JPH0795536B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JPH0795536B2 JPH0795536B2 JP61309633A JP30963386A JPH0795536B2 JP H0795536 B2 JPH0795536 B2 JP H0795536B2 JP 61309633 A JP61309633 A JP 61309633A JP 30963386 A JP30963386 A JP 30963386A JP H0795536 B2 JPH0795536 B2 JP H0795536B2
- Authority
- JP
- Japan
- Prior art keywords
- well
- conductivity type
- concentration
- heat treatment
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特にCMOS LSI
の特有の現象であるラッチアップの防止と、製造プロセ
スにおけるPR工程の簡略化をはかった半導体装置の製造
方法に関する。The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a CMOS LSI.
The present invention relates to a method of manufacturing a semiconductor device in which latch-up, which is a phenomenon peculiar to the above, is prevented and the PR process in the manufacturing process is simplified.
従来、CMOS LSIのウェル形成は、単一のイオン注入と活
性化熱処理で行なっており、ウェル内部の不純物濃度
は、基板表面付近が最も高く、第2図の従来例のウェル
の不純物分布に示す様に、基板表面から深い所ほど濃度
が低下するものとなっている。Conventionally, a CMOS LSI well is formed by single ion implantation and activation heat treatment, and the impurity concentration inside the well is highest near the substrate surface, as shown in the conventional well impurity distribution in FIG. Similarly, the concentration decreases as the depth from the substrate surface increases.
〔発明が解決しようとする問題点〕 上述した従来のウェル形成法により形成されたウェル内
部の不純物分布は、基板表面より深くなるに従い、濃度
が単調に減少するような分布となっている為、ウェル内
部を十分に低抵抗とする為に、不純物濃度を高くすると
ウェル領域内のトランジスタのスレッシュホールド電圧
を引き上げる欠点があり、また不純物を深く拡散させる
ことにより低抵抗化しようとすると、横方向の拡散によ
り、広いチャネル分離領域を必要とする為に高集積化に
対して不利である。以上のような理由から、従来の構造
によるウェルでは十分な低抵抗化ができず、CMOS構造に
寄生するバイポーラトランジスタは、基板抵抗により大
きな電流増幅率を持ち、寄生バイポーラトランジスタに
より構成されるサイリスタを動作させやすいという欠点
がある。[Problems to be Solved by the Invention] The impurity distribution in the well formed by the conventional well formation method described above is a distribution in which the concentration monotonously decreases as the depth becomes deeper than the substrate surface. In order to make the inside of the well sufficiently low resistance, there is a drawback that raising the impurity concentration raises the threshold voltage of the transistor in the well region. Due to diffusion, a wide channel separation region is required, which is disadvantageous for high integration. For the above reasons, the well with the conventional structure cannot sufficiently reduce the resistance, and the bipolar transistor parasitic on the CMOS structure has a large current amplification factor due to the substrate resistance, and thus the thyristor composed of the parasitic bipolar transistor is used. It has the drawback of being easy to operate.
本発明の目的は、ウェル表面付近の不純物を打ち消し
て、ウェル領域内のトランジスタのスレッシュホールド
電圧は従来のままで、ウェル内部は高不純物濃度により
低抵抗にすることができ、またウェル領域の外に配置す
るトランジスタのパンチスルー防止の為のイオン注入に
必要なPR工程を省略できる半導体装置の製造方法を提供
することにある。An object of the present invention is to cancel impurities near the surface of the well, keep the threshold voltage of the transistor in the well region as it is, to make the inside of the well have a low resistance due to the high impurity concentration, and Another object of the present invention is to provide a method for manufacturing a semiconductor device, which can omit the PR step required for ion implantation for preventing punch-through of the transistor arranged in the above.
