JPH0794935B2 - Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container - Google Patents

Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container

Info

Publication number
JPH0794935B2
JPH0794935B2 JP62140036A JP14003687A JPH0794935B2 JP H0794935 B2 JPH0794935 B2 JP H0794935B2 JP 62140036 A JP62140036 A JP 62140036A JP 14003687 A JP14003687 A JP 14003687A JP H0794935 B2 JPH0794935 B2 JP H0794935B2
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
hydrogen
container
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62140036A
Other languages
Japanese (ja)
Other versions
JPS63306367A (en
Inventor
耕一 平田
昭夫 出羽
定二 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62140036A priority Critical patent/JPH0794935B2/en
Publication of JPS63306367A publication Critical patent/JPS63306367A/en
Publication of JPH0794935B2 publication Critical patent/JPH0794935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素吸蔵合金による水素ガスの吸放出法に関
し、ヒートポンプ,水素ガスの移動を利用した装置(例
えば水素ガスタービン)、水素ガス貯蔵,エネルギー変
換,水素分離精製等に有利に適用しうる同方向及び容器
に関する。
TECHNICAL FIELD The present invention relates to a method for absorbing and releasing hydrogen gas using a hydrogen storage alloy, and relates to a heat pump, a device utilizing movement of hydrogen gas (for example, hydrogen gas turbine), hydrogen gas storage, The present invention relates to the same direction and container that can be advantageously applied to energy conversion, hydrogen separation and purification, and the like.

〔従来の技術〕[Conventional technology]

従来の技術は水素吸蔵合金の水素ガス吸・放出時に膨張
・収縮に伴う微粉化のために水素ガスが容器外へ出る。
このためフイルターにより合金の流出を阻止している。
また、水素吸蔵合金は一般に金属間化合物であることが
多く熱伝導率が小さい。このため反応速度をアップする
ため合金層厚を小さくするか高熱伝導率物質と混合して
使用しているが、あくまで間接・加熱・冷却システムを
採用している。
In the conventional technology, hydrogen gas goes out of the container due to pulverization due to expansion and contraction during hydrogen gas absorption and desorption of the hydrogen storage alloy.
Therefore, the filter prevents the alloy from flowing out.
Further, the hydrogen storage alloy is generally an intermetallic compound and has a small thermal conductivity. For this reason, in order to increase the reaction rate, the alloy layer thickness is made smaller or mixed with a material with high thermal conductivity, but the indirect / heating / cooling system is used.

第3図に従来法の一態様を示すが、水素吸蔵合金粉末10
を充填した容器(A)(B)内に溶媒配管11を配置し、
配管を通じた間接・加熱・冷却方式であるため反応熱の
移動速度が遅く水素ガスの吸排出の1サイクルが長い。
なお、第3図中他の配管,タービン等システムは後で詳
述する本発明と同一であるので説明を省略する。但し、
図中9はフイルターである。
Fig. 3 shows one embodiment of the conventional method. Hydrogen storage alloy powder 10
The solvent pipe 11 is placed in the containers (A) and (B) filled with
Since it is an indirect / heating / cooling system through piping, the reaction heat transfer speed is slow and one cycle of hydrogen gas absorption / discharge is long.
It should be noted that other pipes, turbines and other systems in FIG. 3 are the same as those of the present invention which will be described in detail later, and therefore description thereof will be omitted. However,
In the figure, 9 is a filter.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来法においては、(1)微粉化した水素吸蔵合金
の容器外への流出が大で、かつ(2)間接加熱冷却方式
であるため伝熱抵抗が大であるという不具合があつた。
The above conventional method has a problem that (1) the pulverized hydrogen storage alloy flows out of the container to a large extent, and (2) the indirect heating / cooling method causes a large heat transfer resistance.

本発明は上記従来法の不具合を解消しうる水素吸蔵合金
による水素ガスの吸放出法及び容器を提供しようとする
ものである。
The present invention is intended to provide a method for absorbing and releasing hydrogen gas using a hydrogen storage alloy and a container capable of solving the problems of the above conventional methods.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は活性化された水素吸蔵合金をポーラスな良熱伝
導性金属でカプセル化した後このカプセル粉を圧縮成型
して塊状としたものを充填した容器内に、水素吸蔵合金
と反応しない液体を伝熱媒体として導入して直性カプセ
ル化水素吸蔵合金に接触させて加熱・冷却することによ
り、それぞれ水素吸蔵合金に水素ガスを吸蔵あるいは水
素ガスを放出させるようにすることを特徴とする水素吸
蔵合金による水素ガスの吸放出法である。
The present invention encapsulates an activated hydrogen storage alloy with a porous good heat conductive metal and then compresses and molds the capsule powder into a lump to fill a liquid that does not react with the hydrogen storage alloy. Hydrogen storage characterized by introducing hydrogen as a heat transfer medium and heating / cooling it in contact with a direct-encapsulated hydrogen storage alloy to cause the hydrogen storage alloy to store or release hydrogen gas, respectively. This is a method of absorbing and releasing hydrogen gas using an alloy.

