JPH0795359B2 - Vehicle type identification device - Google Patents

Vehicle type identification device

Info

Publication number
JPH0795359B2
JPH0795359B2 JP61025321A JP2532186A JPH0795359B2 JP H0795359 B2 JPH0795359 B2 JP H0795359B2 JP 61025321 A JP61025321 A JP 61025321A JP 2532186 A JP2532186 A JP 2532186A JP H0795359 B2 JPH0795359 B2 JP H0795359B2
Authority
JP
Japan
Prior art keywords
vehicle
resistance
wheels
passing
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61025321A
Other languages
Japanese (ja)
Other versions
JPS62183000A (en
Inventor
真之 泰井
直志 野口
治 里西
研 内田
洋一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61025321A priority Critical patent/JPH0795359B2/en
Publication of JPS62183000A publication Critical patent/JPS62183000A/en
Publication of JPH0795359B2 publication Critical patent/JPH0795359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有料道路および有料駐車場等の無人化システ
ムに利用される車種判別装置に係わり、特に抵抗接点方
式の軸輪検知器の改良に関する。
Description: TECHNICAL FIELD The present invention relates to a vehicle type identification device used in an unmanned system such as a toll road and toll parking lot, and in particular, an improvement of a resistance contact type axle wheel detector. Regarding

〔従来の技術〕[Conventional technology]

一般に、有料道路においては、車種(普通車,大型車,
特大車等)に応じて通行料金が異なる場合が多い。ま
た、高速道路等のように多区間の有料道路では更に利用
区間毎に定められた通行料金を徴収するものとなってい
る。
Generally, on toll roads, vehicle types (normal vehicles, large vehicles,
The toll is often different depending on the size of the vehicle. In addition, on toll roads with many sections such as expressways, the tolls set for each section are collected.

このような多区間有料道路においては、入口インターチ
ェンジの入口ゲートに業務する料金収受員は有料道路利
用者に対し入口インターチェンジ名(番号),入口進入
年月日,進入時刻および車種等の必要データを記録した
通行券を発行する。そして、出口インターチェンジの出
口ゲートに業務する料金収受員は上記通行券を利用者か
ら受取り、この受取った通行券に記録された前記各デー
タをデータ処理装置に挿入し、所定の処理を施して通行
料金を算出し、この料金を現金,回数券または後払用カ
ード(キャッシュレスカード)によって徴収するものと
なっている。
In such a multi-section toll road, the toll collector who works at the entrance gate of the entrance interchange provides the toll road user with necessary data such as entrance interchange name (number), entrance approach date, approach time and vehicle type. Issue the recorded ticket. Then, the toll collector working at the exit gate of the exit interchange receives the above-mentioned pass ticket from the user, inserts each of the data recorded in the received pass ticket into the data processing device, performs predetermined processing, and passes the pass. The fee is calculated, and this fee is collected by cash, a coupon ticket or a postpaid card (cashless card).

ところで、有料道路業務は昼夜を通して行なわなければ
ならない上、昨今の有料道路網の拡大により料金収受員
の多人数を必要としている。このため、各インターチェ
ンジの出入口ゲートにおける省人化,さらには無人化が
望まれていた。
By the way, the toll road business must be carried out day and night, and a large number of toll collectors are required due to the recent expansion of the toll road network. For this reason, it has been desired to reduce the number of personnel at the entrance / exit gates of each interchange and to make it unmanned.

入口ゲートの無人化をはかるには、通行車両の車種を自
動判別し、この自動判別結果に基いて通行券を自動的に
発行すればよい。そこで、従来は通行車両の軸数,輪数
および輪距を軸輪検知器により計測し、計測値に基いて
車種を自動判別する車種判別装置が使用されていた。
In order to make the entrance gate unmanned, it is sufficient to automatically discriminate the vehicle type of the passing vehicle and automatically issue a pass ticket based on the result of the automatic discrimination. Therefore, conventionally, a vehicle type discriminating device has been used in which the number of axles, the number of wheels, and the wheel distance of a passing vehicle are measured by an axle wheel detector, and the vehicle type is automatically discriminated based on the measured values.

