JP2753106B2 - Waste ozonolysis equipment - Google Patents

Waste ozonolysis equipment

Info

Publication number
JP2753106B2
JP2753106B2 JP2078853A JP7885390A JP2753106B2 JP 2753106 B2 JP2753106 B2 JP 2753106B2 JP 2078853 A JP2078853 A JP 2078853A JP 7885390 A JP7885390 A JP 7885390A JP 2753106 B2 JP2753106 B2 JP 2753106B2
Authority
JP
Japan
Prior art keywords
ozone
decomposition
tower
temperature
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2078853A
Other languages
Japanese (ja)
Other versions
JPH03278816A (en
Inventor
勝廣 石川
泰夫 江頭
健二 田口
孝二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2078853A priority Critical patent/JP2753106B2/en
Publication of JPH03278816A publication Critical patent/JPH03278816A/en
Application granted granted Critical
Publication of JP2753106B2 publication Critical patent/JP2753106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、排オゾンガスを分解する装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to an apparatus for decomposing exhausted ozone gas.

(従来の技術) 浄水場、下水処理場、し尿処理場などの水処理場など
の水処理分野においては、脱臭、脱色、除鉄、除マンガ
ン、消毒、有機物の酸化などの目的でオゾンの持つ強い
酸化力を利用するオゾン処理が広く実用化されている。
(Prior art) In the water treatment field such as a water treatment plant, a sewage treatment plant, a human waste treatment plant, etc., ozone is used for the purpose of deodorization, decolorization, iron removal, manganese removal, disinfection, and oxidation of organic substances. Ozone treatment utilizing strong oxidizing power has been widely put to practical use.

このオゾン処理ではオゾン発生器の運転効率から、オ
ゾン濃度20gオゾン/Nm3−空気のオゾン化空気が一般的
に用いられている。オゾン化空気と非処理水を気液混合
させるオゾン反応槽からは、オゾン反応で余剰となった
オゾン化空気が排オゾンガスとして排出される。
In this ozone treatment, ozonized air having an ozone concentration of 20 g ozone / Nm 3 -air is generally used in view of the operation efficiency of the ozone generator. From the ozone reaction tank in which ozonized air and non-treated water are mixed in a gas-liquid state, surplus ozonized air due to the ozone reaction is discharged as exhausted ozone gas.

排オゾンガスの濃度は、非処理水、オゾン反応の目
的、オゾン化空気のオゾン濃度、オゾン化空気の注入率
などによって異なるが、数mgオゾン/水のオゾン注入
率で1000ppm(VOl/VOl)を越える排オゾン濃度になるこ
とが多い。この濃度は、厚生省のオゾン設備指針で労働
衛生上の許容濃度としている0.1ppmよりはるかに高いも
のであり、このままの状態では排気できず、オゾン分解
が不可欠のものとなっている。
The concentration of exhausted ozone gas varies depending on the non-treated water, the purpose of the ozone reaction, the ozone concentration of ozonized air, the injection rate of ozonized air, etc., but 1000 ppm (VOl / VOl) at an ozone injection rate of several mg ozone / water. Exhaust ozone concentration often exceeds. This concentration is much higher than the allowable concentration for occupational health in the Ozone Facility Guidelines of the Ministry of Health and Welfare, which is much higher than 0.1 ppm.

この排オゾンガスを分解する排オゾン分解装置は、一
般的には、分解塔に活性炭を充填したものが用いられ
る。
In general, an exhaust ozone decomposing device that decomposes this exhaust ozone gas uses a decomposing tower filled with activated carbon.

ところが、活性炭は、経時的に消耗するため、取替が
必要であり、その取替作業が煩しい。また、活性炭の再
生装置を備えるものもあるが、装置が大型になる欠点が
ある。
However, since activated carbon is consumed over time, replacement is necessary, and the replacement operation is troublesome. Some of them have a device for regenerating activated carbon, but there is a drawback that the device becomes large.

そこで、近年になり、活性炭より性能の良いマンガン
系の排オゾン分解触媒を分解塔内に充填した排オゾン分
解装置が用いられることが多くなった。この排オゾン分
解装置は排オゾン中に含まれる水分から触媒の水ぬれを
防ぐため、40℃程度に加熱保温をして利用する。
Therefore, in recent years, an exhaust ozone decomposing apparatus in which a manganese-based exhaust ozone decomposing catalyst having better performance than activated carbon is filled in a decomposition tower has been used in many cases. This waste ozone decomposer is used by heating and maintaining the temperature at about 40 ° C. in order to prevent the catalyst from being wetted by the water contained in the waste ozone.

(発明が解決しようとする課題) しかしながら、マンガン系の触媒を充填した上記従来
の排オゾン分解装置では、通常の分解性能は良いが、一
時的な分解不良により0.1ppmの許容濃度を越え、これが
繰り返されるという経験的事実があり、分解性能の安定
化が所望されていた。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional exhaust ozone decomposing apparatus filled with a manganese-based catalyst, the normal decomposition performance is good, but the allowable concentration exceeds 0.1 ppm due to temporary decomposition failure. There is an empirical fact that it is repeated, and stabilization of decomposition performance has been desired.

