric circuit diagram for detecting and monitoring a heat generation state when ozone is decomposed.

【符号の説明】[Explanation of symbols]

1…オゾン分解器の本体容器 3…ガラスウー
ル 4…活性炭(含触媒) 7,8…発熱素
子 9,10,11…温度センサ(またはサーミスタ) 13…劣化度指示計 14…劣化警報
回路
1 ... Main container of ozone decomposer 3 ... Glass wool 4 ... Activated carbon (catalyst containing) 7, 8 ... Heating element 9, 10, 11 ... Temperature sensor (or thermistor) 13 ... Degradation indicator 14 ... Degradation alarm circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オゾンを分解するための触媒を含む活性
炭などの充填剤を収容した容器の一部に、その充填剤の
発熱温度を検出する手段を設け、オゾン分解反応に伴う
発熱量をモニタすることにより、前記充填剤の劣化を判
定するようにしたことを特徴とするオゾン分解器。
1. A part of a container containing a filler such as activated carbon containing a catalyst for decomposing ozone is provided with means for detecting the exothermic temperature of the filler to monitor the amount of heat generated by the ozone decomposing reaction. The ozonolysis device is characterized in that the deterioration of the filler is judged by doing so.
JP5241778A 1993-09-28 1993-09-28 Ozone decomposing device Pending JPH0796135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5241778A JPH0796135A (en) 1993-09-28 1993-09-28 Ozone decomposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5241778A JPH0796135A (en) 1993-09-28 1993-09-28 Ozone decomposing device

Publications (1)

Publication Number Publication Date
JPH0796135A true JPH0796135A (en) 1995-04-11

Family

ID=17079385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5241778A Pending JPH0796135A (en) 1993-09-28 1993-09-28 Ozone decomposing device

Country Status (1)

Country Link
JP (1) JPH0796135A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506605B1 (en) * 2000-05-26 2003-01-14 Engelhard Corporation System for sensing catalyst coating loss and efficiency
JP2015068827A (en) * 2014-04-10 2015-04-13 オリジン電気株式会社 Catalytic activity-diagnosing method in formic acid decomposition device
CN115155674A (en) * 2022-06-24 2022-10-11 广东启亚检测设备股份有限公司 Ozone reducer and ozone test chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506605B1 (en) * 2000-05-26 2003-01-14 Engelhard Corporation System for sensing catalyst coating loss and efficiency
JP2015068827A (en) * 2014-04-10 2015-04-13 オリジン電気株式会社 Catalytic activity-diagnosing method in formic acid decomposition device
CN115155674A (en) * 2022-06-24 2022-10-11 广东启亚检测设备股份有限公司 Ozone reducer and ozone test chamber

Similar Documents

Publication Publication Date Title
US6280633B1 (en) Ozone sensor and method for use of same in water purification system
US6987459B2 (en) Portable combustible gas detector
US6550310B1 (en) Catalytic adsorption and oxidation based carbon monoxide sensor and detection method
JP2008068088A (en) Monitoring and control of sterilization processes using semiconductor sensor modules
JPH11160265A (en) Method and apparatus for detection of concentration of hydrogen peroxide vapor in treatment system by hydrogen peroxide vapor
US7212734B2 (en) Portable carbon monoxide generation apparatus for testing CO sensors, detectors and alarms
KR100546367B1 (en) Detector for identifying residual life time of absorbent, gas scrubber comprising the detector and method of identifying residual life time of absorbent
US6312606B1 (en) Method for measuring the degree of treatment of a medium by a gas
EP2026064B1 (en) Usage of nitrogen-containing-gas removing means to avoid failure of an electrochemical oxygen flue-gas anlayzer
US6623976B1 (en) Combustibility monitor and monitoring method
JPH0796135A (en) Ozone decomposing device
JP4816420B2 (en) Chlorine analyzer
JP2018515687A (en) Detecting leaks in high-temperature fuel cells or electrolytic cells
JP4314737B2 (en) Chemiluminescent nitrogen oxide concentration meter
JPH10311815A (en) Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method
US5939618A (en) Apparatus and method for detecting leakage in a gas reactor
US20230221275A1 (en) Gas measuring device and method for measuring cyanogen in the presence of hydrogen cyanide
US3471391A (en) Chlorine gas leak detector
JPS62115670A (en) Fuel cell power generating plant
JP4094150B2 (en) Abnormal gas detector for electrolytic ozone generator
JP3277408B2 (en) Cleaning device control method and cleaning device
JPS60205348A (en) Detector for gas component
JP2011179992A (en) Exhaust gas recombiner and method for measuring temperature of catalyst used for it
KR19980017305A (en) Environmental monitoring device in closed area and its control method
JP2753106B2 (en) Waste ozonolysis equipment