JP2015068827A - Catalytic activity-diagnosing method in formic acid decomposition device - Google Patents

Catalytic activity-diagnosing method in formic acid decomposition device Download PDF

Info

Publication number
JP2015068827A
JP2015068827A JP2014080638A JP2014080638A JP2015068827A JP 2015068827 A JP2015068827 A JP 2015068827A JP 2014080638 A JP2014080638 A JP 2014080638A JP 2014080638 A JP2014080638 A JP 2014080638A JP 2015068827 A JP2015068827 A JP 2015068827A
Authority
JP
Japan
Prior art keywords
formic acid
catalyst
acid decomposition
gas containing
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080638A
Other languages
Japanese (ja)
Other versions
JP5946488B2 (en
Inventor
直人 小澤
Naoto Ozawa
直人 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2014080638A priority Critical patent/JP5946488B2/en
Publication of JP2015068827A publication Critical patent/JP2015068827A/en
Application granted granted Critical
Publication of JP5946488B2 publication Critical patent/JP5946488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalytic activity-diagnosing method which determines activity of a catalyst filled in a formic acid decomposition device.SOLUTION: A catalytic activity-diagnosing method for a formic acid decomposition device makes gas containing formic acid, and oxygen or gas containing oxygen react with a catalyst for decomposing formic acid to decompose the formic acid into water and carbon dioxide. The method includes: introducing the gas containing formic acid, and oxygen or the gas containing oxygen into a formic acid decomposition part; measuring a catalyst temperature change due to heating in a decomposition reaction of the formic acid using a thermocouple provided in a catalyst layer of the formic acid decomposition part; and determining an activity of the catalyst from an increased amount of the catalyst temperature.

Description

本発明は、ギ酸分解用装置における触媒活性診断方法に関する。   The present invention relates to a method for diagnosing catalyst activity in an apparatus for formic acid decomposition.

半導体チップ上に半田バンプを形成する際には、パッド上に半田を付着させ、次いで、マッシュルーム形状から半球体形状へ半田バンプの形状を変化させ、次いで、リフローさせて半田接合する。従来の半田付け方法では、均一な半田バンプを形成するために、フラックスを用いて半田の表面酸化膜を除去し、半田バンプ表面を清浄化していた。   When forming solder bumps on a semiconductor chip, solder is deposited on the pads, then the shape of the solder bumps is changed from a mushroom shape to a hemispherical shape, and then soldered by reflowing. In the conventional soldering method, in order to form a uniform solder bump, the surface oxide film of the solder is removed using a flux to clean the surface of the solder bump.

しかしながら、フラックスを用いた半田付けでは、フラックスの分解によって、小さな空隙(ボイド)が半田バンプ中に形成されることがある。これらの空隙は、形成された半田接合の電気的及び機械的性質を低下させるだけでなく、半田バンプ付き半導体の平坦性を破壊し、かつ以降の半導体接合工程に影響を及ぼすこともある。分解したフラックスの揮発性物質がリフロー処理装置(半田付け装置)内を汚染する場合もあり、それによってメンテナンスコストが増大することもある。加えて、フラックス残留物がしばしば半導体基板上に残り、金属の腐食を引き起こし、アセンブリの性能を低下させることがある。さらに、リフロー後にフラックス残留物を洗浄除去する方法では、後洗浄という新たな処理工程が加わることで、半田付けに要する時間が増加する。   However, in soldering using a flux, small voids may be formed in the solder bumps due to the decomposition of the flux. These voids not only degrade the electrical and mechanical properties of the formed solder joint, but also destroy the flatness of the semiconductor with solder bumps and may affect the subsequent semiconductor bonding process. The decomposed flux volatile material may contaminate the reflow processing device (soldering device), thereby increasing the maintenance cost. In addition, flux residues often remain on the semiconductor substrate, causing metal corrosion and reducing assembly performance. Furthermore, in the method of cleaning and removing the flux residue after reflow, the time required for soldering increases due to the addition of a new processing step called post-cleaning.

このため、フラックスを用いない半田付け方法として、半田及び被接合部材である基板や電極等を、ギ酸を用いて還元する方法が知られている(特許文献1〜3等参照)。かかる還元方法では、半田部材が搭載された基板が所定温度に達したとき、半田部材を、ギ酸を含む還元性ガスに晒して表面の酸化膜を除去する還元処理を行った後、溶融処理する。   For this reason, as a soldering method that does not use flux, there is known a method of reducing a solder, a substrate, an electrode, or the like that is a member to be joined using formic acid (see Patent Documents 1 to 3). In such a reduction method, when the substrate on which the solder member is mounted reaches a predetermined temperature, the solder member is exposed to a reducing gas containing formic acid to perform a reduction process for removing the oxide film on the surface, and then a melting process is performed. .

しかしながら、ギ酸はチャンバー材を腐食させ、腐食物が金属性異物としてチャンバー内の汚染源になり、基板や基板上に搭載された電子部品などに飛散、付着することがあるため、還元処理終了後にギ酸をチャンバー内から除去する必要がある。また、ギ酸は刺激性があるため、チャンバーから回収したギ酸は安全に処理されることが望ましい。   However, formic acid corrodes the chamber material, and the corrosive substance becomes a contamination source in the chamber as a metallic foreign substance, and may be scattered and attached to the substrate or electronic components mounted on the substrate. Must be removed from the chamber. In addition, since formic acid is irritating, it is desirable that formic acid recovered from the chamber is safely treated.

特許文献1に記載された半田付け装置では、加熱室内でギ酸を加熱して気化させ、以下のように分解して水素ガスおよび一酸化炭素ガスを生成し、生成ガスを半田付け装置に供給して酸化膜を還元している。
HCOOH → HO + CO
HCOOH → H + CO
In the soldering apparatus described in Patent Document 1, formic acid is heated and vaporized in a heating chamber, decomposes as follows to generate hydrogen gas and carbon monoxide gas, and supplies the generated gas to the soldering apparatus. The oxide film is reduced.
HCOOH → H 2 O + CO
HCOOH → H 2 + CO 2

特許文献2に記載された半田付け装置では、リフロー完了後に、シールド材やチャンバー材に付着したギ酸雰囲気ガスを、内壁面を覆うように設置したギ酸分解ヒーターで分解処理している。   In the soldering apparatus described in Patent Document 2, after the reflow is completed, the formic acid atmosphere gas attached to the shield material and the chamber material is decomposed by a formic acid decomposition heater installed so as to cover the inner wall surface.

特許文献3に記載された半田付け装置では、半田付け装置の排気口に、排気ポンプとギ酸回収機構を設置し、排出したギ酸を水またはアルコールに溶解させて回収している。   In the soldering apparatus described in Patent Document 3, an exhaust pump and a formic acid recovery mechanism are installed at the exhaust port of the soldering apparatus, and the discharged formic acid is dissolved and recovered in water or alcohol.

特開2011−060856号公報(段落[0016])JP 2011-060856 A (paragraph [0016]) 特開2007−125578号公報(段落[0042]〜[0044]、図4)JP 2007-125578 A (paragraphs [0042] to [0044], FIG. 4) 特開2001−244618号公報(段落[0090]〜[0092]、付記30、図16)JP 2001-244618 A (paragraphs [0090] to [0092], appendix 30, FIG. 16)

しかしながら、特許文献1に記載された方法は、酸化膜を水素と一酸化炭素で還元するため、水素の還元開始温度(約270℃)以下の融点をもつ鉛フリー半田に対して、半田溶融前に還元処理を行うことができないという問題点がある。   However, the method described in Patent Document 1 reduces the oxide film with hydrogen and carbon monoxide, and therefore, for lead-free solder having a melting point equal to or lower than the reduction start temperature of hydrogen (about 270 ° C.), before solder melting. However, there is a problem that the reduction process cannot be performed.