本発明は、排オゾン分解装置の一時的分解不良を防
ぎ、分解性能の安定,向上を図ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent a temporary decomposition failure of a waste ozone decomposing device and to stabilize and improve decomposition performance.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、請求項(1)記載の排オ
ゾン分解装置は、排オゾン分解触媒を充填し、加熱保温
が可能に構成された分解塔と、分解塔内の下流側から採
取された排ガスのオゾン濃度を測定するオゾン計と、測
定されたオゾン濃度に応じて前記分解塔の加熱保温温度
を複数段階に自動設定する温度調節器と、を備えて成る
ことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, an exhaust ozone decomposing apparatus according to claim (1) is configured to be filled with an exhaust ozone decomposing catalyst and capable of heating and keeping heat. Cracking tower, an ozone meter for measuring the ozone concentration of the exhaust gas collected from the downstream side in the cracking tower, and temperature control for automatically setting the heating and keeping temperature of the cracking tower in a plurality of stages according to the measured ozone concentration. And a container.

また、請求項(2)記載の排オゾン分解装置は、排オ
ゾン分解触媒が充填し、加熱保温が可能に構成された第
1の分解塔と、排オゾン分解触媒を充填し、加熱保温が
可能に構成されるとともに、前記第1の分解塔の排ガス
を連結部を介して取込む第2の分解塔と、連結部から採
取された排ガスのオゾン濃度を測定するオゾン計と、測
定されたオゾン濃度に応じて前記第1の分解塔または/
および第2の分解塔の加熱保温温度を複数段階に自動設
定する温度調節器と、を備えて成ることを特徴とする。
Further, the exhaust ozone decomposition apparatus according to claim (2) is capable of heating and maintaining the temperature by filling the first ozone decomposition catalyst filled with the exhaust ozone decomposition catalyst and capable of heating and maintaining the temperature and by filling the exhaust ozone decomposition catalyst. A second decomposition tower that takes in the exhaust gas of the first decomposition tower via a connection part, an ozone meter that measures the ozone concentration of the exhaust gas collected from the connection part, Depending on the concentration, the first decomposition tower or /
And a temperature controller for automatically setting the heating / retaining temperature of the second decomposition tower in a plurality of stages.

(作用) 本発明の作用の前提となる分解塔の実験特性を第4図
を基に説明する。
(Operation) Experimental characteristics of the decomposition tower, which is a premise of the operation of the present invention, will be described with reference to FIG.

第4図は、マンガン系排オゾン分解触媒を分解塔に充
填し、分解塔の加熱保温温度40℃、分解塔へ導入するオ
ゾン化空気のオゾン濃度1000ppm(湿度90%)の実験特
性図である。
FIG. 4 is an experimental characteristic diagram in which a decomposition tower is filled with a manganese-based waste ozone decomposition catalyst, the temperature of the decomposition tower is maintained at 40 ° C., and the ozone air introduced into the decomposition tower has an ozone concentration of 1000 ppm (humidity 90%). .

この実験では分解塔内のオゾン濃度の分布を調べるた
め、分解塔の高さの30%と70%位置にガス採取口を設け
オゾン濃度を計測した。横軸の分解塔高さの塔底と塔頂
のオゾン濃度は、それぞれ分解塔の入口と出口で計測し
たものである。縦軸のオゾン濃度の0.1ppmは排オゾン分
解の良否判断基準値である。
In this experiment, gas sampling ports were installed at 30% and 70% of the height of the decomposition tower to measure the ozone concentration in order to examine the distribution of ozone concentration in the decomposition tower. The ozone concentration at the bottom and top of the decomposition tower height on the horizontal axis was measured at the inlet and outlet of the decomposition tower, respectively. The 0.1 ppm of the ozone concentration on the vertical axis is a reference value for judging the quality of waste ozone decomposition.

特性Aは、分解塔の分解特性が正常の場合を示してい
る。特性Aでは、分解塔内でオゾン濃度が余裕をもって
0になっていることが判る。
Characteristic A indicates a case where the decomposition characteristics of the decomposition tower are normal. In the characteristic A, it can be seen that the ozone concentration is 0 with a margin in the decomposition tower.

特性Bは、分解塔出口でのオゾン濃度が0で満足でき
るものの分解塔高さからみた特性で余裕が少なくなって
いる。
The property B is satisfactory because the ozone concentration at the outlet of the decomposition tower is 0, but the margin is small in view of the height of the decomposition tower.

特性Cは排オゾン分解性能が許容限界値のものであ
り、特性Dは完全に排オゾン分解不良が発生したときの
ものである。
Characteristic C is a value when the waste ozone decomposition performance is at an allowable limit value, and characteristic D is a result when exhaust gas ozone decomposition failure occurs completely.

経時的にみると、特性Aを維持する場合がほとんどで
はあるものの、数時間の時間幅でB→C→D→C→Bの
特性変化が日単位で繰り返されることが観察された。
When viewed over time, it was observed that the characteristic change of B → C → D → C → B was repeated on a daily basis within a time width of several hours, although the characteristic A was mostly maintained.

この排オゾン分解不良を解決するため、この分解不良
が発生した時、分解塔の加熱保温の設定温度40℃から10
℃単位で上昇させる特性を調べた。その結果、10℃程度
の設定温度上昇により、即時効果が表われ特性B、C、
Dから特性Aに回復することが判明した。
In order to solve this exhausted ozone decomposition failure, when this decomposition failure occurs, the temperature for heating and keeping the decomposition tower set from 40 ° C to 10 ° C
The characteristic of increasing in units of ° C. was examined. As a result, an immediate effect appears when the set temperature rises by about 10 ° C., and characteristics B, C,
It was found that D returned to characteristic A.