さらに、本発明は前記方法に用いる容器であって、活性
化された水素吸蔵合金と、該水素吸蔵合金を内包する良
熱伝導性金属からなるポーラスなカプセルと、複数の該
カプセルを有する容器本体と、該容器本体内で上記カプ
セルを浸漬する液体の伝熱媒体の供給,排出配管を備え
てなることを特徴とする水素吸蔵金属合金容器である。
Furthermore, the present invention relates to a container used in the above method, which comprises an activated hydrogen storage alloy, a porous capsule made of a good heat conductive metal containing the hydrogen storage alloy, and a container body having a plurality of the capsules. And a hydrogen storage metal alloy container, characterized in that it is provided with a liquid heat transfer medium supply / discharge pipe for immersing the capsule in the container body.

なお、上記において、液体の伝熱媒体とは冷却用の冷媒
や加熱用の熱倍のいずれかにかかわらず熱移動を行わせ
る液体をさし、例えばウンデカン、パラフインなどの有
機溶媒が望ましい。また、カプセルとは後述するコーテ
ィングによるものでもよいし、小型容器を用いたもので
もよい。
In the above description, the liquid heat transfer medium refers to a liquid that causes heat transfer regardless of whether it is a cooling medium for cooling or a heat factor for heating, and is preferably an organic solvent such as undecane or paraffin. In addition, the capsule may be a coating described below or a small container.

〔作用〕[Action]

ポーラスなカプセルに水素吸蔵合金が内包されており、
通気性があるため水素自身はカプセルから出入りできる
が、水素吸蔵合金は出入りできない。
Hydrogen storage alloy is contained in a porous capsule,
Because it is breathable, hydrogen itself can enter and leave the capsule, but hydrogen storage alloys cannot enter and exit.

容器内に有機溶媒等からなる液体の伝熱媒体が供給,排
出されるようになっており、カプセル間の伝熱を促進す
る。
A liquid heat transfer medium such as an organic solvent is supplied to and discharged from the container to promote heat transfer between the capsules.

〔実施例〕〔Example〕

本発明の新規な点を要約して説明すれば次のとおりであ
る。
The following is a brief description of the novel points of the present invention.

(1) 微粉化した水素吸蔵合金の流出を防止するため
に活性化処理を済ませた水素吸蔵合金粉末に水素ガスを
通せる程度のポーラスな孔を有する銅などの高熱伝導性
物質をメッキ等の手段によるコーティング等を施してカ
プセル化する。その後、これら粉末を圧縮成型し、塊状
体とする点。
(1) A high thermal conductivity material such as copper having a porous hole that allows hydrogen gas to pass through the hydrogen storage alloy powder that has been activated to prevent outflow of the finely divided hydrogen storage alloy, such as plating. Encapsulation is performed by coating with a means. After that, these powders are compression-molded into lumps.

(2) 間接加熱冷却方式を止め、水素吸蔵合金と反応
しない液体の伝熱媒体を熱移動物質として直接カプセル
化水素吸蔵合金に接触させる直接加熱・冷却方式とする
点。
(2) The indirect heating / cooling method is stopped and a direct heating / cooling method is used in which a liquid heat transfer medium that does not react with the hydrogen storage alloy is brought into direct contact with the encapsulated hydrogen storage alloy as a heat transfer substance.

上記(1)により水素吸蔵合金微粉末の流出が止めら
れ、(2)により水素吸蔵合金の水素ガス吸・放出反応
が速くなり、かつ容器が間接加熱・冷却方式と較べてシ
ンプルとなる。
The above (1) prevents the outflow of the hydrogen storage alloy fine powder, and (2) accelerates the hydrogen gas absorption / desorption reaction of the hydrogen storage alloy, and makes the container simpler than the indirect heating / cooling system.