本発明の特徴は、半導体基板に不純物マスクを介して一
導電型の高濃度の不純物イオンを注入する工程と、第1
の活性化熱処理を行い一導電型の高濃度ウェルを形成す
る工程と、該一導電型の高濃度ウェルの表面付近に逆導
電型の不純物イオンを注入する工程と、第2の活性化熱
処理を行う工程とを有し、これにより内部より表面付近
が低濃度の一導電型不純物分布を有してトランジスタを
そこに形成する一導電型ウエルを得る半導体装置の製造
方法にある。A feature of the present invention is to implant a high-concentration impurity ion of one conductivity type into a semiconductor substrate through an impurity mask, and
To form a high concentration well of one conductivity type, a step of implanting impurity ions of opposite conductivity type near the surface of the high concentration well of one conductivity type, and a second activation heat treatment. The method for manufacturing a semiconductor device has a step of performing the above, thereby obtaining a well of one conductivity type having a low concentration of one conductivity type impurity distribution in the vicinity of the surface from the inside and forming a transistor therein.
また、一導電型の高濃度ウェルの表面付近に逆導電型の
不純物イオンを注入する工程と第2の活性化熱処理を行
う工程との間に半導体基板全面にウェル形成後にウェル
領域の外に配置するトランジスタのパンチスルーを防止
する等のためのイオン注入を行うことによりこの注入に
従来必要であったPR工程を省略できる半導体装置の製造
方法が得られる。Further, after the well is formed on the entire surface of the semiconductor substrate between the step of implanting the impurity ions of the opposite conductivity type near the surface of the high-concentration well of one conductivity type and the step of performing the second activation heat treatment, the well is arranged outside the well region By performing ion implantation for preventing punch through of the transistor to be formed, a semiconductor device manufacturing method can be obtained in which the PR step conventionally required for this implantation can be omitted.
次に、本発明の実施例について、図面を参照して説明す
る。Next, embodiments of the present invention will be described with reference to the drawings.
第1図(a)〜(e)は本発明の一実施例を説明するた
めに工程順に示した素子の断面図である。1 (a) to 1 (e) are cross-sectional views of the element shown in the order of steps for explaining one embodiment of the present invention.
先ず、第1図(a)に示すように、ウェル形成前酸化を
行なった後、PR工程によりウェル形成のためのホトレジ
スト膜3のパターンを形成する。そしてリン(P+)イオ
ンをエネルギー150keV、ドーズ量5.0×1013atm/cm2で注
入する。First, as shown in FIG. 1A, after the pre-well formation oxidation, a pattern of the photoresist film 3 for forming the well is formed by a PR process. Then, phosphorus (P + ) ions are implanted with an energy of 150 keV and a dose amount of 5.0 × 10 13 atm / cm 2 .
次に、第1図(b)に示すように、注入したリン(P+)
を活性化し、高濃度のNウェル4を形成するため、1200
℃の熱処理を窒素雰囲気で120分行なう。Next, as shown in FIG. 1 (b), the injected phosphorus (P + )
To activate N and form a high concentration N well 4,
Heat treatment at ℃ for 120 minutes in nitrogen atmosphere.
次に、第1図(c)に示すように上記高濃度のNウェル
4に対してホウ素(B+)をエネルギー100keV、ドーズ量
2.2×1013atm/cm2でNウェル領域にカウンターイオン注
入する。Next, as shown in FIG. 1 (c), boron (B + ) is applied to the high concentration N well 4 at an energy of 100 keV and a dose amount.
Counter ion implantation is performed in the N well region at 2.2 × 10 13 atm / cm 2 .
次に、第1図(d)に示すように、Nチャネル側のパン
チスルー防止の為にホウ素(B+)をエネルギー150keV、
ドーズ量4.0×1011atm/cm2でウェハー全面にイオン注入
する。Next, as shown in FIG. 1 (d), in order to prevent punch-through on the N-channel side, boron (B + ) energy of 150 keV,
Ions are implanted on the entire surface of the wafer at a dose of 4.0 × 10 11 atm / cm 2 .