この点、特許文献2、3に記載された方法は、ギ酸(還元開始温度;約150℃)を用いるため、比較的低融点の半田にも幅広く用いることができるという利点を有している。しかし、特許文献2の方法では、ギ酸分解後に半田付け装置内に残存する水を除去する必要があり、特許文献3の方法では、回収したギ酸をアルカリで処理しなければならず、いずれの方法もギ酸の処理工程が煩雑である。   In this respect, the methods described in Patent Documents 2 and 3 have an advantage that they can be widely used for solder having a relatively low melting point because formic acid (reduction starting temperature; about 150 ° C.) is used. However, in the method of Patent Document 2, it is necessary to remove water remaining in the soldering apparatus after formic acid decomposition, and in the method of Patent Document 3, the recovered formic acid must be treated with an alkali. However, the formic acid treatment process is complicated.

本発明は、前記の事情に鑑みてなされたものであり、ギ酸を安全かつ迅速に処理することが可能なギ酸分解用装置に充填した触媒の活性度を判定する触媒活性診断方法を提供することである。   The present invention has been made in view of the above circumstances, and provides a catalytic activity diagnostic method for determining the activity of a catalyst charged in a formic acid decomposition apparatus capable of processing formic acid safely and quickly. It is.

前記課題を解決するため、本発明者等は鋭意検討を重ねた結果、ギ酸を含むガスを、ギ酸分解用触媒の存在下、酸素もしくは空気と反応させることにより、ギ酸を安全かつ迅速に無害化できることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have made extensive studies, and as a result, formic acid is made harmless safely and quickly by reacting a gas containing formic acid with oxygen or air in the presence of a catalyst for decomposition of formic acid. We have found out that we can do it and have reached the present invention.

すなわち、本発明は、以下の通りである。
(1)ギ酸分解用触媒を充填したギ酸分解部と、ギ酸分解部にギ酸を含むガスを導入するガス導入管と、ギ酸分解部に酸素あるいは酸素を含むガスを導入するガス導入機構と、を備え、表面酸化膜をギ酸で還元処理した半田付け装置から排出される排気ガスに含まれるギ酸を、水と二酸化炭素に分解するギ酸分解用装置における触媒活性診断方法であって、
ギ酸を含むガスと酸素あるいは酸素を含むガスとをギ酸分解部に導入し、ギ酸の分解反応時の発熱による触媒温度の変化を、ギ酸分解部の少なくとも上流部1箇所に設けた熱電対により測定し、上昇した触媒温度の変化量の大きさから触媒の活性度を判定することを特徴とする触媒活性診断方法。
(2)ギ酸分解用触媒を充填したギ酸分解部と、ギ酸分解部にギ酸を含むガスを導入するガス導入管と、ギ酸分解部に酸素あるいは酸素を含むガスを導入するガス導入機構と、を備え、表面酸化膜をギ酸で還元処理した半田付け装置から排出される排気ガスに含まれるギ酸を、水と二酸化炭素に分解するギ酸分解用装置における触媒活性診断方法であって、
ギ酸を含むガスと酸素あるいは酸素を含むガスとをギ酸分解部に導入し、ギ酸の分解反応時の発熱による触媒温度の変化を、ギ酸分解部の上流部と下流部の少なくとも2箇所に設けた熱電対により測定し、上昇した触媒温度の変化量の大きさから触媒の活性度を判定することを特徴とする触媒活性診断方法。
(3)前記触媒温度の変化量が設定値以上のときには、触媒活性が保持されていると判定し、前記触媒温度の変化量が設定値より小さいときには、触媒活性が低下していると判定する前記(1)または(2)記載の触媒活性診断方法。
That is, the present invention is as follows.
(1) a formic acid decomposition part filled with a formic acid decomposition catalyst, a gas introduction pipe for introducing a gas containing formic acid into the formic acid decomposition part, and a gas introduction mechanism for introducing oxygen or a gas containing oxygen into the formic acid decomposition part; A method for diagnosing catalytic activity in a formic acid decomposition apparatus that decomposes formic acid contained in an exhaust gas discharged from a soldering apparatus having a surface oxide film reduced with formic acid into water and carbon dioxide,
A gas containing formic acid and oxygen or a gas containing oxygen are introduced into the formic acid decomposition part, and the change in the catalyst temperature due to heat generation during the decomposition reaction of formic acid is measured by a thermocouple provided at least one upstream part of the formic acid decomposition part. And determining the activity of the catalyst from the magnitude of the increased change in the catalyst temperature.
(2) a formic acid decomposition part filled with a formic acid decomposition catalyst, a gas introduction pipe for introducing a gas containing formic acid into the formic acid decomposition part, and a gas introduction mechanism for introducing oxygen or a gas containing oxygen into the formic acid decomposition part; A method for diagnosing catalytic activity in a formic acid decomposition apparatus that decomposes formic acid contained in an exhaust gas discharged from a soldering apparatus having a surface oxide film reduced with formic acid into water and carbon dioxide,
A gas containing formic acid and oxygen or a gas containing oxygen were introduced into the formic acid decomposition part, and changes in the catalyst temperature due to heat generation during the decomposition reaction of formic acid were provided in at least two places, upstream and downstream of the formic acid decomposition part. A method for diagnosing catalyst activity, characterized by determining the activity of a catalyst from the magnitude of the amount of change in the catalyst temperature that has been measured by a thermocouple.
(3) When the amount of change in the catalyst temperature is greater than or equal to a set value, it is determined that the catalyst activity is maintained, and when the amount of change in the catalyst temperature is less than the set value, it is determined that the catalyst activity has decreased. The method for diagnosing catalyst activity according to the above (1) or (2).

本発明の触媒活性診断方法は、リアルタイムで触媒の活性度を判定することができるので、未分解のギ酸が大気中に放出されるのを防止できる。2箇所以上に熱電対を設置することで、上流部と下流部の触媒の活性度の違いを判定し、触媒の寿命を予測することができる。さらに、触媒の交換時期を予測できるので、半田付け処理にともなう製品の生産効率を高めることができる。   Since the catalyst activity diagnostic method of the present invention can determine the activity of the catalyst in real time, it can prevent undecomposed formic acid from being released into the atmosphere. By installing thermocouples at two or more locations, it is possible to determine the difference in activity between the upstream and downstream catalysts and predict the life of the catalyst. Furthermore, since the catalyst replacement time can be predicted, the production efficiency of the product accompanying the soldering process can be increased.

ギ酸分解用装置の構成図と半田付け装置への適用例を示す図である。It is a figure which shows the block diagram of the apparatus for formic acid decomposition | disassembly, and the example applied to a soldering apparatus. ギ酸分解反応時の触媒活性の説明図である。It is explanatory drawing of the catalyst activity at the time of formic acid decomposition reaction. ギ酸分解部の概略構成図である。It is a schematic block diagram of a formic acid decomposition part. ギ酸分解用装置の連続運転時の温度変化(触媒活性時)と触媒活性の判定法を説明する概念図である。It is a conceptual diagram explaining the determination method of the temperature change (at the time of catalyst activation) at the time of continuous operation of the apparatus for formic acid decomposition, and catalyst activity. ギ酸分解用装置の連続運転時の温度変化を測定した実施例1の結果を示す図である。It is a figure which shows the result of Example 1 which measured the temperature change at the time of continuous operation of the apparatus for formic acid decomposition | disassembly. 実施例1で測定した温度変化をまとめたグラフである。3 is a graph summarizing temperature changes measured in Example 1. FIG.