第5図に40℃の設定温度からの上昇温度と、特性Dか
ら特性Aまでの回復時間との関係を示した。
FIG. 5 shows the relationship between the temperature rise from the set temperature of 40 ° C. and the recovery time from the characteristic D to the characteristic A.

同図に示されるように、温度が高い程、回復時間が短
かく効果が増すことが判明した。
As shown in the figure, it was found that the higher the temperature, the shorter the recovery time and the higher the effect.

以上の知見から、請求項(1)に示すように分解塔内
のガス下流側のオゾン濃度を計測し、排オゾン分解不良
の微候を示す特性Bを適格に把握し、40℃の設定温度を
予め決めた回復設定温度に切り換えることにより、排オ
ゾン分解不良を未然に防ぐことが可能になった。
Based on the above findings, the ozone concentration on the downstream side of the gas in the decomposition tower was measured as shown in claim (1), and the characteristic B indicating the microscopic signs of poor ozone decomposition was appropriately grasped. By switching the temperature to a predetermined recovery set temperature, it becomes possible to prevent defective exhaust ozone decomposition.

また、この設定温度上昇によると排オゾン分解触媒の
劣化回復を積極的に応用すれば、分解塔の大きさを最小
のものに設計でき、効率的な分解塔を製作できる。
Also, according to the set temperature increase, if the recovery of the degradation of the exhausted ozone decomposition catalyst is actively applied, the size of the decomposition tower can be designed to be the minimum and an efficient decomposition tower can be manufactured.

一方、設定温度を上昇させる際、上昇温度に達するま
での温度上昇スピードは排オゾン分解触媒の回復時間の
短縮および性能の信頼性を高めるに特に重要である。
On the other hand, when raising the set temperature, the temperature rising speed until reaching the rising temperature is particularly important for shortening the recovery time of the exhaust ozone decomposition catalyst and improving the reliability of performance.

同じ容量の排オゾン分解触媒を用いた場合、分解塔を
小型にし、多数塔で行なう方が温度上昇スピードが早
く、回復時間も短かい、この関係を示したのが第6図で
ある。
In the case of using the same volume of exhausted ozone decomposition catalyst, the decomposition tower is made smaller and the number of towers is increased, the temperature rise speed is faster and the recovery time is shorter. FIG. 6 shows this relationship.

同図に示されるように、同じ容量の排オゾン分解触媒
では1塔型より,2塔に分割した小型の分解塔の方が、上
昇温度に達するまでの昇温時間が短かく、迅速な対応が
できることがわかる。つまり、第4図の特性Aまでの回
復時間が2塔型の方が短いことが明らかである。
As shown in the figure, with the same volume of exhaust ozone decomposing catalyst, the smaller decomposing tower divided into two towers, compared to the one-column type, has a shorter heating time until the temperature rises, and can respond quickly. You can see that you can do it. That is, it is apparent that the recovery time to the characteristic A in FIG. 4 is shorter in the two-tower type.

以上の知見から、請求項(2)に示すように2分割し
た分解塔の連結部から採取したオゾン濃度を計測し、排
オゾン分解不良の微候を示す前記特性Bを適格に把握
し、40℃の設定温度から、予め決めた回復設定温度に切
り換えることにより、排オゾン分解不良を未然に防ぐこ
とが可能になった。
Based on the above findings, the concentration of ozone collected from the connection portion of the splitting tower divided into two as described in claim (2) was measured, and the above-mentioned characteristic B, which is a sign of poor ozone decomposition failure, was properly grasped. By switching from the set temperature of ° C. to the predetermined recovery set temperature, it becomes possible to prevent the exhaust ozone decomposition failure beforehand.

一般的に分解不良となった排オゾン分解触媒は300〜4
00℃の高温で再生処理されるが、請求項(1)および
(2)記載の各発明では排オゾン分解不良の初期段階を
適格に把握し、排オゾン分解触媒の初期劣化で回復を図
るため、100℃以下の低温の上昇温度設定で排オゾン分
解不良を未然に防ぐことができる。
Generally, 300 to 4 exhaust ozone decomposition catalysts that have become poorly decomposed
Although regeneration treatment is performed at a high temperature of 00 ° C., in each of the inventions described in claims (1) and (2), the initial stage of exhaust ozonolysis failure is properly grasped, and recovery is performed by the initial deterioration of the exhaust ozonolysis catalyst. By setting the temperature to a low temperature of 100 ° C. or lower, it is possible to prevent the decomposition of waste ozone from occurring.

(実施例) 第1図は本発明の一実施例の構成図である。(Embodiment) FIG. 1 is a configuration diagram of an embodiment of the present invention.

分解塔1の内部下方にステンレス製金網などで製作さ
れた支持部材2を配設し、この支持部材2の上にマンガ
ン系の排オゾン分解触媒3を充填している。排オゾン分
解触媒3は直径1〜2mm、長さ2〜3mm程度のペレット状
のものが一般的に用いられている。
A support member 2 made of a stainless steel wire mesh or the like is provided below the inside of the decomposition tower 1, and a manganese-based exhaust ozone decomposition catalyst 3 is filled on the support member 2. The exhaust ozone decomposition catalyst 3 is generally in the form of a pellet having a diameter of about 1 to 2 mm and a length of about 2 to 3 mm.