第3図は上述した従来の車種判別装置を示す模式図であ
る。同図において、11,12は車両分離器であって、複数
対の光電管からなる投受光器に垂直にほぼ等間隔で積重
した構造となっており、図中矢印13で示す如く車両通行
路W上に光軸膜を形成するものとなっている。14は軸輪
検知器であって、上記車両分離器11,12間の車両通行路
Wに埋設され、この通行路Wを図中矢印TR方向に走行す
る車両(不図示)の軸数,輪数および輪距を計測するも
のである。なお、図中ILは車両通行路W両端のアイラン
ドを示している。
FIG. 3 is a schematic diagram showing the conventional vehicle type identification device described above. In the figure, reference numerals 11 and 12 denote vehicle separators each having a structure in which light emitters and receivers composed of a plurality of pairs of photocells are vertically stacked at substantially equal intervals. An optical axis film is formed on W. Reference numeral 14 denotes an axle wheel detector, which is embedded in a vehicle passage W between the vehicle separators 11 and 12, and the number of axles and wheels of a vehicle (not shown) traveling along the passage W in the direction of arrow TR in the figure. It measures the number and the wheel distance. In the figure, IL indicates islands at both ends of the vehicle passage W.

第4図は上記軸輪検知器14の構造図である。同図におい
て21,22は通行車両の輪数および輪距を計測する抵抗接
点であり、この抵抗接点21,22は第5図(a)に示す如
く上部平型接点体23と、等間隔で水平位置に配設された
下部接点体24と、これら下部接点体24間に配設された同
一抵抗値のソリッド抵抗25とから構成されている。そし
て、上部平型接点体23および下部接点体24はステンレス
などの材質で形成され、車両が抵抗接点21,22上を通過
すると、上部平型接点体23が弾性変形し、変形箇所が下
部接点体24に接触してこの接触箇所が短絡状態となり、
下部接点体24の両端の抵抗値が変化するので、この抵抗
値変化をもって輪数および輪距の計測を行なうものとな
っている。
FIG. 4 is a structural diagram of the axle detector 14. In the figure, reference numerals 21 and 22 denote resistance contacts for measuring the number of wheels and the wheel distance of a passing vehicle. The resistance contacts 21 and 22 are arranged at equal intervals with the upper flat contact body 23 as shown in FIG. 5 (a). The lower contact body 24 is disposed in a horizontal position, and the solid resistance 25 having the same resistance value is disposed between the lower contact bodies 24. The upper flat contact body 23 and the lower contact body 24 are made of a material such as stainless steel. When the vehicle passes over the resistance contacts 21 and 22, the upper flat contact body 23 is elastically deformed and the deformed portion is the lower contact. When contacting the body 24, this contact point is short-circuited,
Since the resistance values at both ends of the lower contact body 24 change, the number of wheels and the wheel distance are measured with this change in resistance value.

また、第4図において26,27は通行車両の軸数を計測す
る平型接点であり、この平型接点26,27は第5図(b)
に示す如く上部接点体28と下部接点体29とから構成され
ている。そして、これら上部接点体28および下部接点体
29もステンレスなどの材質で形成され、車両通過により
弾性変形をおこして接触し短絡状態となるので、この短
絡状態を検知することにより軸数を計測する。
Further, in FIG. 4, reference numerals 26 and 27 are flat contacts for measuring the number of axes of a passing vehicle, and these flat contacts 26 and 27 are shown in FIG. 5 (b).
As shown in FIG. 3, it is composed of an upper contact body 28 and a lower contact body 29. And, these upper contact body 28 and lower contact body
The 29 is also made of a material such as stainless steel, and elastically deforms when the vehicle passes through to come into contact with it, resulting in a short circuit. Therefore, the number of axes is measured by detecting this short circuit.