以下、本発明に係るギ酸分解用装置及びギ酸分解方法について、詳細に説明する。
図1は、本発明のギ酸分解用装置の一例を示す構成図であり、該ギ酸分解用装置を半田付け装置に適用した例を示す図である。図1において、1はギ酸分解用装置、2はギ酸分解用触媒を充填したギ酸分解部、3はギ酸分解部にギ酸を含むガスを導入するガス導入管、4はギ酸分解部にギ酸分解用の酸素あるいは酸素を含むガスを導入するガス導入機構、5はギ酸を含むガスの導入口、6はギ酸分解物の排出口である。ガス導入管3は、流量計8、流量調整弁を有していることが好ましい。
Hereinafter, the formic acid decomposition apparatus and the formic acid decomposition method according to the present invention will be described in detail.
FIG. 1 is a block diagram showing an example of a formic acid decomposition apparatus according to the present invention, and shows an example in which the formic acid decomposition apparatus is applied to a soldering apparatus. In FIG. 1, 1 is a formic acid decomposition apparatus, 2 is a formic acid decomposition section filled with a formic acid decomposition catalyst, 3 is a gas introduction pipe for introducing a gas containing formic acid into the formic acid decomposition section, and 4 is a formic acid decomposition section in the formic acid decomposition section. A gas introduction mechanism for introducing oxygen or a gas containing oxygen, 5 is an inlet for a gas containing formic acid, and 6 is an outlet for a formic acid decomposition product. The gas introduction pipe 3 preferably has a flow meter 8 and a flow rate adjustment valve.

図1に示すギ酸分解用装置1では、ギ酸分解部2内に、ギ酸分解用触媒が充填された触媒層7が形成され、該触媒層7内には、温度測定用の熱電対Tが備えられている。ガス導入管3から導入されたギ酸を含むガスは、ガス導入機構4から導入した酸素あるいは酸素を含むガスとともに、ギ酸分解部2に導入され、触媒と接触することで反応し、水と二酸化炭素に分解する。反応式は以下に示され、当該反応は発熱反応である。

HCOOH + 1/2O → HO + CO
In the formic acid decomposition apparatus 1 shown in FIG. 1, a catalyst layer 7 filled with a formic acid decomposition catalyst is formed in the formic acid decomposition unit 2, and a thermocouple T for temperature measurement is provided in the catalyst layer 7. It has been. The gas containing formic acid introduced from the gas introduction pipe 3 is introduced into the formic acid decomposition unit 2 together with oxygen or oxygen-containing gas introduced from the gas introduction mechanism 4, reacts by contacting with the catalyst, and water and carbon dioxide. Disassembled into The reaction formula is shown below, and the reaction is exothermic.

HCOOH + 1 / 2O 2 → H 2 O + CO 2

発熱反応であるが故に、図2に示すように、触媒以外の反応条件を等しくしたとき、触媒の活性が高い場合は反応速度が速くなり、単位時間当りに発生する反応熱が多くなることで触媒温度が上昇し、触媒の活性が低い場合は、単位時間当りに発生する反応熱が少ないために触媒温度の上昇の程度が小さくなる。   Because of the exothermic reaction, as shown in FIG. 2, when the reaction conditions other than the catalyst are made equal, the reaction rate increases when the catalyst activity is high, and the reaction heat generated per unit time increases. When the catalyst temperature rises and the activity of the catalyst is low, since the reaction heat generated per unit time is small, the extent of the catalyst temperature rise is small.

ギ酸分解部2に充填する触媒としては、ギ酸を分解できるものであれば公知の触媒を制限なく用いることができ、その種類は特に限定されない。例えば、パラジウム、白金、ルテニウム、ロジウム、イリジウム等の白金族触媒;銅、ニッケルなどの金属触媒;モリブデン、バナジウム、鉄、クロムなどの酸化物触媒;等を挙げることができる。   As the catalyst charged in the formic acid decomposition unit 2, a known catalyst can be used without limitation as long as it can decompose formic acid, and the type thereof is not particularly limited. For example, platinum group catalysts such as palladium, platinum, ruthenium, rhodium and iridium; metal catalysts such as copper and nickel; oxide catalysts such as molybdenum, vanadium, iron and chromium;

白金族の触媒としては、パラジウム、白金、ルテニウム、ロジウム、イリジウム等の金属を、活性炭、炭素繊維、活性炭素繊維等の炭素材、シリカ、アルミナ、シリカアルミナ、ゼオライト等の担体に対して、1.8g/L〜3g/L担持した触媒が好ましい。   As a platinum group catalyst, a metal such as palladium, platinum, ruthenium, rhodium, iridium, etc., with respect to a carbon material such as activated carbon, carbon fiber, activated carbon fiber, or a carrier such as silica, alumina, silica alumina, zeolite, etc. A catalyst supported by 0.8 g / L to 3 g / L is preferred.

触媒層は、粉状、粒状、顆粒状など任意の形状の触媒を充填する、あるいは、上記の担体をハニカム状、コルゲート状など任意の形状に成形した成形体に白金族触媒を担持させたものを充填することにより、形成することができる。成形体は、分解効率が良く反応速度が大きいうえに、耐久性に優れており、触媒の交換が容易といった利点がある。成形体は、比表面積が大きい多孔質体とすることが好ましく、ギ酸を迅速かつ確実に分解するためには、成形体の比表面積が200cm/g以上であることが好ましい。 The catalyst layer is filled with a catalyst of an arbitrary shape such as powder, granule, granule, or a platinum group catalyst supported on a molded body obtained by molding the above carrier into an arbitrary shape such as a honeycomb shape or a corrugated shape. It can be formed by filling. The molded body has advantages such as high decomposition efficiency, high reaction rate, excellent durability, and easy catalyst replacement. The molded body is preferably a porous body having a large specific surface area. In order to decompose formic acid quickly and reliably, the molded body preferably has a specific surface area of 200 cm 2 / g or more.

ギ酸が分解反応を開始する前の触媒の温度は、特に限定されないが、温度が高い方が分解速度は速くなる。ただし、高温になると装置が大型化し、500℃を超えると触媒が劣化する可能性があるため、好ましくは20〜200℃の範囲、より好ましくは50〜100℃の範囲とし、一定の温度に調整しておくのが良い。   The temperature of the catalyst before formic acid starts the decomposition reaction is not particularly limited, but the higher the temperature, the faster the decomposition rate. However, when the temperature is high, the apparatus becomes large, and when the temperature exceeds 500 ° C., the catalyst may deteriorate. Therefore, the temperature is preferably in the range of 20 to 200 ° C., more preferably in the range of 50 to 100 ° C. It is good to keep.

また、ギ酸と、酸素あるいは酸素を含むガスとの反応は、常圧下で十分であるが加圧下あるいは減圧下で行っても良い。ギ酸と酸素のモル比(酸素/ギ酸)は1.5以上が好ましく、使用される触媒の種類、反応条件、コストなどを勘案して適宜選択され、上限はない。なお、ギ酸と、酸素あるいは酸素を含むガスとの反応は、回分式、半回分式あるいは連続式のいずれの方法であっても良い。   The reaction between formic acid and oxygen or a gas containing oxygen is sufficient under normal pressure, but may be performed under pressure or under reduced pressure. The molar ratio of formic acid and oxygen (oxygen / formic acid) is preferably 1.5 or more, is appropriately selected in consideration of the type of catalyst used, reaction conditions, cost, etc., and there is no upper limit. The reaction between formic acid and oxygen or oxygen-containing gas may be any of batch, semi-batch, or continuous methods.