以下、第1図によつて本発明の一実施例を説明する。
(A)及び(B)で示された二つの容器2にいかなる形
状でもよいが、例えば第2図(上部は上面図,下部は側
面図)に示したようなカプセル化水素吸蔵合金塊(ここ
ではLaNi5のCuカプセル化品)1を充填し、(A)で示
された容器2内にポンプ13により、液体伝熱媒体配管6
を通して溶媒(ここではパラフイン)を導入する。加熱
系7で熱交換され高温(温度120℃,圧力20ata)に加熱
されたパラフインは、3方弁3を経て液体伝熱媒体配管
6を通り容器(A)に導入される。この導入された溶媒
の熱でカプセル化水素吸蔵合金1から水素ガス(温度10
0℃,ガス圧20ata)が放出されガス配管12を通り水素ガ
ス膨張タービン4へ導びかれ、発電し電気エネルギーを
回収する。
An embodiment of the present invention will be described below with reference to FIG.
The two containers 2 shown in (A) and (B) may have any shape, but for example, as shown in FIG. 2 (top view is top view, bottom view is side view), an encapsulated hydrogen storage alloy block (here Then, a Cu encapsulation product of LaNi 5 ) 1 is filled, and a liquid heat transfer medium pipe 6 is provided in the container 2 shown in FIG.
A solvent (here, paraffin) is introduced through. The paraffin heat-exchanged by the heating system 7 and heated to a high temperature (temperature 120 ° C., pressure 20ata) is introduced into the container (A) through the three-way valve 3 and the liquid heat transfer medium pipe 6. Due to the heat of the introduced solvent, hydrogen gas (temperature 10
0 ° C, gas pressure 20ata) is released and guided to the hydrogen gas expansion turbine 4 through the gas pipe 12 to generate electricity and recover electrical energy.

膨張タービン4を出た水素ガス(ガス圧3ata)は容器
(B)に導びかれ、該容器(B)内のカプセル化水素吸
蔵合金1に吸蔵される。この時発生する熱は冷却系8で
低温(温度20℃,圧力4ata)に冷却され、3方弁3を経
て液体伝熱媒体6をポンプ13によつて供給される直接パ
ラフインに吸収され、冷却系8で冷却される。なお図
中、5は気液分離器である。
The hydrogen gas (gas pressure 3ata) that has exited the expansion turbine 4 is guided to the container (B) and stored in the encapsulated hydrogen storage alloy 1 in the container (B). The heat generated at this time is cooled to a low temperature (temperature 20 ° C., pressure 4ata) in the cooling system 8, is absorbed by the liquid heat transfer medium 6 through the three-way valve 3 into the direct paraffin supplied by the pump 13, and is cooled. Cooled in system 8. In the figure, 5 is a gas-liquid separator.

以上のようなシステムをサイクリツクに運転させること
により、連続的に水素ガスが移動でき、発電機を駆動で
きるようになる。
By cyclically operating the above system, hydrogen gas can be continuously moved and the generator can be driven.

なお連続性の向上等のため上記の容器を2つ以上組合わ
せてもよい。
Two or more of the above containers may be combined to improve continuity.

〔発明の効果〕〔The invention's effect〕

第3図のような従来の方法では間接・加熱・冷却であ
り、余分と言える配管類を容器(A)(B)内に必要と
し、かつ、水素ガス放出に伴う、水素吸蔵合金微粉末の
流出を防止するためのフイルター9を必要としていた。
In the conventional method as shown in FIG. 3, indirect heating, cooling, and extra pipes are required in the containers (A) and (B), and the hydrogen storage alloy fine powder is accompanied by the release of hydrogen gas. It required a filter 9 to prevent outflow.

本発明により、上記の必要部品が不必要となり、液体伝
熱媒体と水素吸蔵合金の直接熱交換型であるため水素ガ
スの吸放出サイクルが従来方の約1/2に短縮できる。
(裏がえせば、単位時間当りの同一性能では高コストの
合金量を1/2にできると言うことになる)
According to the present invention, the above-mentioned necessary parts are unnecessary, and since the liquid heat transfer medium and the hydrogen storage alloy are of the direct heat exchange type, the hydrogen gas absorption / desorption cycle can be shortened to about half that of the conventional method.
(In other words, it means that the amount of high-cost alloy can be halved with the same performance per unit time.)