ここで、上記軸輪検知器14の動作原理を第6図を参照し
ながら説明する。第6図において31および32は抵抗接点
21,22の上部接点体23を示しており、33および34は抵抗
接点21,22のソリッド抵抗25を含む下部接点体24を示し
ている。また、上記抵抗接点21,22はそれぞれa1,b1,c1
およびa2,b2,c2の端子を有しており、これらのうち端子
a1,a2は上部接点体31,32の片側に接続され、接点b1,b2
は抵抗体33,34の一方の端部に接続され、接点c1,c2は抵
抗体33,34の他方の端部にそれぞれ接続されている。
Here, the operating principle of the axle detector 14 will be described with reference to FIG. In FIG. 6, 31 and 32 are resistance contacts
21 and 22 show the upper contact body 23, and 33 and 34 show the lower contact body 24 including the solid resistance 25 of the resistive contacts 21 and 22. The resistance contacts 21 and 22 are a1, b1 and c1 respectively.
And a2, b2, c2 terminals.
a1 and a2 are connected to one side of the upper contact bodies 31 and 32, and contact points b1 and b2
Are connected to one ends of the resistors 33 and 34, and the contacts c1 and c2 are connected to the other ends of the resistors 33 and 34, respectively.

今、輪距がLなる長さを有し、タイヤ幅lなる車輪Aを
装着した車両が軸輪検知器14上に差しかかり、抵抗接点
21,22を踏圧したとする。ここで、上記抵抗接点21は一
車線分の幅の車両通過路Wの中央より左側に配設され、
抵抗接点22は右側に配設されているので、車両の左側車
輪は抵抗接点21を踏圧し、右側車輪は抵抗接点22を踏圧
する。そうすると、抵抗接点21では上部接点体31の踏圧
を受けた部分が下方に変形し、下部の抵抗体33に接触す
る。また、同様に抵抗接点22では上部接点体32の踏圧を
受けた部分が下方に変形し、下部の抵抗体34に接触す
る。この場合、抵抗体33側ではタイヤ幅lの対応幅で中
央に接触部分が生じ(抵抗値r2)、両端には非接触部分
が生じる(抵抗値r1,r3)。一方、抵抗体34側でもタイ
ヤ幅lの対応幅で中央に接触部分が生じ(抵抗値r5)、
両端には非接触部分が生じる(抵抗値r4,r6)。そうす
ると、各抵抗体33,34の両端子b1,c1間およびb2,c2間の
抵抗値R1′,R2′は、本来の抵抗値をR1,R2とすると、こ
のR1,R2から各々の上部接点体31,32の接触による短絡区
間部分の抵抗値r2,r5を差し引いた抵抗値すなわち R1′=R1−r2 R2′=R2−r5 となり、車輪により踏圧を受けた際には抵抗値がそれぞ
れR1からR1′に、またR2からR2′に変化する。したがっ
て、この抵抗値の変化を車両のタイヤ通過毎に測定しか
つ比較することにより、当該車両のタイヤがシングルタ
イヤ(普通車)であるか、ダブルタイヤ(大型車等)で
あるかを判別できる。
Now, a vehicle having wheels A having a wheel distance of L and a tire width of 1 approaches a shaft wheel detector 14, and a resistance contact is made.
Suppose that you step on 21,22. Here, the resistance contact 21 is arranged on the left side of the center of the vehicle passage W having a width of one lane,
Since the resistance contact 22 is disposed on the right side, the left wheel of the vehicle depresses the resistance contact 21 and the right wheel depresses the resistance contact 22. Then, in the resistance contact 21, the portion of the upper contact body 31 that receives the stepping pressure is deformed downward and comes into contact with the lower resistance body 33. Similarly, in the resistance contact 22, the portion of the upper contact body 32 which receives the stepping pressure is deformed downward and comes into contact with the lower resistance body 34. In this case, on the resistor 33 side, a contact portion occurs at the center in the width corresponding to the tire width 1 (resistance value r2), and non-contact portions occur at both ends (resistance values r1, r3). On the other hand, also on the resistor 34 side, a contact portion occurs in the center with a width corresponding to the tire width 1 (resistance value r5),
Non-contact parts occur at both ends (resistance values r4, r6). Then, the resistance values R1 ′ and R2 ′ between the terminals b1 and c1 and between the terminals b1 and c1 of the resistors 33 and 34 are the upper contact points of R1 and R2, assuming that the original resistance values are R1 and R2. The resistance value obtained by subtracting the resistance values r2 and r5 in the short-circuit section due to the contact between the bodies 31 and 32, that is, R1 ′ = R1−r2 R2 ′ = R2−r5, becomes the resistance value R1 when treading by the wheels. To R1 'and from R2 to R2'. Therefore, it is possible to determine whether the tire of the vehicle is a single tire (normal vehicle) or a double tire (large vehicle etc.) by measuring and comparing the change of the resistance value every time the vehicle tire passes. .