本発明のギ酸分解用装置は、ギ酸を還元剤として用いる半田付け装置(以下、チャンバーという。)10におけるギ酸処理装置として、好ましく用いることができる。この場合、図1に示すように、チャンバー10内で、半田や被接合部材の表面酸化膜をギ酸で還元処理した後に排出される排気ガス(HCOOH,CO,HOを含む混合ガス)を、ギ酸分解用装置のガス導入口5からガス導入管3内に導入し、酸素あるいは酸素を含むガスとともに、ギ酸分解部2に導入し、ギ酸分解部2を通過させながら反応させた後、排気口6から排出するだけで良い。チャンバー10から排出される排気ガスは、ギ酸、二酸化炭素、水を含む不活性ガスが好ましい。不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガスなどが挙げられるが、入手のし易さでは窒素ガスが好ましい。 The formic acid decomposition apparatus of the present invention can be preferably used as a formic acid treatment apparatus in a soldering apparatus (hereinafter referred to as a chamber) 10 using formic acid as a reducing agent. In this case, as shown in FIG. 1, exhaust gas (mixed gas containing HCOOH, CO 2 , H 2 O) exhausted after reducing the surface oxide film of solder or the member to be joined with formic acid in the chamber 10, as shown in FIG. Is introduced into the gas introduction pipe 3 from the gas introduction port 5 of the formic acid decomposition apparatus, introduced into the formic acid decomposition part 2 together with oxygen or a gas containing oxygen, and reacted while passing through the formic acid decomposition part 2, It is only necessary to discharge from the exhaust port 6. The exhaust gas discharged from the chamber 10 is preferably an inert gas containing formic acid, carbon dioxide, and water. Examples of the inert gas include nitrogen gas, argon gas, and helium gas. Nitrogen gas is preferable in terms of availability.

排気ガスの温度は、還元処理に用いる半田の種類など還元処理条件によって異なるが、一般的には、150℃以上、半田融点以下である。本発明では、排気ガスを特に加熱することなくギ酸分解部2に導入するのが良い。半田は、鉛半田、鉛フリー半田のいずれでも良い。   The temperature of the exhaust gas varies depending on the reduction process conditions such as the type of solder used for the reduction process, but is generally 150 ° C. or higher and the solder melting point or lower. In the present invention, the exhaust gas is preferably introduced into the formic acid decomposition unit 2 without particularly heating. The solder may be either lead solder or lead-free solder.

ガス導入機構4は、酸素あるいは酸素を含むガス(コスト、供給面で空気が好ましい)の導入口、流量調整弁、流量計などを備えたものが好ましく用いられる。流量調整弁および流量計により、チャンバー10から真空ポンプ11を介してギ酸分解用装置1内に導入する排気ガス量に応じて、酸素のモル比を調整するのが良い。   The gas introduction mechanism 4 is preferably provided with an introduction port of oxygen or a gas containing oxygen (preferably air in terms of cost and supply), a flow rate adjusting valve, a flow meter, and the like. The molar ratio of oxygen may be adjusted by a flow rate adjusting valve and a flow meter according to the amount of exhaust gas introduced from the chamber 10 into the formic acid decomposition apparatus 1 via the vacuum pump 11.

本発明のギ酸の分解方法では、ギ酸を含むガスと、酸素あるいは酸素を含むガスとを、ギ酸分解用触媒の存在下で反応させることにより、ギ酸を水と二酸化炭素に分解することができる。ギ酸を含むガスとギ酸分解用の酸素あるいは酸素を含むガス(空気など)は、別々にギ酸分解部に導入することも可能であるが、両者を混合した後、混合ガスとしてギ酸分解部に導入する方が、反応の均一性を高めることができ、ガスの流量調整も容易であることから好ましい。   In the formic acid decomposition method of the present invention, formic acid can be decomposed into water and carbon dioxide by reacting a gas containing formic acid with oxygen or a gas containing oxygen in the presence of a formic acid decomposition catalyst. Gas containing formic acid and oxygen for formic acid decomposition or oxygen-containing gas (air, etc.) can be introduced separately into the formic acid decomposition part, but after mixing both, it is introduced into the formic acid decomposition part as a mixed gas This is preferable because the uniformity of the reaction can be improved and the gas flow rate can be easily adjusted.

また、触媒は未加熱でも反応は進行するが、加熱触媒を用いることが好ましい。触媒を加熱することにより、ギ酸を確実に二酸化炭素と水に分解することができるとともに、副生する水を蒸発させてガス化できるため、排気口6を介して、確実に装置外へ排出することができる。   The reaction proceeds even if the catalyst is not heated, but it is preferable to use a heated catalyst. By heating the catalyst, formic acid can be reliably decomposed into carbon dioxide and water, and water produced as a by-product can be evaporated and gasified, so that it is reliably discharged out of the apparatus through the exhaust port 6. be able to.

ギ酸を含むガスおよび酸素あるいは酸素を含むガスの導入量は、分解反応に供するギ酸の濃度、使用される触媒の種類、反応温度などを勘案して適宜選択されれば良く、特に制限はない。分解速度を良好な状態に維持するには、これらのガスの導入量に応じて触媒量を変えることが望ましい。また、ギ酸を含むガス中のギ酸量は、特に限定されない。   The amount of formic acid-containing gas and oxygen or oxygen-containing gas introduced may be appropriately selected in consideration of the concentration of formic acid used for the decomposition reaction, the type of catalyst used, the reaction temperature, and the like, and is not particularly limited. In order to maintain the decomposition rate in a good state, it is desirable to change the catalyst amount in accordance with the amount of these gases introduced. Further, the amount of formic acid in the gas containing formic acid is not particularly limited.

本発明のギ酸分解用装置は、ギ酸を還元剤として用いる半田付け装置に接続して用いることができ、この場合のギ酸分解処理は、回分式、半回分式、連続式のいずれであっても良い。ただし、経時で触媒活性が低下することがある。   The formic acid decomposition apparatus of the present invention can be used by connecting to a soldering apparatus that uses formic acid as a reducing agent. In this case, the formic acid decomposition treatment may be any of batch, semi-batch, and continuous. good. However, the catalyst activity may decrease over time.

そのため、本発明の触媒活性診断方法では、ギ酸分解用触媒を充填したギ酸分解部と、前記ギ酸分解部にギ酸を含むガスを導入するガス導入管と、前記ギ酸分解部に酸素あるいは酸素を含むガスを導入するガス導入機構と、を備えたギ酸分解用装置の触媒活性診断方法であって、ギ酸を含むガスと酸素あるいは酸素を含むガスとをギ酸分解部に導入し、ギ酸の分解反応時の発熱による触媒温度の変化を熱電対により測定し、上昇した温度変化量の大きさから、触媒の活性度を判定する。つまり、図2に示すように、ギ酸を含むガスの導入開始から導入終了までの温度を測定し、触媒温度の変化量(ΔT)を求めることにより、触媒の活性度を判定する。   Therefore, in the method for diagnosing catalytic activity of the present invention, the formic acid decomposition part filled with the formic acid decomposition catalyst, the gas introduction pipe for introducing a gas containing formic acid into the formic acid decomposition part, and the formic acid decomposition part contains oxygen or oxygen A method for diagnosing catalytic activity of an apparatus for formic acid decomposition comprising a gas introduction mechanism for introducing gas, wherein a formic acid-containing gas and oxygen or a gas containing oxygen are introduced into a formic acid decomposition section, and the formic acid decomposition reaction is performed. The change in the catalyst temperature due to the heat generation of the catalyst is measured with a thermocouple, and the activity of the catalyst is determined from the magnitude of the increased temperature change. That is, as shown in FIG. 2, the temperature from the start of introduction of the gas containing formic acid to the end of introduction is measured, and the change in the catalyst temperature (ΔT) is determined to determine the activity of the catalyst.