排オゾン分解触媒3の充填層のガス下流側にオゾン濃
度計測用のガス採取部材4が配設される。ガス採取部材
4に接続された配管は分解塔の外部に出て、自動開閉弁
5を経由してオゾン計6に接続される。ガス採取部材4
からオゾン計6までの配管はオゾン計6が必要とする1
〜2/minのガス流量に見合うステンレス製内径4mm程
度のものを使用する。
A gas sampling member 4 for measuring the ozone concentration is disposed downstream of the packed bed of the exhausted ozone decomposition catalyst 3. The pipe connected to the gas sampling member 4 goes out of the decomposition tower and is connected to the ozone meter 6 via the automatic on-off valve 5. Gas sampling member 4
The piping from to the ozone meter 6 is required by the ozone meter 6
Use a stainless steel tube with an inner diameter of about 4 mm that matches the gas flow rate of ~ 2 / min.

ガス採取部材4の先端部は、排オゾン分解触媒3の破
損くずがガス採取口を塞ぐことがないようにできるもの
であれば良く、ステンレス製メッシュフィルタや焼結フ
ィルタが利用できる。なお、ガス採取部材4は取外しが
容易なフランジと一体構造とし分解塔1に取付けて支持
すれば、定期点検が容易になる。
The tip portion of the gas sampling member 4 may be any material that can prevent the broken waste of the exhaust ozone decomposition catalyst 3 from blocking the gas sampling port, and a stainless steel mesh filter or a sintered filter can be used. In addition, if the gas sampling member 4 is integrated with a flange that can be easily removed and is attached to and supported by the disassembly tower 1, periodic inspection is facilitated.

分解塔1の下端から導入された排オゾンガスは支持部
材2、排オゾン分解触媒3を経て、オゾンガスをほとん
ど含まない排ガスとして排ガス配管7から排出される。
The exhaust ozone gas introduced from the lower end of the decomposition tower 1 passes through the support member 2 and the exhaust ozone decomposition catalyst 3 and is discharged from the exhaust gas pipe 7 as exhaust gas containing almost no ozone gas.

排ガス配管7から分岐した配管には自動開閉弁8が接
続され、自動開閉弁8を出た配管は自動開閉弁5の出口
配管と合わされてオゾン計6に接続される。
An automatic on-off valve 8 is connected to a pipe branched from the exhaust gas pipe 7, and a pipe exiting the automatic on-off valve 8 is connected to an outlet pipe of the automatic on-off valve 5 and connected to an ozone meter 6.

このオゾン計6は自動開閉弁5と8につながる2系統
のオゾン濃度を、内蔵する流路切換器で自動開閉弁5と
8を自動的に切換えて計測するものである。自動開閉弁
8の系統は排ガスであり、0.1ppmの許容濃度以下である
ことを監視するためのものである。自動開閉弁5の系統
は排オゾン分解触媒3の劣化の微候をつかむためのもの
である。この劣化の微候をオゾン濃度としていくらに設
定するかは、排オゾン分解触媒3の充填条件、運転条
件、ガス採取部材4の取付高さ位置などによって変化す
るが、第4図の特性を利用すれば0.1〜0.4ppm程度のオ
ゾン濃度で劣化の微候とすることができる。したがっ
て、オゾン計6の測定範囲を0〜0.5ppmあるいは0〜1p
pmとして使用すれば、上記2系統のオゾン濃度計測が1
台のオゾン系6で可能である。
The ozone meter 6 measures the ozone concentration of two systems connected to the automatic opening / closing valves 5 and 8 by automatically switching the automatic opening / closing valves 5 and 8 by a built-in flow path switch. The system of the automatic opening / closing valve 8 is for monitoring that the exhaust gas is exhaust gas and has a concentration of 0.1 ppm or less. The system of the automatic opening / closing valve 5 is for grasping a slight deterioration of the exhaust ozone decomposition catalyst 3. The amount of the ozone concentration to be set as the level of the deterioration may vary depending on the filling conditions of the exhaust ozone decomposition catalyst 3, the operating conditions, the mounting height position of the gas sampling member 4, and the like. In this case, the ozone concentration of about 0.1 to 0.4 ppm can be regarded as a weak sign of deterioration. Therefore, the measurement range of the ozone meter 6 is set to 0 to 0.5 ppm or 0 to 1 p.
If it is used as pm, the above two systems ozone concentration measurement is 1
This is possible with a single ozone system 6.

なお、オゾン計6に導入される2系統の測定ガス共、
40℃程度に加熱されているので、オゾン計6での結露に
よる指示誤差を防ぐため、オゾン計6は電子クーラなど
の除湿機構付のものを使用する。また、オゾン計6の出
口ガスは自動開閉弁5の系統の測定の場合、0.1pmを越
えることがあるので、活性炭などを充填したオゾン計6
用の小型オゾン分解器を内蔵する必要がある。
Note that the two measurement gases introduced into the ozone meter 6 are:
Since it is heated to about 40 ° C., an ozone meter 6 having a dehumidifying mechanism such as an electronic cooler is used in order to prevent an indication error due to dew condensation in the ozone meter 6. Further, the outlet gas of the ozone meter 6 may exceed 0.1 pm in the case of the measurement of the system of the automatic on-off valve 5, so that the ozone meter 6 filled with activated carbon or the like may be used.
It is necessary to incorporate a small ozone decomposer for use.

分解塔1の外面は加熱保温部材9で覆われている。こ
の加熱保温部材9は電熱ヒータ、外部被覆材で構成する
のが一般的である。電熱ヒータは、分解塔1内の排オゾ
ン分解触媒3の温度を40℃から100℃位まで加熱維持で
きる容量にしてある。
The outer surface of the decomposition tower 1 is covered with a heating and heat retaining member 9. The heating and heat retaining member 9 is generally made of an electric heater and an outer covering material. The electric heater has a capacity capable of heating and maintaining the temperature of the exhausted ozone decomposition catalyst 3 in the decomposition tower 1 from about 40 ° C. to about 100 ° C.