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の一実施例のフローを示す図、第2
図はカプセル化水素吸蔵合金の成型例の模式図、第3図
は従来方法の一態様例のフロー図を示す図である。
FIG. 1 is a diagram showing a flow of one embodiment of the method of the present invention, and FIG.
FIG. 3 is a schematic diagram of a molding example of an encapsulated hydrogen storage alloy, and FIG. 3 is a flow chart of an example of a conventional method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】活性化された水素吸蔵合金をポーラスな良
熱伝導性金属でカプセル化した後、このカプセル粉を圧
縮成型して塊状としたものを充填した容器内に、水素吸
蔵合金と反応しない液体を伝熱媒体として導入して直接
カプセル化水素吸蔵合金に接触させて加熱・冷却するこ
とにより、それぞれ水素吸蔵合金に水素ガスを吸蔵ある
いは水素ガスを放出させるようにすることを特徴とする
水素吸蔵合金による水素ガスの吸放出法。
1. An activated hydrogen storage alloy is encapsulated with a porous metal having a good thermal conductivity, and the capsule powder is compression-molded to form a lump, which is then reacted with the hydrogen storage alloy. By introducing a liquid that does not exist as a heat transfer medium and directly contacting the encapsulated hydrogen storage alloy with heating and cooling, the hydrogen storage alloy is allowed to store hydrogen gas or release hydrogen gas, respectively. A method for absorbing and releasing hydrogen gas using a hydrogen storage alloy.
【請求項2】活性化された水素吸蔵合金と該水素吸蔵合
金を内包する良熱伝導性金属からなるポーラスなカプセ
ルと、複数の該カプセルを有する容器本体と、該容器本
体内で上記カプセルを浸漬する液体の伝熱媒体の供給、
排出配管を備えてなることを特徴とする水素吸蔵合金容
器。
2. A porous capsule made of an activated hydrogen storage alloy and a metal having good thermal conductivity which contains the hydrogen storage alloy, a container body having a plurality of the capsules, and the capsule in the container body. Supply of liquid heat transfer medium to immerse,
A hydrogen storage alloy container comprising a discharge pipe.
JP62140036A 1987-06-05 1987-06-05 Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container Expired - Lifetime JPH0794935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140036A JPH0794935B2 (en) 1987-06-05 1987-06-05 Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140036A JPH0794935B2 (en) 1987-06-05 1987-06-05 Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JPS63306367A JPS63306367A (en) 1988-12-14
JPH0794935B2 true JPH0794935B2 (en) 1995-10-11

Family

ID=15259467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140036A Expired - Lifetime JPH0794935B2 (en) 1987-06-05 1987-06-05 Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JPH0794935B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3323604B2 (en) * 1993-09-30 2002-09-09 マツダ株式会社 Hydrogen supply station
JP4432239B2 (en) 2000-09-05 2010-03-17 トヨタ自動車株式会社 Apparatus and method for activating hydrogen storage alloy
JP4997836B2 (en) * 2006-06-09 2012-08-08 トヨタ自動車株式会社 Hydrogen supply apparatus and hydrogen supply method
JP6417988B2 (en) * 2015-02-04 2018-11-07 株式会社デンソー heat pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983901A (en) * 1982-11-08 1984-05-15 Daido Steel Co Ltd Powder, element and apparatus occluding hydrogen
JPS61134593A (en) * 1984-11-30 1986-06-21 Agency Of Ind Science & Technol Heat exchange device using hydrogen occlusion alloy

Also Published As

Publication number Publication date
JPS63306367A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
US4607826A (en) Apparatus for preparing improved porous metal-hydride compacts
US4566281A (en) Reaction heat storage method for hydride tanks
US6342198B1 (en) Hydrogen storage composition
JPH0794935B2 (en) Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container
Geun-Hong et al. The changes of hydrogenation properties induced by thermal cyclings in MmNi4. 5Al0. 5 and MmNi4. 15Fe0. 85
JP3934738B2 (en) Method for managing solid / gas adsorption and thermochemical reactions
JP4663839B2 (en) Hydrogen recovery / storage container
CN107941062A (en) Thermal energy storage method based on metal hydride and metal-organic framework material
CN114935273A (en) Multistage phase change ball heat storage device
JPH10194701A (en) Absorption and release of hydrogen and vessel for storing hydrogen
JPH01264901A (en) Storage vessel for hydrogen storage alloy
JP2769985B2 (en) Energy conversion method and apparatus using hydrogen storage metal
JPH01294501A (en) Hydrogen gas purifier and method for purification
RU2256718C1 (en) Metallohydride pair of alloys for thermal pump
JPS56100101A (en) Hydrogen occluding unit
JPS6033239B2 (en) Portable heating and cooling device
JPH0658107B2 (en) Energy conversion device using metal hydride
JPS6037394B2 (en) Heat storage method and heat storage tank
CN116281852A (en) Solid-state hydrogen storage system based on hydrogen self-circulation heat exchange
Bowman Jr et al. Characterizations of prototype sorption cryocoolers for the periodic formation of liquid and solid hydrogen
JPS60205190A (en) Metallic hydrogenated substance-utilizing device
JPS6269094A (en) Heat transport system utilizing metal hydride
Tinge Sorption and Desorption of Hydrogen in Metal Hydride Slurries
JPS63259300A (en) Heat exchanger unit for hydrogen-storing alloy
JPS59141401A (en) Hydrogen-storing system