したがって、熱電対を少なくとも触媒層の上流部1箇所に設け、触媒温度の変化量(ΔT)を求めることで、触媒の活性度を判定することができる。また、触媒層の上流部と下流部の少なくとも2箇所に設け、各熱電対で測定した触媒温度の変化量(ΔT)を対比することで、触媒層全体の触媒の活性度を判定することができる。   Therefore, the activity of the catalyst can be determined by providing a thermocouple at least at one location upstream of the catalyst layer and determining the amount of change (ΔT) in the catalyst temperature. In addition, it is possible to determine the activity of the catalyst in the entire catalyst layer by comparing the amount of change (ΔT) in the catalyst temperature measured by each thermocouple, provided at at least two locations upstream and downstream of the catalyst layer. it can.

触媒温度の変化量(ΔT)は、導入されるギ酸量および触媒活性と相関するので、導入するガスのギ酸含有量が多い程大きく、また、触媒活性が高い程大きくなる傾向がある。
ガス中のギ酸含有量が同じであっても、ガスの流量によって、触媒温度の変化量(ΔT)は影響されるので、触媒の活性度の判定精度を高めるためには、触媒層を通過するガスの流量(ギ酸を含むガスと酸素あるいは酸素を含むガスの合計量)の変動幅が0.2L/min以内になるよう調整することが好ましい。
Since the amount of change in catalyst temperature (ΔT) correlates with the amount of formic acid to be introduced and the catalyst activity, it tends to increase as the formic acid content of the introduced gas increases and as the catalyst activity increases.
Even if the formic acid content in the gas is the same, the amount of change (ΔT) in the catalyst temperature is affected by the gas flow rate. Therefore, in order to increase the accuracy of determining the activity of the catalyst, it passes through the catalyst layer. It is preferable to adjust the fluctuation range of the gas flow rate (the total amount of the gas containing formic acid and oxygen or the gas containing oxygen) to be within 0.2 L / min.

そして、触媒温度の変化量(ΔT)が設定値より大きいときには触媒活性が保持されていると判定し、触媒温度の変化量(ΔT)が設定値より小さいときには触媒活性が低下していると判定する。触媒活性が低下したと判定された時には、装置アラームが作動するように設定しておけば、触媒温度の変化量(ΔT)を絶えず監視しなくても触媒の交換時期を知ることができる。   When the change amount (ΔT) of the catalyst temperature is larger than the set value, it is determined that the catalyst activity is maintained, and when the change amount (ΔT) of the catalyst temperature is smaller than the set value, it is determined that the catalyst activity is decreased. To do. If it is determined that the catalyst alarm is activated when it is determined that the catalyst activity has decreased, it is possible to know the catalyst replacement time without constantly monitoring the amount of change (ΔT) in the catalyst temperature.

本発明のギ酸分解用装置には、本発明の触媒活性診断方法を適用することが好ましい。
図3は、本発明の触媒活性診断方法を適用するのに好適なギ酸分解用装置のギ酸分解部2周辺の概略構成図である。図3において、T1、T2、T3はギ酸分解部2内の触媒層7内に挿入される熱電対であり、T1は触媒層7の上流部、T2は触媒層7の中程、T3は触媒層7の下流部に、それぞれ設置される。
The catalytic activity diagnostic method of the present invention is preferably applied to the formic acid decomposition apparatus of the present invention.
FIG. 3 is a schematic configuration diagram around the formic acid decomposition unit 2 of a formic acid decomposition apparatus suitable for applying the catalytic activity diagnosis method of the present invention. In FIG. 3, T1, T2, and T3 are thermocouples inserted into the catalyst layer 7 in the formic acid decomposition unit 2, T1 is the upstream portion of the catalyst layer 7, T2 is the middle of the catalyst layer 7, and T3 is the catalyst. They are respectively installed downstream of the layer 7.

熱電対Tを触媒層の上流部と下流部の少なくとも2箇所に設置した場合は、ギ酸を含むガスと酸素もしくは酸素を含むガスが、ギ酸分解部2に流入すると、先ず上流部の触媒に接触した後、下流部の触媒に接触するので、上流部の触媒はギ酸と酸素の反応熱によって温度上昇が生じる。次いで、中程の触媒から下流部の触媒へとガスが流入していくに連れて、ギ酸量が減少し、その結果反応熱が小さくなるため、触媒温度の上昇幅は減少する。このように、上流部の触媒の触媒活性と下流部の触媒の触媒活性とを対比することができるため、例えば上流部では触媒活性が低下していても、下流部では触媒活性が低下していないことなどを簡単に判定できる。尚、熱電対T2は、必須ではないが、設置することにより触媒活性の測定点が増え、より緻密に触媒活性を判定できる。熱電対は、必要に応じて3個以上設置しても構わない。   When thermocouples T are installed in at least two locations upstream and downstream of the catalyst layer, when formic acid-containing gas and oxygen or oxygen-containing gas flow into the formic acid decomposition portion 2, first contact the upstream catalyst. After that, since it contacts the downstream catalyst, the temperature of the upstream catalyst rises due to the reaction heat of formic acid and oxygen. Next, as the gas flows from the middle catalyst to the downstream catalyst, the amount of formic acid decreases, and as a result, the reaction heat decreases, so the increase in the catalyst temperature decreases. Thus, since the catalytic activity of the upstream catalyst and the catalytic activity of the downstream catalyst can be compared, for example, even if the catalytic activity is reduced in the upstream part, the catalytic activity is reduced in the downstream part. It can be easily determined that there is no such thing. Note that the thermocouple T2 is not indispensable, but the installation of the thermocouple T2 increases the number of measurement points for the catalyst activity, and the catalyst activity can be determined more precisely. Three or more thermocouples may be installed as necessary.

熱電対による温度測定値は、入力値としてデータ処理装置に送られた後、該データ処理装置において、各測定点の触媒温度の変化量(ΔT)が算出される。触媒温度の変化量(ΔT)が設定値以上のときには、触媒活性が保持されていると判定し、触媒温度の変化量(ΔT)が設定値より小さいときには、触媒活性が落ちている(装置アラーム)と判定する。設定値は、処理対象となるガス中のギ酸濃度、ガスの流量、コスト、酸素流量、触媒層の加熱温度、触媒層の構造、触媒の種類などを勘案して、適宜設定することができる。   The temperature measurement value by the thermocouple is sent as an input value to the data processing device, and the data processing device calculates the change amount (ΔT) of the catalyst temperature at each measurement point. When the change amount (ΔT) of the catalyst temperature is equal to or larger than the set value, it is determined that the catalyst activity is maintained. When the change amount (ΔT) of the catalyst temperature is smaller than the set value, the catalyst activity is lowered (device alarm). ). The set value can be appropriately set in consideration of the formic acid concentration in the gas to be treated, the gas flow rate, the cost, the oxygen flow rate, the heating temperature of the catalyst layer, the structure of the catalyst layer, the type of catalyst, and the like.

以上は、熱電対による触媒温度の変化量を判定する診断方法の一例であるが、熱電対を用いて、反応熱量を測定することで触媒活性度を判定することも可能である。また、ギ酸を含むガスには、窒素ガスなどの不活性ガスやギ酸以外に、アルデヒド等のガス類が含まれていても構わない。   The above is an example of a diagnostic method for determining the amount of change in catalyst temperature by a thermocouple, but it is also possible to determine the catalyst activity by measuring the amount of reaction heat using a thermocouple. Further, the gas containing formic acid may contain gases such as aldehyde in addition to inert gas such as nitrogen gas and formic acid.