分解塔1のガス上流側には、排オゾン分解触媒3の温
度を計測する測温センサ10が配設されている。測温セン
サ10の信号は温度調節器11に入力され、分解塔1の排オ
ゾン分解性能が正常時は、排オゾン分解触媒3の温度は
40℃程度の通常設定温度で運転される。
A temperature sensor 10 for measuring the temperature of the exhausted ozone decomposition catalyst 3 is provided on the gas upstream side of the decomposition tower 1. The signal of the temperature sensor 10 is input to the temperature controller 11, and when the exhaust ozone decomposition performance of the decomposition tower 1 is normal, the temperature of the exhaust ozone decomposition catalyst 3 becomes
It is operated at a normal set temperature of about 40 ° C.

温度調節器11には、オゾン計6のオゾン濃度出力が入
力され、オゾン濃度出力に対応させて、排オゾン分解触
媒3の設定温度を複数段階に自動選択させる機能が付加
されている。表1にその具体例を示す。
The temperature controller 11 is provided with a function of inputting the ozone concentration output of the ozone meter 6 and automatically selecting a set temperature of the exhaust ozone decomposition catalyst 3 in a plurality of stages in accordance with the ozone concentration output. Table 1 shows a specific example.

なお、オゾン濃度出力と設定温度との組合せは、ガス
採取部材4の取付位置を含む分解塔1の構造と運転条件
とで適切値が決められるものであるため、自由に設定可
能にして置くことが望ましい。
The combination of the ozone concentration output and the set temperature can be freely set because the appropriate value is determined by the structure of the decomposition tower 1 including the mounting position of the gas sampling member 4 and the operating conditions. Is desirable.

次に、本実施例の運転効果を従来のものと比較して、
第2図に示す。これは、分解塔1の長期間運転のデータ
から排オゾン分解不良を示す代表例を比較したものであ
る。
Next, comparing the driving effect of the present embodiment with the conventional one,
As shown in FIG. This is a comparison of representative examples showing exhausted ozone decomposition failure from long-term operation data of the decomposition tower 1.

同図に示すように、従来例では、良否判断基準値0.1p
pmを長期間に渡って大きく越える特性がみられる。これ
に対して本実施例によれば、0.1ppmを越える時間帯は存
在せず、安定した運転が継続され、排オゾン分解不良が
未然に防止されていることがわかる。
As shown in the figure, in the conventional example, the pass / fail judgment reference value is 0.1 p.
There are characteristics that greatly exceed pm over a long period of time. On the other hand, according to the present example, there is no time zone exceeding 0.1 ppm, and it can be seen that stable operation is continued and defective ozone decomposition is prevented in advance.

第3図は本発明の他の実施例の構成図である。 FIG. 3 is a block diagram of another embodiment of the present invention.

本実施例では、排オゾン分解触媒を容積比で1:1に分
割した2台の分解塔が設置されており、分解塔21,分解
塔22の内部下方にステンレス製金網などで製作された支
持部材23,24が設置され、この支持部材23,24の上にマン
ガン系の排オゾン分解触媒25,26が充填されている。
In the present embodiment, two decomposition towers in which the exhaust ozone decomposition catalyst is divided at a volume ratio of 1: 1 are installed, and a support made of a stainless steel mesh or the like is provided below the decomposition towers 21 and 22. Members 23 and 24 are provided, and manganese-based exhaust ozone decomposition catalysts 25 and 26 are filled on the support members 23 and 24.

分解塔21と分解塔22の連結配管(リボンヒータなどで
40℃程度に加熱保温されている)27の途中に分解塔21の
排ガスのガス採取部材28が配設されている。ガス採取部
材28に接続された配管は、自動開閉弁29を経由し、オゾ
ン計30に接続される。
Connecting pipe between decomposition tower 21 and decomposition tower 22 (with ribbon heater, etc.)
A gas sampling member 28 for the exhaust gas of the decomposition tower 21 is provided in the middle of 27 (heated and kept at about 40 ° C.). The pipe connected to the gas sampling member 28 is connected to an ozone meter 30 via an automatic on-off valve 29.

分解塔21の下端から導入された排オゾンガスは分解塔
21の支持部材23、排オゾン分解触媒25を経て分解塔22
へ、分解塔21と同様に下端から導入され、支持部材24、
排オゾン分解触媒26を経て排ガス配管31から排出され
る。
The exhausted ozone gas introduced from the lower end of the decomposition tower 21
Decomposition tower 22 through supporting member 23 of 21 and exhaust ozone decomposition catalyst 25
To, introduced from the lower end in the same manner as the decomposition tower 21, the support member 24,
The exhaust gas is discharged from the exhaust gas pipe 31 via the exhaust ozone decomposition catalyst 26.

排ガス配管31から分岐した配管に接続された自動開閉
弁32を出た配管は自動開閉弁29の出口と合わされオゾン
計30に接続される。
The pipe exiting the automatic on-off valve 32 connected to the pipe branched from the exhaust gas pipe 31 is combined with the outlet of the automatic on-off valve 29 and connected to the ozone meter 30.