一方、抵抗接点21,22の端子a1,b1およびa2,b2それぞれ
の区間の抵抗値は、抵抗接点21側では上部接点31に接触
しない左側部分の抵抗値r1を示し、抵抗接点22側では上
部接点32に接触しない右側部分の抵抗値r6を示すことに
なる。前述したように、抵抗接点21,22の車両通過路W
の路面上における配設位置は、路面の横断方向に沿って
中央よりそれぞれ左右路肩方向へ伸びる所定位置であ
る。したがって、a1,b1端子間の抵抗値とa2,b2端子間の
抵抗値とを加えた値は、車両の輪距に密接な関係を示す
値となる。かくして、上記軸輪検知器14により通過車両
の軸数および輪距の測定が可能となる。
On the other hand, the resistance value of each section of the terminals a1, b1 and a2, b2 of the resistance contact 21, 22 shows the resistance value r1 of the left side portion not contacting the upper contact 31 on the resistance contact 21 side, and the resistance value on the resistance contact 22 side is the upper part. The resistance value r6 of the right portion that does not contact the contact 32 is shown. As described above, the vehicle passage W of the resistance contacts 21 and 22
The position on the road surface is a predetermined position that extends in the lateral shoulder direction from the center along the transverse direction of the road surface. Therefore, the value obtained by adding the resistance value between the terminals a1 and b1 and the resistance value between the terminals a2 and b2 is a value that shows a close relationship with the wheel distance of the vehicle. Thus, the axle wheel detector 14 can measure the number of axles and the wheel distance of the passing vehicle.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかるに、上記軸輪検知器14には次に示す問題点があっ
た。すなわち、第7図に示すように、従来の軸輪検知器
14における各抵抗接点21,22の長さmは、抵抗接点非通
過体nの長さが通過車両の最小輪距(軽四輪車)よりも
小さくなるように設定されている。これは、左右両方の
タイヤが抵抗接点非通過帯nを通過してしまっては、輪
数および輪距を計測できないからである。すなわち、従
来の軸輪検知器14を用いた車種判別装置においては、通
過車両が通行路の中央を通過せず、例えば第8図(a)
に示すように路肩に寄って通過し、一方の抵抗接点22の
みを踏圧した場合は、軸数は計測可能であるが輪距は計
測できない。また、第8図(b)に示すように片側が路
肩を脱輪しながら軸輪検知器14を通過したり、特殊車両
通行のために道路幅が広く、両抵抗接点21,22とも踏圧
しない場合は、軸数および輪距は計測されない。したが
って、このような場合には車種判別が困難であった。
However, the axle detector 14 has the following problems. That is, as shown in FIG. 7, a conventional axle detector
The length m of each resistance contact 21, 22 in 14 is set so that the length of the resistance contact non-passing body n is shorter than the minimum wheel distance (light four-wheel vehicle) of the passing vehicle. This is because the number of wheels and the wheel distance cannot be measured if both the left and right tires pass through the resistance contact non-passing zone n. That is, in the conventional vehicle type discriminating apparatus using the axle wheel detector 14, the passing vehicle does not pass through the center of the passage, and, for example, FIG.
When the vehicle passes near the road shoulder as shown in (1) and only one resistance contact 22 is depressed, the number of axes can be measured but the wheel distance cannot be measured. Further, as shown in FIG. 8 (b), one side passes through the axle detector 14 while derailing the road shoulder, or the road width is wide due to the passage of a special vehicle, and neither resistance contact 21 nor 22 is depressed. In this case, the number of axles and wheel distance are not measured. Therefore, in such a case, it is difficult to distinguish the vehicle type.