以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(試験方法)
図1に示す装置で、チャンバー10の容量が20L、ギ酸分解部2に1Lの触媒を充填した装置を用いて試験を行った。なお、ギ酸分解部2には、図3に示すように、触媒層の上流、中間、下流の3箇所に熱電対T1、T2、T3を設置した。触媒としては、粒状のアルミナにPtを1.8g/L担持したPt/アルミナ触媒を用いた。触媒活性を判定するために、活性を低下させた触媒も一部併用して試験を行った。
(Test method)
The test was performed using the apparatus shown in FIG. 1 in which the chamber 10 had a capacity of 20 L and the formic acid decomposition unit 2 was filled with 1 L of catalyst. In the formic acid decomposition part 2, as shown in FIG. 3, thermocouples T1, T2, and T3 were installed at three locations upstream, intermediate, and downstream of the catalyst layer. As the catalyst, a Pt / alumina catalyst in which 1.8 g / L of Pt was supported on granular alumina was used. In order to determine the catalyst activity, a test was performed with a part of the catalyst having a decreased activity.

試験方法は以下の通りである。バルブ20およびバルブ21を閉じた状態で、真空ポンプ11を稼働させ、分解用エアーを導入機構4を介して流すとともに、ギ酸分解部2の触媒をヒーター(図示せず)で100℃まで加熱して試験準備を完了する。そして、バルブ20を開き、流量計22を介して、ギ酸を含むガスを20L/分の流速でチャンバー10に導入する。チャンバー10内にギ酸を含むガスが導入され次第、バルブ20を閉じ、バルブ21を開いて、真空ポンプ11によりチャンバー10内のギ酸を含むガスを排気し、ギ酸分解部2にギ酸を含むガスと分解用エアーを流通させてギ酸を分解し、この間の触媒層の上流、中間および下流の温度を、それぞれ熱電対T1、T2およびT3で測定する。チャンバー10内のガスが全て排気されたらバルブ21を閉じて1サイクルの試験を終了し、当該サイクルを繰り返しながら、熱電対T1、T2およびT3で温度を測定する。   The test method is as follows. While the valve 20 and the valve 21 are closed, the vacuum pump 11 is operated and the decomposition air is allowed to flow through the introduction mechanism 4, and the catalyst of the formic acid decomposition unit 2 is heated to 100 ° C. with a heater (not shown). To complete the exam preparation. Then, the valve 20 is opened, and a gas containing formic acid is introduced into the chamber 10 through the flow meter 22 at a flow rate of 20 L / min. As soon as the gas containing formic acid is introduced into the chamber 10, the valve 20 is closed, the valve 21 is opened, the gas containing formic acid in the chamber 10 is exhausted by the vacuum pump 11, and the formic acid decomposition unit 2 contains the gas containing formic acid. The formic acid is decomposed by circulating decomposition air, and the temperatures upstream, intermediate and downstream of the catalyst layer are measured by thermocouples T1, T2 and T3, respectively. When all the gas in the chamber 10 is exhausted, the valve 21 is closed to complete one cycle test, and the temperature is measured by the thermocouples T1, T2, and T3 while repeating the cycle.

ギ酸を含むガスとしては、ギ酸ガスに窒素ガスを混合し、混合ガス中のギ酸濃度が3%になるように調整した混合ガスを用いた。分解用エアーとしては空気を使用した。   As the gas containing formic acid, a mixed gas prepared by mixing formic acid gas with nitrogen gas and adjusting the formic acid concentration in the mixed gas to 3% was used. Air was used as the air for decomposition.

真空ポンプ11の排気量は120L/分、分解用エアーの流量は30L/分に設定して試験を行った。したがって、ギ酸分解部2を流通するギ酸の量は3.6L/分、分解用エアー中の酸素の量は6.3L/分(空気中の酸素濃度21%として)であり、酸素とギ酸のモル比は、酸素/ギ酸=1.75であった。   The test was conducted by setting the exhaust amount of the vacuum pump 11 to 120 L / min and the flow rate of the decomposition air to 30 L / min. Therefore, the amount of formic acid flowing through the formic acid decomposition unit 2 is 3.6 L / min, the amount of oxygen in the decomposition air is 6.3 L / min (assuming an oxygen concentration of 21% in the air), and the amount of oxygen and formic acid The molar ratio was oxygen / formic acid = 1.75.

(触媒活性の判定方法)
図4に示すように、熱電対T1、T2およびT3で測定した触媒温度の状況より触媒活性の判定を行う。図4は、触媒温度の変化を示す概念図であり、ギ酸分解部2に導入されたギ酸は、触媒層の上流部で大部分が分解され、上流部の熱電対T1で測定した触媒温度はギ酸ガスの導入とともに大きく上昇し、ギ酸ガスの通過が終了すると分解用エアーで冷却されることになる。触媒層の上流部で大部分のギ酸が分解されるため、触媒層の中間部に到達するギ酸の量は上流部に比べて少ないため、熱電対T2で測定される触媒温度の上昇の程度は小さい。そして、触媒層の下流部にはギ酸はほとんど到達しないため、熱電対3で測定される触媒の温度はほとんど変化しないことがわかる。そして、触媒の温度変化量(図4におけるΔT)が、予め設定した値を下回った場合には、触媒活性が低下したと判定する。
(Catalyst activity judgment method)
As shown in FIG. 4, the catalyst activity is determined based on the catalyst temperature measured by thermocouples T1, T2, and T3. FIG. 4 is a conceptual diagram showing changes in catalyst temperature. Formic acid introduced into the formic acid decomposition unit 2 is mostly decomposed in the upstream part of the catalyst layer, and the catalyst temperature measured by the thermocouple T1 in the upstream part is It rises greatly with the introduction of formic acid gas, and when it passes through the formic acid gas, it is cooled with the decomposition air. Since most of the formic acid is decomposed in the upstream part of the catalyst layer, the amount of formic acid reaching the intermediate part of the catalyst layer is smaller than that in the upstream part, so the degree of increase in the catalyst temperature measured by the thermocouple T2 is small. And since formic acid hardly reaches the downstream part of a catalyst layer, it turns out that the temperature of the catalyst measured with the thermocouple 3 hardly changes. When the temperature change amount of the catalyst (ΔT in FIG. 4) falls below a preset value, it is determined that the catalyst activity has decreased.

(実施例1)
触媒として、粒状アルミナにPtを1.8g/L担持したPt/アルミナ触媒を使用した。新しく調製した触媒1Lをギ酸分解部2に充填して触媒層を調製し、前記試験法にしたがって試験を行った(試験(a)とする)。
Example 1
As the catalyst, a Pt / alumina catalyst having 1.8 g / L of Pt supported on granular alumina was used. 1 L of newly prepared catalyst was filled in the formic acid decomposition part 2 to prepare a catalyst layer, and a test was performed according to the test method (referred to as test (a)).

次に、一部触媒活性が低下した触媒330mlを準備し、ギ酸分解部2の上部1/3の部分に充填し(下部2/3は試験(a)に用いた新しく調製した触媒を充填)、前記試験法にしたがって試験を行った(試験(b)とする)。   Next, 330 ml of a catalyst with a partly reduced catalytic activity is prepared and filled in the upper third part of the formic acid decomposition part 2 (the lower part 2/3 is filled with the newly prepared catalyst used in the test (a)). The test was conducted according to the test method (referred to as test (b)).