オゾン計30は自動開閉弁29と32につながる2系統のオ
ゾン濃度を、内蔵する流路切換器で自動開閉弁29と32を
自動的に切り換えて計測する。自動開閉弁32の系統は排
ガスであり、0.1ppmの許容濃度以下であることを監視す
るためのものであるが、自動開閉弁29の系統は排オゾン
分解触媒25の劣化の微候をつかむものである。
The ozone meter 30 measures the two systems of ozone concentration connected to the automatic open / close valves 29 and 32 by automatically switching the automatic open / close valves 29 and 32 with a built-in flow path switch. The system of the automatic opening and closing valve 32 is an exhaust gas and is for monitoring that the concentration is below the allowable concentration of 0.1 ppm, but the system of the automatic opening and closing valve 29 is for catching the slight signs of deterioration of the exhaust ozone decomposition catalyst 25. .

分解塔21,分解塔22の外面は加熱保温部材33,34で覆わ
れている。加熱保温部材33,34は電熱ヒータ、外部被覆
材で構成するのが一般的である。電熱ヒータは、分解塔
21,分解塔22内の排オゾン分解触媒25,26の温度を40℃位
まで加熱維持できる容量にしてある。
The outer surfaces of the decomposition tower 21 and the decomposition tower 22 are covered with heating and heat retaining members 33 and 34, respectively. The heat insulation members 33 and 34 are generally made of an electric heater and an outer covering material. The electric heater is a decomposition tower
21, the capacity of the exhaust ozone decomposition catalysts 25 and 26 in the decomposition tower 22 is set to a temperature capable of heating and maintaining the temperature up to about 40 ° C.

排オゾン触媒25,26の温度を計測する測温センサ35,36
が分解塔21,分解塔22のガス上流側に設置されている。
測温センサ35,36の信号は2系統用温度調節器37に入力
され、分解塔21,分解塔22の排オゾン分解性能が正常時
は、排オゾン分解触媒25,26の温度は40℃程度の通常設
定温度で運転される。温度調節器37には、オゾン計30の
オゾン濃度出力が入力され、オゾン濃度出力に対応させ
て、排オゾン分解触媒25,26の設定温度を複数段階に自
動設定させる機能が付加されている。
Temperature measurement sensors 35, 36 for measuring the temperature of the exhaust ozone catalysts 25, 26
Is installed on the gas upstream side of the decomposition tower 21 and the decomposition tower 22.
The signals from the temperature measuring sensors 35 and 36 are input to the two-system temperature controller 37, and when the exhaust ozonolysis performance of the decomposition towers 21 and 22 is normal, the temperature of the exhaust ozonolysis catalysts 25 and 26 is about 40 ° C. It is operated at the normal set temperature. The temperature controller 37 is provided with a function of inputting the ozone concentration output of the ozone meter 30 and automatically setting the set temperatures of the exhaust ozone decomposition catalysts 25 and 26 in a plurality of stages in accordance with the ozone concentration output.

このように構成された本実施例によれば、前述の実施
例と同様に第2図に示す如く、排オゾン分解不良が未然
に防止されることが確認された。
According to the present embodiment configured as described above, as shown in FIG. 2, it was confirmed that defective ozone decomposition was prevented beforehand as in the previous embodiment.

また、本実施例では、排オゾンガスが分解塔21の加熱
保温により所定温度に上昇して分解塔22に流入し分解塔
22の加熱保温を支援する。そのため、春〜夏期のように
外気温度が高くなる季節の時は、分解塔21の加熱保温が
主体となり、分解塔22の加熱保温は停止しておいてもよ
い。このため、分解塔22の電熱ヒータの消費エネルギー
が節約できる利点がある。
Further, in the present embodiment, the exhausted ozone gas rises to a predetermined temperature by heating and maintaining the temperature of the decomposition tower 21, flows into the decomposition tower 22, and
Support 22 heat insulation. Therefore, during the season when the outside air temperature is high, such as in the spring to summer, the thermal insulation of the decomposition tower 21 is mainly performed, and the thermal insulation of the decomposition tower 22 may be stopped. Therefore, there is an advantage that the energy consumption of the electric heater of the decomposition tower 22 can be saved.

また、排オゾン分解不良の微候を測定するオゾン計30
に接続されるガス採取部材28が分解塔21と分解塔22の連
結配管27途上に配設されているため、非測定ガス中のオ
ゾン濃度が混合平均化され、安定したオゾン濃度の計測
ができ、かつガス採取部材28の保守が容易な構造にする
ことができる利点がある。
In addition, an ozone meter 30 for measuring the weakness of exhaust ozone decomposition failure
Since the gas sampling member 28 connected to the gas is provided on the way of the connecting pipe 27 between the decomposition tower 21 and the decomposition tower 22, the ozone concentration in the non-measurement gas is mixed and averaged, and the ozone concentration can be measured stably. In addition, there is an advantage that the structure of the gas sampling member 28 can be easily maintained.

なお、分解塔21と分解塔22の排オゾン分解触媒の容積
比は第4図からわかるように1:1でなく、2:1,3:1などに
することが可能であり、排オゾン分解触媒の劣化の微候
をより早く把握すること、排オゾン分解触媒の昇温スピ
ードを早めること、排オゾン分解触媒の加熱保温エネル
ギーを少くすることなどを考慮し、実情に合せて設計す
ることができる。
As can be seen from FIG. 4, the volume ratio of the exhausted ozone decomposition catalyst in the decomposition tower 21 and the decomposition tower 22 can be not 1: 1, but 2: 1, 3: 1, etc. It is necessary to design in accordance with the actual situation in consideration of ascertaining the signs of deterioration of the catalyst earlier, increasing the speed of raising the temperature of the exhausted ozone decomposition catalyst, and reducing the heating and holding energy of the exhausted ozone decomposition catalyst. it can.