そこで本発明は、通行車両の輪数および輪距を常に高精
度に計測することができ、車種自動判別の精度向上をは
かり得る車種判別装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a vehicle type discriminating apparatus capable of constantly measuring the number of wheels and the wheel distance of a passing vehicle with high accuracy and improving the precision of automatic vehicle type discrimination.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決し目的を達成するために、
次のような手段を講じたことを特徴としている。すなわ
ち、車両通過路を挟んで対向設置された投受光器を複数
対積重してなる車両分離器と、この車両分離器の設置位
置に対応する前記車両通過路に埋設され、通過車両の車
輪による踏圧作用幅に応じて変化する電気抵抗値に基い
て前記通過車両の軸数,輪数及び輪距を計測する軸輪検
知器と、前記車両分離器から出力される遮光情報および
軸輪検知器から出力される軸数,輪数および輪距情報に
基いて前記通過車両の車種を判別する車種判別手段とを
備え、軸輪検知器は、電気抵抗部のほぼ中央に通過車両
の最大タイヤ幅以上でかつ最小輪距以下のオーバーラッ
プ幅を設けるとともに、軸輪検知器の車幅方向端部から
オーバーラップ部分までの距離を通過車両の最小輪距以
下としたことを特徴としている。
The present invention, in order to solve the above problems and achieve the object,
It is characterized by taking the following measures. That is, a vehicle separator formed by stacking a plurality of light emitters / receivers that are installed opposite to each other across a vehicle passage, and a wheel of a passing vehicle that is embedded in the vehicle passage corresponding to the installation position of the vehicle separator. Axle wheel detector that measures the number of axles, the number of wheels, and the wheel distance of the passing vehicle based on the electric resistance value that changes according to the pedaling action width of the vehicle, and the light shielding information and the axle wheel detection that are output from the vehicle separator. A vehicle type discriminating means for discriminating the vehicle type of the passing vehicle on the basis of the number of axles, the number of wheels and the wheel distance information output from the device, and the axle wheel detector has a maximum tire of the passing vehicle substantially in the center of the electric resistance portion. It is characterized in that an overlap width equal to or larger than the width and equal to or smaller than the minimum wheel distance is provided, and a distance from the vehicle width direction end portion of the axle detector to the overlap portion is equal to or smaller than the minimum wheel distance of the passing vehicle.

〔作用〕[Action]

このような手段を講じたことにより、軸輪検知器のいか
なる位置を車両が通過しても、その車両の輪数および輪
距を計測することができ、また、片輪が路肩を脱輪しな
がら通過した場合、または特殊車両通行のために道路幅
が広い場合であっても、少なくとも輪数の計測は可能と
なる。
By taking such measures, the number of wheels and the distance of the vehicle can be measured regardless of the position of the axle wheel detector, and one wheel can be removed from the road shoulder. Even if the vehicle passes through the road or the road is wide due to the passage of a special vehicle, at least the number of wheels can be measured.

〔実施例〕〔Example〕

第1図は本発明の一実施例における軸輪検知器40の構造
図である。なお、この軸輪検知器40は前記第3図にて示
した軸輪検知器14と同様に通行路Wに埋設されるものと
する。第1図において、61,62は抵抗接点であり、具体
的構成および作用は前記第5図(a)に示した抵抗接点
21,22の場合と全く同様である。63,63′および64,64′
は平型接点であり、具体的構成および作用は前記第5図
(b)に示した平型接点26,27の場合と全く同様であ
る。
FIG. 1 is a structural diagram of an axle detector 40 according to an embodiment of the present invention. The axle detector 40 is embedded in the passage W, like the axle detector 14 shown in FIG. In FIG. 1, 61 and 62 are resistance contacts, and the specific construction and action are the resistance contacts shown in FIG. 5 (a).
It is exactly the same as the case of 21,22. 63,63 'and 64,64'
Is a flat contact, and its specific structure and operation are exactly the same as in the case of the flat contacts 26, 27 shown in FIG. 5 (b).

本実施例においては、抵抗接点61,62を従来よりも長手
方向に長くすることによりオーバーラップ幅Nを設けて
おり、このオーバーラップ幅Nは次の3条件により決定
される。
In this embodiment, the resistance contacts 61, 62 are made longer in the longitudinal direction than in the conventional case to provide the overlap width N, and the overlap width N is determined by the following three conditions.