さらに、触媒活性が完全に失われた触媒330mlを準備し、ギ酸分解部2の上部1/3の部分に充填し(下部2/3は試験(a)に用いた新しく調製した触媒を充填)、前記試験法にしたがって試験を行った(試験(c)とする)。   Furthermore, 330 ml of the catalyst whose catalytic activity was completely lost was prepared and filled in the upper third part of the formic acid decomposition part 2 (the lower part 2/3 was filled with the newly prepared catalyst used in the test (a)). The test was conducted according to the test method (referred to as test (c)).

試験(a)、試験(b)および試験(c)において、熱電対T1、T2およびT3で測定した触媒層の上流部、中間部および下流部の温度の変化を図5に示す。なお、図5では、4サイクル目までの結果を示している。   FIG. 5 shows changes in the temperatures of the upstream, intermediate, and downstream portions of the catalyst layer measured by the thermocouples T1, T2, and T3 in the tests (a), (b), and (c). In FIG. 5, the results up to the fourth cycle are shown.

また、図5に示す温度の測定結果から求めた触媒温度の変化量(ΔT)の値を図6にまとめた。図6において、T1と記載したグラフは、触媒層の上流部の各試験(a)、(b)、(c)での触媒温度の変化量を表す。同じく、T2と記載したグラフは触媒層の中間部、T3と記載したグラフは触媒層の下流部での各試験(a)、(b)、(c)の触媒温度の変化量を表している。   Moreover, the value of the change amount (ΔT) of the catalyst temperature obtained from the temperature measurement result shown in FIG. 5 is summarized in FIG. In FIG. 6, the graph described as T1 represents the change amount of the catalyst temperature in each of the tests (a), (b), and (c) in the upstream portion of the catalyst layer. Similarly, the graph described as T2 represents the amount of change in the catalyst temperature of each test (a), (b), and (c) in the middle portion of the catalyst layer, and the graph described as T3 represents the downstream portion of the catalyst layer. .

図5あるいは図6より、十分な触媒活性を有する新品の触媒を用いた試験(a)の場合には、ギ酸分解部2に導入されたギ酸は触媒層の上流部でほぼ分解され、触媒層の中間部以降には到達しないことがわかる。触媒層の上流部に、一部活性が低下した触媒を用いた試験(b)の場合には、触媒層の上流部ではギ酸は完全には分解できず、一部が中間部に到達することがわかる。そして、触媒層の上流部に、活性が完全に失われた触媒を用いた試験(c)の場合には、触媒層の上流部ではギ酸の分解は殆ど起こらず、ギ酸は触媒層の中間部で分解されることがわかる。   From FIG. 5 or FIG. 6, in the case of the test (a) using a new catalyst having sufficient catalytic activity, the formic acid introduced into the formic acid decomposition part 2 is almost decomposed at the upstream part of the catalyst layer, and the catalyst layer It turns out that it does not reach after the middle part. In the case of test (b) using a catalyst whose activity is partially reduced in the upstream part of the catalyst layer, formic acid cannot be completely decomposed in the upstream part of the catalyst layer, and part of it reaches the intermediate part. I understand. In the case of the test (c) using the catalyst whose activity is completely lost in the upstream part of the catalyst layer, the decomposition of formic acid hardly occurs in the upstream part of the catalyst layer, and the formic acid is in the middle part of the catalyst layer. It can be seen that

本発明によるギ酸分解用装置およびギ酸分解方法は、半導体装置の半田付け工程で用いた還元性ガスの処理装置および処理方法として、好適に利用できる。   The formic acid decomposition apparatus and the formic acid decomposition method according to the present invention can be suitably used as a processing apparatus and a processing method for reducing gas used in a soldering process of a semiconductor device.

1 ギ酸分解用装置
2 ギ酸分解部
3 ガス導入管
4 ガス導入機構
5 ガス導入口
6 排気口
7 触媒層
8 流量計
10 チャンバー
11 真空ポンプ
20、21 バルブ
22、流量計
DESCRIPTION OF SYMBOLS 1 Formic acid decomposition apparatus 2 Formic acid decomposition part 3 Gas introduction pipe 4 Gas introduction mechanism 5 Gas introduction port 6 Exhaust port 7 Catalyst layer 8 Flow meter 10 Chamber 11 Vacuum pump 20, 21 Valve 22, Flow meter

Claims (7)

ギ酸分解用触媒を充填したギ酸分解部と、ギ酸分解部にギ酸を含むガスを導入するガス導入管と、ギ酸分解部に酸素あるいは酸素を含むガスを導入するガス導入機構と、を備え、表面酸化膜をギ酸で還元処理した半田付け装置から排出される排気ガスに含まれるギ酸を、水と二酸化炭素に分解するギ酸分解用装置における触媒活性診断方法であって、
ギ酸を含むガスと酸素あるいは酸素を含むガスとをギ酸分解部に導入し、ギ酸の分解反応時の発熱による触媒温度の変化を、ギ酸分解部の少なくとも上流部1箇所に設けた熱電対により測定し、上昇した触媒温度の変化量の大きさから触媒の活性度を判定することを特徴とする触媒活性診断方法。
A formic acid decomposition part filled with a formic acid decomposition catalyst, a gas introduction pipe for introducing a gas containing formic acid into the formic acid decomposition part, and a gas introduction mechanism for introducing oxygen or a gas containing oxygen into the formic acid decomposition part, A method for diagnosing catalytic activity in a formic acid decomposition apparatus for decomposing formic acid contained in exhaust gas discharged from a soldering apparatus obtained by reducing an oxide film with formic acid into water and carbon dioxide,
A gas containing formic acid and oxygen or a gas containing oxygen are introduced into the formic acid decomposition part, and the change in the catalyst temperature due to heat generation during the decomposition reaction of formic acid is measured by a thermocouple provided at least one upstream part of the formic acid decomposition part. And determining the activity of the catalyst from the magnitude of the increased change in the catalyst temperature.
ギ酸分解用触媒を充填したギ酸分解部と、ギ酸分解部にギ酸を含むガスを導入するガス導入管と、ギ酸分解部に酸素あるいは酸素を含むガスを導入するガス導入機構と、を備え、表面酸化膜をギ酸で還元処理した半田付け装置から排出される排気ガスに含まれるギ酸を、水と二酸化炭素に分解するギ酸分解用装置における触媒活性診断方法であって、
ギ酸を含むガスと酸素あるいは酸素を含むガスとをギ酸分解部に導入し、ギ酸の分解反応時の発熱による触媒温度の変化を、ギ酸分解部の上流部と下流部の少なくとも2箇所に設けた熱電対により測定し、上昇した触媒温度の変化量の大きさから触媒の活性度を判定することを特徴とする触媒活性診断方法。
A formic acid decomposition part filled with a formic acid decomposition catalyst, a gas introduction pipe for introducing a gas containing formic acid into the formic acid decomposition part, and a gas introduction mechanism for introducing oxygen or a gas containing oxygen into the formic acid decomposition part, A method for diagnosing catalytic activity in a formic acid decomposition apparatus for decomposing formic acid contained in exhaust gas discharged from a soldering apparatus obtained by reducing an oxide film with formic acid into water and carbon dioxide,
A gas containing formic acid and oxygen or a gas containing oxygen were introduced into the formic acid decomposition part, and changes in the catalyst temperature due to heat generation during the decomposition reaction of formic acid were provided in at least two places, upstream and downstream of the formic acid decomposition part. A method for diagnosing catalyst activity, characterized by determining the activity of a catalyst from the magnitude of the amount of change in the catalyst temperature that has been measured by a thermocouple.
前記触媒温度の変化量が設定値以上のときには、触媒活性が保持されていると判定し、前記触媒温度の変化量が設定値より小さいときには、触媒活性が低下していると判定する請求項1または2記載の触媒活性診断方法。   The catalyst activity is determined to be maintained when the change amount of the catalyst temperature is equal to or greater than a set value, and it is determined that the catalyst activity is decreased when the change amount of the catalyst temperature is smaller than the set value. Or the catalytic activity diagnostic method of 2. 前記ギ酸分解部が、触媒加熱用ヒーターを備えている請求項1または2記載の触媒活性診断方法。   The method for diagnosing catalyst activity according to claim 1 or 2, wherein the formic acid decomposition unit includes a heater for heating the catalyst. 前記ギ酸を含むガスが、ギ酸、二酸化炭素、水を含有する不活性ガスである請求項1または2記載の触媒活性診断方法。   The method for diagnosing catalyst activity according to claim 1 or 2, wherein the gas containing formic acid is an inert gas containing formic acid, carbon dioxide, and water. 前記酸素を含むガスが、空気である請求項1または2記載の触媒活性診断方法。   The method for diagnosing catalyst activity according to claim 1 or 2, wherein the gas containing oxygen is air. 前記ギ酸分解用装置が、前記半田付け装置に接続して使用される装置である請求項1または2記載の触媒活性診断方法。   The method for diagnosing catalyst activity according to claim 1 or 2, wherein the formic acid decomposition apparatus is used by being connected to the soldering apparatus.
JP2014080638A 2014-04-10 2014-04-10 Method for diagnosing catalyst activity in an apparatus for formic acid decomposition Active JP5946488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080638A JP5946488B2 (en) 2014-04-10 2014-04-10 Method for diagnosing catalyst activity in an apparatus for formic acid decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080638A JP5946488B2 (en) 2014-04-10 2014-04-10 Method for diagnosing catalyst activity in an apparatus for formic acid decomposition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013204287A Division JP5548813B1 (en) 2013-09-30 2013-09-30 Formic acid decomposition apparatus, soldering apparatus, and formic acid decomposition method