以上の各実施例では1台のオゾン計6または30で排ガ
ス濃度と、ガス採取部材4または28からのオゾン濃度と
を計測するための自動開閉弁5と8または29と32を用い
たが、それぞれのオゾン濃度を専用のオゾン計にすれ
ば、自動開閉弁5と8または29と32およびオゾン計6ま
たは30内蔵の流路切換器は不要となる。
In each of the above embodiments, the automatic on-off valves 5 and 8 or 29 and 32 for measuring the exhaust gas concentration and the ozone concentration from the gas sampling member 4 or 28 with one ozone meter 6 or 30 are used. If each ozone concentration is set to a dedicated ozone meter, the automatic switching valves 5 and 8 or 29 and 32 and the ozone meter 6 or 30 with a built-in flow path switch are not required.

自動開閉弁5と8または29と32を1台の3方弁に置き
換えることもできる。なお、オゾン計6または30に導入
される2系統のガス流量を同じにするための流量調節弁
などは、設計時に当然組込む必要がある。
The automatic opening / closing valves 5 and 8 or 29 and 32 can be replaced with one three-way valve. In addition, a flow control valve for making the gas flow of the two systems introduced into the ozone meter 6 or 30 the same must be naturally incorporated at the time of design.

また、前記各実施例ではオゾン計6または30のオゾン
濃度出力により、温度調節器11または37で排オゾン分解
触媒3または25,26の設定温度を複数段階に自動選択さ
せたが、オゾン計6または30のオゾン濃度出力に対応す
る警報接点などの接点出力を利用して前記設定温度を自
動選択させることもできる。
In each of the above embodiments, the temperature controller 11 or 37 automatically selects the set temperature of the exhausted ozone decomposition catalyst 3 or 25 or 26 in a plurality of steps based on the ozone concentration output of the ozone meter 6 or 30. Alternatively, the set temperature can be automatically selected by using a contact output such as an alarm contact corresponding to the ozone concentration output of 30.

さらに、前記各実施例では、加熱保温部材8または3
3,34の加熱源として電熱ヒータを使用したが、これに限
ることはなく、温水,温油など調温のできる熱媒体を使
っても良い。しかし、排オゾン分解触媒3または25,26
の劣化の微候に迅速に対応するためには、昇温スピード
が速く熱容量の大きなものがよい。
Further, in each of the above embodiments, the heating and heat retaining member 8 or 3
Although the electric heater is used as the heating source for the heating units 3, 34, the heating source is not limited to this, and a heating medium that can adjust the temperature, such as hot water or hot oil, may be used. However, the waste ozone decomposition catalyst 3 or 25,26
In order to promptly respond to the weakness of the deterioration of the material, it is preferable to use a material having a high temperature rising speed and a large heat capacity.

さらに、本発明はマンガン系の排オゾン分解触媒に限
定されず酸化鉄(Fe2O3,Fe3O4)触媒や白金触媒塔他の
排オゾン分解触媒にも適用することが可能である。
Further, the present invention is not limited to a manganese-based exhaust ozone decomposition catalyst, but can be applied to an iron oxide (Fe 2 O 3 , Fe 3 O 4 ) catalyst, a platinum catalyst tower, and other exhaust ozone decomposition catalysts.

[発明の効果] 以上説明したように本発明によれば、排オゾン分解触
媒の劣化が大きくなる前にその微候をつかむことができ
るため、排オゾン分解触媒の温度上昇による排オゾン分
解触媒の劣化防止を迅速にかつ、加熱保温度を100℃以
下の低温域内で実施でき、分解塔の性能向上と省エネル
ギー・省力に大きく寄与できる。
[Effects of the Invention] As described above, according to the present invention, the deterioration of the exhaust ozone decomposition catalyst can be detected before the deterioration of the exhaust ozone decomposition catalyst becomes large. Deterioration can be prevented promptly and in a low temperature range of 100 ° C or less, which greatly contributes to the improvement of the performance of decomposition towers and energy and labor savings.