第2図(a)において、オーバーラップ幅Nが存在
しない場合または小さい場合は、抵抗接点61,62と平型
接点63′,64′との境目を通過車両のタイヤが通過した
場合、輪数を正しく計測できない。したがって、オーバ
ーラップ幅Nは最大タイヤ幅l以上は必要である。
In FIG. 2 (a), when the overlap width N does not exist or is small, when the tire of the passing vehicle has passed the boundary between the resistance contacts 61, 62 and the flat contacts 63 ', 64', the number of wheels Cannot be measured correctly. Therefore, the overlap width N needs to be equal to or larger than the maximum tire width l.

第2図(b)において、通過車両が路肩に寄って軸
輪検知器60上を通過した場合、オーバーラップ幅Nが狭
いと抵抗接点61上をタイヤが通過せず輪数の計測が不可
能となる。したがって、抵抗接点61,62と直列に接続さ
れる平型接点63′,64′の長さMを通過車両の最小輪距
L(軽四輪車)以下にする必要がある。こうすることに
より、抵抗接点61にて輪数が計測され、抵抗接点62にて
輪距が計測される。
In FIG. 2 (b), when the passing vehicle approaches the road shoulder and passes over the axle wheel detector 60, if the overlap width N is narrow, the tire cannot pass over the resistance contact point 61 and the number of wheels cannot be measured. Becomes Therefore, the length M of the flat contacts 63 ', 64' connected in series with the resistance contacts 61, 62 needs to be equal to or less than the minimum wheel distance L (light four-wheel vehicle) of the passing vehicle. By doing so, the resistance contact 61 measures the number of wheels, and the resistance contact 62 measures the wheel distance.

第2図(c)において、オーバーラップ幅Nが長す
ぎるとラップされた抵抗接点61,62上を両タイヤが通過
するために輪数の計測ができない。したがって、オーバ
ーラップ幅Nは通過車両の最小輪距L(軽四輪車)以下
とする必要がある。
In FIG. 2 (c), if the overlap width N is too long, both tires pass over the wrapped resistance contacts 61, 62, and the number of wheels cannot be measured. Therefore, the overlap width N needs to be equal to or smaller than the minimum wheel distance L (light four-wheel vehicle) of the passing vehicle.

かくして、以上の3条件を満足するオーバーラップ幅N
を有する軸輪検知器60を車両通過路Wの幅方向に埋設す
ると共に、この軸輪検知器60が埋設された車両通過路W
を挟んで対向する投受光器を垂直方向に複数対積重した
車両分離器11,12を設置し、前記軸輪検知器60にて計測
された各車両毎の軸数,輪数および輪距情報と、前記車
両分離器11,12から出力された遮光情報とに基いて車種
を判別することにより、より高信頼度をもって車種を判
別することが可能となる。したがって、上記車種判別装
置により判別された車種情報に基いて有料道路の通行券
を利用者に対して自動的に発券できるようにすれば、有
料道路入口ゲートの無人化が可能となる。
Thus, the overlap width N that satisfies the above three conditions
Is embedded in the width direction of the vehicle passage W, and the vehicle passage W in which the axle detector 60 is embedded.
The vehicle separators 11 and 12 in which a plurality of light-emitters facing each other are vertically stacked are installed, and the number of axles, the number of wheels, and the wheel distance of each vehicle measured by the axle detector 60 are installed. By determining the vehicle type based on the information and the light-shielding information output from the vehicle separators 11 and 12, the vehicle type can be determined with higher reliability. Therefore, if the toll road passage ticket can be automatically issued to the user based on the vehicle type information determined by the vehicle type determination device, the toll road entrance gate can be unmanned.

なお、本発明は前記実施例に限定されるものではない。
たとえば、前記実施例では有料道路における車種判別装
置として説明したが、車種によって料金が異なる他のシ
ステム、例えば有料駐車場等にも適用できるのは言うま
でもない。このほか、本発明の要旨を逸脱しない範囲で
種々変形実施可能であるのは勿論である。
The present invention is not limited to the above embodiment.
For example, in the above-described embodiment, the vehicle type identification device on the toll road has been described, but it goes without saying that the present invention can be applied to other systems in which the fee varies depending on the vehicle type, such as a toll parking lot. In addition, it goes without saying that various modifications can be made without departing from the scope of the present invention.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明によれば、車両通過路を挟
んで対向設置された投受光器を複数対積重してなる車両
分離器と、この車両分離器の設置位置に対応する前記車
両通過路に埋設され、通過車両の車輪による踏圧作用幅
に応じて変化する電気抵抗値に基いて前記通過車両の軸
数,輪数および輪距を計測する軸輪検知器と、前記車両
分離器から出力される遮光情報および軸輪検知器から出
力される軸数,輪数および輪距情報に基いて前記通過車
両の車種を判別する車種判別手段とを備え、軸輪検知器
は、電気抵抗部のほぼ中央に通過車両の最大タイヤ幅以
上でかつ最小輪距以下のオーバーラップ幅を設けるとと
もに、軸輪検知器の車幅方向端部からオーバーラップ部
分までの距離を通過車両の最小輪距以下としたので、通
行車両の輪数および輪距を常に高精度に計測することが
でき、車種自動判別の精度向上をはかり得る車種判別装
置を提供できる。
As described above in detail, according to the present invention, a vehicle separator formed by stacking a plurality of light emitters and receivers that are installed to face each other with a vehicle passageway interposed therebetween, and the vehicle position corresponding to the installation position of the vehicle separator. A wheel / wheel detector embedded in a vehicle passage, which measures the number of axles, the number of wheels, and the wheel distance of the passing vehicle based on an electric resistance value that changes according to the stepping action width by the wheels of the passing vehicle; The vehicle type discriminating means for discriminating the vehicle type of the passing vehicle based on the light-shielding information output from the vehicle and the number of wheels, the number of wheels and the wheel distance information output from the axle wheel detector. An overlap width equal to or greater than the maximum tire width of the passing vehicle and less than or equal to the minimum wheel distance is provided approximately in the center of the resistance part, and the minimum wheel width of the passing vehicle is the distance from the vehicle width direction end of the axle detector to the overlap portion. Since the distance is less than or equal to the distance, Wa距 can be measured constantly with high accuracy, it can provide a vehicle type discriminating apparatus for obtaining improved accuracy in vehicle type automatic discrimination.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図(a)〜(c)は本発明の一実施例
を示す図であって、第1図は軸輪検知器の構造図、第2
図(a)〜(c)はオーバーラップ幅Nの設定条件を説
明するための図、第3図ないし第8図(a)(b)は従
来例を示す図であって、第3図は従来の車種判別装置の
概略構成図、第4図は軸輪検知器の構造図、第5図
(a)(b)は抵抗接点および平型接点の構造図、第6
図は軸輪検知器の動作説明図、第7図は軸輪検知器の条
件説明図、第8図(a)(b)は軸輪検知器の問題点説
明図である。 11,12…車両分離器、60…軸輪検知器、61,62…抵抗接
点、63,63′,64,64′…平型接点、N…オーバーラップ
幅。
FIGS. 1 and 2 (a) to (c) are views showing an embodiment of the present invention. FIG. 1 is a structural diagram of an axle detector, and FIG.
FIGS. (A) to (c) are views for explaining the setting condition of the overlap width N, and FIGS. 3 to 8 (a) and (b) are views showing a conventional example, and FIG. FIG. 4 is a schematic diagram of a conventional vehicle type identification device, FIG. 4 is a structural diagram of an axle detector, FIGS. 5 (a) and 5 (b) are structural diagrams of a resistance contact and a flat contact, and FIG.
FIG. 7 is an explanatory view of the operation of the axle detector, FIG. 7 is an explanatory view of conditions of the axle detector, and FIGS. 8A and 8B are explanatory views of problems of the axle detector. 11, 12 ... Vehicle separator, 60 ... Axle wheel detector, 61, 62 ... Resistance contact, 63, 63 ', 64, 64' ... Flat contact, N ... Overlap width.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 研 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 上村 洋一 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (56)参考文献 実開 昭53−35054(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ken Uchida 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Yoichi Uemura Kazu, Hyogo-ku, Kobe-shi, Hyogo 1-1-1 Tasakicho Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) References: 53-35054 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】車両通過路を挟んで対向設置された投受光
器を複数対積重してなる車両分離器と、この車両分離器
の設置位置に対応する前記車両通過路に埋設され、通過
車両の車輪による踏圧作用幅に応じて変化する電気抵抗
値に基いて前記通過車両の軸数,輪数及び輪距を計測す
る軸輪検知器と、前記車両分離器から出力される遮光情
報および軸輪検知器から出力される軸数,輪数および輪
距情報に基いて前記通過車両の車種を判別する車種判別
手段とを具備し、前記軸輪検知器は、電気抵抗部のほぼ
中央に前記通過車両の最大タイヤ幅以上でかつ最小輪距
以下のオーバーラップ幅を設けるとともに、前記軸輪検
知器の車幅方向端部からオーバーラップ部分までの距離
を前記通過車両の最小輪距以下としたことを特徴とする
車種判別装置。
1. A vehicle separator formed by stacking a plurality of light emitters / receivers facing each other across a vehicle passage, and a vehicle separator embedded in the vehicle passage corresponding to the installation position of the vehicle separator and passing therethrough. An axle detector that measures the number of axles, the number of wheels, and the wheel distance of the passing vehicle based on the electric resistance value that changes according to the stepping action width by the wheels of the vehicle, and the light-shielding information output from the vehicle separator, And a vehicle type discriminating means for discriminating the vehicle type of the passing vehicle based on the number of axles, the number of wheels and the wheel distance information output from the axle detector, wherein the axle detector is located substantially at the center of the electric resistance portion. While providing an overlap width equal to or greater than the maximum tire width of the passing vehicle and equal to or less than the minimum wheel distance, the distance from the vehicle width direction end of the axle detector to the overlap portion is equal to or less than the minimum wheel distance of the passing vehicle. A vehicle type identification device characterized in that
JP61025321A 1986-02-07 1986-02-07 Vehicle type identification device Expired - Lifetime JPH0795359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025321A JPH0795359B2 (en) 1986-02-07 1986-02-07 Vehicle type identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025321A JPH0795359B2 (en) 1986-02-07 1986-02-07 Vehicle type identification device

Publications (2)

Publication Number Publication Date
JPS62183000A JPS62183000A (en) 1987-08-11
JPH0795359B2 true JPH0795359B2 (en) 1995-10-11

Family

ID=12162713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025321A Expired - Lifetime JPH0795359B2 (en) 1986-02-07 1986-02-07 Vehicle type identification device

Country Status (1)

Country Link
JP (1) JPH0795359B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018060A (en) * 2005-07-05 2007-01-25 Ishikawajima Transport Machinery Co Ltd Vehicle detection device, vehicle detection method, parking lot, and its parking management method
JP6326686B2 (en) * 2014-01-29 2018-05-23 三菱重工機械システム株式会社 Abnormality monitoring apparatus, abnormality monitoring method and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335054U (en) * 1976-08-31 1978-03-28

Also Published As

Publication number Publication date
JPS62183000A (en) 1987-08-11

Similar Documents

Publication Publication Date Title
US6198987B1 (en) Method and a multi-functional apparatus for determining the class of a vehicle
JPH05225490A (en) Vehicle type discriminating device
JPH0795359B2 (en) Vehicle type identification device
JP3140651B2 (en) Vehicle type identification device
JPH07225891A (en) Pedal for vehicle type deciding device
JPH0423731B2 (en)
JPH0962983A (en) Vehicle type discriminating device
JP3411766B2 (en) Vehicle type identification device
JPH0615359Y2 (en) Vehicle type identification device
JPH0468680B2 (en)
JPH07334787A (en) Vehicle discrimination method
KR860002209B1 (en) Vehicles distinction device
JPS5985906A (en) Apparatus for judging type of vehicle
JPH04257087A (en) Vehicle type discriminating device
KR860002210B1 (en) Vehicles distinction device
JPH0420520B2 (en)
KR880000028Y1 (en) Apparatus for collecting tolls
JPH0642320Y2 (en) Vehicle type identification device
JPS62179099A (en) Vehicle type discriminator
JPH0417448B2 (en)
JPS59165200A (en) Vehicle type discriminator for three-wheel vehicle
Van Nypelseer Qualitative change waves: the automatic detection of highway traffic incidents
KR20010097490A (en) Device and Methods for Finding the type of Vehicles by Counting Shafts Number and Tire Size
JPH0410677B2 (en)
KR880000027Y1 (en) Apparatus for collecting tolls

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term