Publications (2)

Publication Number Publication Date
JP2015068827A true JP2015068827A (en) 2015-04-13
JP5946488B2 JP5946488B2 (en) 2016-07-06

Family

ID=52835600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080638A Active JP5946488B2 (en) 2014-04-10 2014-04-10 Method for diagnosing catalyst activity in an apparatus for formic acid decomposition

Country Status (1)

Country Link
JP (1) JP5946488B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147226A (en) * 1984-01-06 1985-08-03 Mitsubishi Heavy Ind Ltd Operation of catalyst packed tube type solid-gas catalytic reaction apparatus
JPH0796135A (en) * 1993-09-28 1995-04-11 Shimadzu Corp Ozone decomposing device
JP2001244618A (en) * 1999-12-20 2001-09-07 Fujitsu Ltd Heating and melting system
JP2002210555A (en) * 2001-01-18 2002-07-30 Fujitsu Ltd Solder joining device
JP2003287526A (en) * 2002-01-18 2003-10-10 Honda Motor Co Ltd Detection method for deterioration of catalyst
JP2006281166A (en) * 2005-04-04 2006-10-19 Mitsui Chemicals Polyurethanes Inc Chemical treatment apparatus
JP2007125578A (en) * 2005-11-02 2007-05-24 Fujitsu Ltd Reflow device, reflow method and method for manufacturing semiconductor device
WO2007116874A1 (en) * 2006-04-03 2007-10-18 Mitsubishi Gas Chemical Company, Inc. Method for processing exhaust gas in direct liquid fuel cell
JP2011060856A (en) * 2009-09-07 2011-03-24 Mitsubishi Materials Corp Reflow device
JP2011067864A (en) * 2009-08-27 2011-04-07 Ayumi Kogyo Kk Heating and melting treatment device and heating and melting treatment method
JP2015085379A (en) * 2013-11-01 2015-05-07 オリジン電気株式会社 Soldering device with decomposition mechanism and decomposition method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147226A (en) * 1984-01-06 1985-08-03 Mitsubishi Heavy Ind Ltd Operation of catalyst packed tube type solid-gas catalytic reaction apparatus
JPH0796135A (en) * 1993-09-28 1995-04-11 Shimadzu Corp Ozone decomposing device
JP2001244618A (en) * 1999-12-20 2001-09-07 Fujitsu Ltd Heating and melting system
JP2002210555A (en) * 2001-01-18 2002-07-30 Fujitsu Ltd Solder joining device
JP2003287526A (en) * 2002-01-18 2003-10-10 Honda Motor Co Ltd Detection method for deterioration of catalyst
JP2006281166A (en) * 2005-04-04 2006-10-19 Mitsui Chemicals Polyurethanes Inc Chemical treatment apparatus
JP2007125578A (en) * 2005-11-02 2007-05-24 Fujitsu Ltd Reflow device, reflow method and method for manufacturing semiconductor device
WO2007116874A1 (en) * 2006-04-03 2007-10-18 Mitsubishi Gas Chemical Company, Inc. Method for processing exhaust gas in direct liquid fuel cell
JP2011067864A (en) * 2009-08-27 2011-04-07 Ayumi Kogyo Kk Heating and melting treatment device and heating and melting treatment method
JP2011060856A (en) * 2009-09-07 2011-03-24 Mitsubishi Materials Corp Reflow device
JP2015085379A (en) * 2013-11-01 2015-05-07 オリジン電気株式会社 Soldering device with decomposition mechanism and decomposition method

Also Published As

Publication number Publication date
JP5946488B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5548813B1 (en) Formic acid decomposition apparatus, soldering apparatus, and formic acid decomposition method
JP4912742B2 (en) Hydrogen generator and fuel cell system
US20190247791A1 (en) Method, system, and device for removing hydrogen peroxide or hydrazine from a process gas stream
JP5946488B2 (en) Method for diagnosing catalyst activity in an apparatus for formic acid decomposition
JP5557951B1 (en) Soldering apparatus provided with disassembling mechanism and disassembling method
WO2002079084A1 (en) Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter
JP2003190762A (en) Apparatus for forming fluorine gas containing hydrogen fluoride
Pauls et al. Kinetics of the hydrogenation of ethylene:(On a nickel catalyst)
JP5466870B2 (en) Method and apparatus for measuring mercury concentration
EP2796406B1 (en) Co shift conversion device and shift conversion method
WO1997048640A1 (en) Moisture generation method and moisture generator
JP2004269946A (en) Halogen corrosion resistant member, and perfluoro compound decomposition treatment apparatus
JP4847776B2 (en) Hydrogen-containing gas generator
JP2005098713A (en) Apparatus and method for measuring mercury concentration
JP3456487B2 (en) Method and apparatus for protecting reformer catalyst
JPH07116504A (en) Method and device for controlling oxygen concentration in inert gas
JP2014195809A (en) Method of reducing surface oxide and soldering apparatus
TW201640114A (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
Smith et al. The interaction of hydrogen and deuterium on zinc oxide
JP2003212512A (en) Method of removing carbon monoxide and solid polymer fuel cell system
JP2020079429A (en) Acetylene gas concentration estimation device, acetylene gas proper amount estimating device, and vacuum carburization device with the device
Anderson et al. Metallic contaminants generation from tubing during start-up and following moisture upsets in HCl distribution systems
JP2014225496A (en) Reductive gas production method and reduction method using the same and soldering device
WO2010095512A1 (en) Method and apparatus for decomposing nitrogen trifluoride
JP2002284504A (en) Carbon monoxide removing device and fuel reforming system having it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160531

R150 Certificate of patent or registration of utility model

Ref document number: 5946488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250