さらに、分解塔内に充填する排オゾン分解触媒量を限
界値近くまで削減することが可能であり、分解塔の小型
化も実現できる。
Furthermore, it is possible to reduce the amount of the exhausted ozone decomposition catalyst to be filled in the decomposition tower to near the limit value, and it is possible to realize the miniaturization of the decomposition tower.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の構成図、第2図は第1図お
よび第3図に示す本発明の特性を従来例と比較して説明
する特性図、第3図は本発明の他の実施例の構成図、第
4図乃至第6図は本発明の作用を説明するための実験特
性図である。 1,21,22……分解塔 3,25,26……排ガス分解触媒 4,28……ガス採取部材 6,30……オゾン計 11,37……温度調節器
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a characteristic diagram for explaining the characteristics of the present invention shown in FIGS. 1 and 3 in comparison with a conventional example, and FIG. FIG. 4 to FIG. 6 are configuration diagrams of another embodiment and are experimental characteristic diagrams for explaining the operation of the present invention. 1,21,22… Decomposition tower 3,25,26… Exhaust gas decomposition catalyst 4,28… Gas sampling member 6,30… Ozone meter 11,37… Temperature controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 孝二 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (56)参考文献 特開 平3−135418(JP,A) 特開 平2−298317(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Tanaka, Inventor 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant, Inc. (56) References JP-A-3-135418 (JP, A) JP-A-2- 298317 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排オゾン分解触媒が充填され、加熱保温が
可能に構成された分解塔と、 分解塔内の下流側から採取された排ガスのオゾン濃度を
測定するオゾン計と、 測定されたオゾン濃度に応じて前記分解塔の加熱保温温
度を複数段階に自動設定可能な温度調節器と、 を備えて成る排オゾン分解装置。
1. A decomposition tower filled with an exhausted ozone decomposition catalyst and capable of heating and keeping heat, an ozone meter for measuring the ozone concentration of exhaust gas collected from a downstream side in the decomposition tower, A temperature controller capable of automatically setting a heating and keeping temperature of the decomposition tower in a plurality of stages in accordance with a concentration;
【請求項2】排オゾン分解触媒が充填され、加熱保温が
可能に構成された第1の分解塔と、 排オゾン分解触媒が充填され、加熱保温が可能に構成さ
れるとともに、前記第1の分解塔の排ガスを連結部を介
して取込む第2の分解塔と、 前記連結部から採取された排ガスのオゾン濃度を測定す
るオゾン計と、 測定されたオゾン濃度に応じて前記第1の分解塔または
/および第2の分解塔の加熱保温温度を複数段階に自動
設定可能な温度調節器と、 を備えて成る排オゾン分解装置。
2. A first decomposition tower filled with an exhausted ozone decomposition catalyst and capable of heating and maintaining the temperature, and a first decomposition tower filled with an exhausted ozone decomposition catalyst and capable of heating and maintaining the temperature. A second decomposition tower that takes in the exhaust gas of the decomposition tower through a connection, an ozone meter that measures the ozone concentration of the exhaust gas collected from the connection, and the first decomposition that is performed in accordance with the measured ozone concentration. A temperature controller capable of automatically setting the heating and keeping temperature of the tower or / and the second decomposition tower in a plurality of stages;
JP2078853A 1990-03-29 1990-03-29 Waste ozonolysis equipment Expired - Lifetime JP2753106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078853A JP2753106B2 (en) 1990-03-29 1990-03-29 Waste ozonolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078853A JP2753106B2 (en) 1990-03-29 1990-03-29 Waste ozonolysis equipment

Publications (2)

Publication Number Publication Date
JPH03278816A JPH03278816A (en) 1991-12-10
JP2753106B2 true JP2753106B2 (en) 1998-05-18

Family

ID=13673387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078853A Expired - Lifetime JP2753106B2 (en) 1990-03-29 1990-03-29 Waste ozonolysis equipment

Country Status (1)

Country Link
JP (1) JP2753106B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597858B2 (en) 2000-09-27 2009-10-06 Showa Denko K.K. Process and apparatus for treating waste anesthetic gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284773B2 (en) * 2008-12-26 2013-09-11 株式会社荏原製作所 Exhaust gas treatment method for increasing treatment temperature, operation method of exhaust gas treatment device, and exhaust gas treatment device
CN102205218B (en) * 2010-10-15 2013-01-23 西南交通大学 Reaction apparatus for ozone tail gas absorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597858B2 (en) 2000-09-27 2009-10-06 Showa Denko K.K. Process and apparatus for treating waste anesthetic gas

Also Published As

Publication number Publication date
JPH03278816A (en) 1991-12-10

Similar Documents

Publication Publication Date Title
JP5947804B2 (en) Sulfur leak detection structure and sulfur leak detection method for use in a fuel cell system
US6867047B2 (en) Method and apparatus for preventing nitrogen interference in pyro-electrochemical methods
Pourfayaz et al. Ceria-doped SnO2 sensor highly selective to ethanol in humid air
JP2001248794A (en) Method and device for storing ozone
JP2753106B2 (en) Waste ozonolysis equipment
CA2253690A1 (en) Method and apparatus for measuring the degree of treatment of a medium by a gas
JP3473896B2 (en) Hydrogen purification equipment
JP4084296B2 (en) Direct liquid fuel cell power generator and harmful substance removal filter for direct liquid fuel cell
CN1333246C (en) Gas concentration sensor, hydrogen purification unit using this and cell system
JP2009125606A (en) Adsorbent regenerator used by being incorporated in waste gas treatment apparatus, waste gas treatment apparatus, and adsorbent regeneration method
Chattopadhyaya et al. Adsorptive removal of sulfur dioxide by Saskatchewan lignite and its derivatives
KR100881862B1 (en) Reactor unit for air-purifying and air purifier comprising the same
WO2002079084A1 (en) Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter
WO2003103806A1 (en) Method for clarifying exhaust gas
KR101866918B1 (en) Nitrous oxide regenerable room temperature purifier and method
JP2003010624A (en) Method and device for breakthrough detection of desulfurizing agent at ordinary temperature desulfurizer
JPH04131126A (en) Apparatus for treating waste ozone
WO2003023364A2 (en) A method and apparatus for the on-stream analysis of total sulfur and/or nitrogen in petroleum products
RU2411089C1 (en) Device for producing hydroscopic submicrometre aerosol of alkaline metal iodide
EP3482816A2 (en) Closed-environment air purification system
JP5374379B2 (en) Gas purification device
JP3473757B2 (en) Gas concentration detector, hydrogen purification device, and fuel cell system including the same
GB2105212A (en) Removing carbon monoxide from air
JP5782137B2 (en) CO transformation device and transformation method
KR20130038297A (en) Apparatus and process for carbon monoxide shift conversion, and hydrogen production equipment