次に、第1図(e)に示すように上記第1図(c),第
1図(d)でイオン注入を行なったホウ素を活性化させ
る為第2の熱処理を1200℃、窒素雰囲気中で30分行な
う。これにより表面付近の低濃度Nウェル6と低抵抗
(シート抵抗ρs300Ω/□)の高濃度Nウェル7より
なるNウェルを得ることができるとともに、Nチャネル
側のパンチスルー防止等用イオン注入を行なう時点で必
要となるPR工程を省略できる。またここで得られるNウ
ェルの接合の深さは約5μmである。Next, as shown in FIG. 1 (e), a second heat treatment is performed at 1200 ° C. in a nitrogen atmosphere to activate the ion-implanted boron in FIGS. 1 (c) and 1 (d). For 30 minutes. This makes it possible to obtain an N well composed of a low concentration N well 6 near the surface and a high concentration N well 7 of low resistance (sheet resistance ρ s 300 Ω / □), and ion implantation for punch-through prevention on the N channel side. The PR step required at the time of performing the step can be omitted. The junction depth of the N well obtained here is about 5 μm.
以上、実施例の1つを述べたが、他にも、Nウェルの抵
抗値は、Nウェルのイオン注入とそのカウンターイオン
注入でコントロール可能であり、Nウェルの接合の深さ
は、熱処理の温度と時間によりコントロールすることが
できる。Although one of the embodiments has been described above, the resistance value of the N well can be controlled by ion implantation of the N well and its counter ion implantation, and the junction depth of the N well can be controlled by heat treatment. It can be controlled by temperature and time.
なお、第2図は第1図(e)におけるA−A′線上の不
純物濃度分布を従来のものと比較した図である。Note that FIG. 2 is a diagram comparing the impurity concentration distribution on the line AA ′ in FIG.
以上説明したように本発明は、高濃度のウェルイオン注
入と第1の熱処理と、カウンターイオン注入と第2の熱
処理をすることにより、ウェル表面付近の不純物を打ち
消して、ウェル領域内のトランジスタのスレッシュホー
ルド電圧は従来のままでウェル内部は高不純物濃度によ
り低抵抗にすることができる。ウェル抵抗の低減はCMOS
構造に寄与するバイポーラトランジスタの電流増幅率を
低減できるため、寄生バイポーラトランジスタにより構
成されるサイリスタをほとんど動作しないようにするこ
とができ、ラッチアップ防止に非常に効果がある。As described above, according to the present invention, by performing high-concentration well ion implantation, first heat treatment, counter ion implantation, and second heat treatment, impurities near the well surface are canceled out, and a transistor in the well region is protected. The threshold voltage can be maintained as it is, and the inside of the well can have a low resistance due to the high impurity concentration. CMOS is used to reduce well resistance
Since the current amplification factor of the bipolar transistor that contributes to the structure can be reduced, it is possible to prevent the thyristor formed by the parasitic bipolar transistor from operating, and it is very effective in preventing latch-up.
また、ウェル領域の外に配置するトランジスタのパンチ
スルー防止の為のイオン注入をカウンターイオン注入と
第2の熱処理を行う間でウェーハ全面にそのイオン注入
することでPR工程を省略できるという効果が得られる。In addition, the ion implantation for preventing punch-through of the transistor arranged outside the well region can be omitted by performing the ion implantation on the entire surface of the wafer between the counter ion implantation and the second heat treatment. To be
第1図(a)〜(e)は本発明の一実施例を説明するた
めに工程順に示した素子の断面図、第2図は第1図
(e)のA−A′線上の不純物濃度の分布を従来のもの
と比較した図である。 1……P型半導体基板、2……シリコン酸化膜、3……
フォトレジスト膜、4……高濃度Nウェル、5……高濃
度Nウェル、6……低濃度ウェル。1 (a) to 1 (e) are sectional views of the device shown in order of steps for explaining one embodiment of the present invention, and FIG. 2 is an impurity concentration on line AA 'in FIG. 1 (e). It is a figure which compared the distribution of with the conventional one. 1 ... P-type semiconductor substrate, 2 ... silicon oxide film, 3 ...
Photoresist film, 4 ... High concentration N well, 5 ... High concentration N well, 6 ... Low concentration well.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/092 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 27/092
Claims (2)
型の高濃度の不純物イオンを注入する工程と、第1の活
性化熱処理を行い一導電型の高濃度ウェルを形成する工
程と、該一導電型の高濃度ウェルの表面付近に逆導電型
の不純物イオンを注入する工程と、第2の活性化熱処理
を行う工程とを有し、これにより内部より表面付近が低
濃度の一導電型不純物分布を有してトランジスタをそこ
に形成する一導電型ウエルを得ることを特徴とする半導
体装置の製造方法。1. A step of implanting a high-concentration impurity ion of one conductivity type into a semiconductor substrate through an impurity mask, a step of performing a first activation heat treatment to form a high-concentration well of one conductivity type, The method has a step of implanting impurity ions of the opposite conductivity type near the surface of a high-concentration well of one conductivity type and a step of performing a second activation heat treatment. A method of manufacturing a semiconductor device, characterized in that a well of one conductivity type having a distribution of impurities and forming a transistor therein is obtained.
電型の不純物イオンを注入する工程と第2の活性化熱処
理を行う工程との間に半導体基板全面にウェル形成後に
ウェル領域の外に配置するトランジスタのパンチスルー
を防止する等のためのイオン注入を行うことを特徴とす
る特許請求の範囲第(1)項記載の半導体装置の製造方
法。2. A well region formed after the well is formed over the entire surface of the semiconductor substrate between the step of implanting impurity ions of the opposite conductivity type near the surface of the high-concentration well of one conductivity type and the step of performing the second activation heat treatment. The method of manufacturing a semiconductor device according to claim (1), characterized in that ion implantation is performed to prevent punch-through of a transistor arranged outside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61309633A JPH0795536B2 (en) | 1986-12-26 | 1986-12-26 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61309633A JPH0795536B2 (en) | 1986-12-26 | 1986-12-26 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63164313A JPS63164313A (en) | 1988-07-07 |
JPH0795536B2 true JPH0795536B2 (en) | 1995-10-11 |
Family
ID=17995383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61309633A Expired - Fee Related JPH0795536B2 (en) | 1986-12-26 | 1986-12-26 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0795536B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0676802B1 (en) * | 1994-03-31 | 1998-12-23 | STMicroelectronics S.r.l. | a method of manufacturing a semiconductor device with a buried junction |
JP2011091188A (en) * | 2009-10-22 | 2011-05-06 | Sanyo Electric Co Ltd | Method for manufacturing semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58178561A (en) * | 1982-04-13 | 1983-10-19 | Nec Corp | Manufacture of semiconductor device |
-
1986
- 1986-12-26 JP JP61309633A patent/JPH0795536B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58178561A (en) * | 1982-04-13 | 1983-10-19 | Nec Corp | Manufacture of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPS63164313A (en) | 1988-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3393544B2 (en) | Method for manufacturing semiconductor device | |
JPH0628251B2 (en) | Method for manufacturing potential well structure | |
JPH0147014B2 (en) | ||
JPH0734477B2 (en) | Method for manufacturing semiconductor device | |
JPH05121436A (en) | Thin film transistor and its manufacture | |
JPH0795536B2 (en) | Method for manufacturing semiconductor device | |
JP3792930B2 (en) | Method for forming ultra-thin SOI electrostatic discharge protection element | |
JPH05335559A (en) | Forming method for double diffused layer | |
JP2606444B2 (en) | Method for manufacturing semiconductor device | |
JP3126082B2 (en) | Complementary transistor and method of manufacturing the same | |
JPH0575041A (en) | Cmos semiconductor device | |
JPH05267338A (en) | Manufacture of semiconductor device | |
JP2980474B2 (en) | Vertical transistor and method of manufacturing the same | |
JP2828264B2 (en) | Method for manufacturing semiconductor device | |
JP3059009B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2808620B2 (en) | Method for manufacturing semiconductor device | |
JP3253712B2 (en) | Method for manufacturing semiconductor device | |
JP2915040B2 (en) | Method for manufacturing semiconductor device | |
JPH0312471B2 (en) | ||
JPH0443649A (en) | Semiconductor device and its preparation | |
JP3138356B2 (en) | I.2 L-structure semiconductor device and method of manufacturing the same | |
JP2889246B2 (en) | Semiconductor device | |
JP3297102B2 (en) | Method of manufacturing MOSFET | |
JP3110062B2 (en) | Method for manufacturing semiconductor device | |
JPH02162739A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |