JP2769985B2 - Energy conversion method and apparatus using hydrogen storage metal - Google Patents
Energy conversion method and apparatus using hydrogen storage metalInfo
- Publication number
- JP2769985B2 JP2769985B2 JP515995A JP515995A JP2769985B2 JP 2769985 B2 JP2769985 B2 JP 2769985B2 JP 515995 A JP515995 A JP 515995A JP 515995 A JP515995 A JP 515995A JP 2769985 B2 JP2769985 B2 JP 2769985B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage metal
- container
- hydrogen
- heat medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、主として水素の貯蔵・
輸送システムやエネルギーの回収・動力変換システムに
利用される水素吸蔵金属と水素とから金属水素化物を生
成する反応及びその逆反応を利用したエネルギーの変換
方法及びエネルギーの変換装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to the storage and storage of hydrogen.
The present invention relates to a reaction for generating a metal hydride from hydrogen and a hydrogen storage metal used for a transportation system and an energy recovery / power conversion system, and an energy conversion method and an energy conversion device using a reverse reaction thereof.
【0002】[0002]
【従来の技術】本願出願人は、先にこの種のエネルギー
変換方法及び変換装置として、容器内に10〜50mm
程度の直径の水素吸蔵金属の小塊片の充填層を設け、こ
の層に水素ガス流通させると共にその層の上方から熱媒
体を降り注ぐようにしたものを提案した(特公平6−6
3674号公報)。該充填層は、小塊片を固定するとき
は、孔開きプレート上に固定し、移動させるときは、外
部と循環ラインにより移動するように構成されている。2. Description of the Related Art The applicant of the present invention has previously proposed an energy conversion method and a conversion apparatus of this kind in a container of 10 to 50 mm.
A proposal has been made in which a packed layer of small pieces of hydrogen storage metal having a diameter of about 10 mm is provided, hydrogen gas is circulated through this layer, and a heat medium is poured down from above the layer (Japanese Patent Publication No. 6-6).
3674). The packing layer is configured to be fixed on a perforated plate when fixing the small lump pieces, and to be moved by the circulation line with the outside when being moved.
【0003】[0003]
【発明が解決しようとする課題】上記提案のものは、水
素吸蔵金属に水素ガスと熱媒体が直接に接触するので、
熱交換効率および反応効率が良好であるが、水素吸蔵金
属の小塊片は使用時間の経過に伴い成形変化するから適
当な時期には交換が必要である。本来、水素吸蔵金属を
小塊片に成形することは、コスト的には好ましくない。
水素吸蔵金属としては、La-Ni-Al系合金等が使用され、
一般にはこれを小塊片に成形してCuメッキ等を施し、必
要な場合、更にプレスして偏平に成形したものを使用し
ている。In the above proposal, the hydrogen gas and the heat medium are in direct contact with the hydrogen storage metal.
Although the heat exchange efficiency and the reaction efficiency are good, the small pieces of the hydrogen-absorbing metal need to be exchanged at an appropriate time because the molding changes with the lapse of the use time. Originally, it is not preferable in terms of cost to form the hydrogen storage metal into small lump pieces.
As the hydrogen storage metal, La-Ni-Al alloy or the like is used,
Generally, this is formed into a small lump piece and subjected to Cu plating or the like, and if necessary, further pressed to form a flat piece.
【0004】本発明は、非成形の水素吸蔵金属の粉末を
使用できるので安価ですみ、しかも水素吸蔵金属が直接
に水素ガス及び熱媒体に接触することによる良好な熱交
換効率および反応効率を維持し得る水素吸蔵金属を用い
たエネルギーの変換方法と変換装置を提供することを目
的とするものである。The present invention can be used at low cost because non-molded hydrogen storage metal powder can be used, and maintains good heat exchange efficiency and reaction efficiency due to direct contact of the hydrogen storage metal with hydrogen gas and a heat medium. It is an object of the present invention to provide a method and apparatus for converting energy using a hydrogen storage metal that can be used.
【0005】[0005]
【課題を解決するための手段】本発明では、熱媒体の導
入口と導出口及び水素ガスの導出入口を備えた容器内に
水素吸蔵金属を収め、水素ガス及び熱媒体を該容器内に
流通させながら水素吸蔵金属と水素とから金属水素化物
を生成する反応及びその逆の反応を利用してエネルギー
変換する方法に於いて、容器内に上下に多段で左右交互
に複数の棚を配置して各棚に該水素吸蔵金属の粉末を薄
い層状に載せ、該熱媒体を該容器の上方から該水素吸蔵
金属を浸して流下させることにより、上記の目的を達成
するようにした。該水素吸蔵金属の粉末は、棚上に落下
を防止して薄い層状に載せ、或いは熱媒体と共に順次に
下方の棚へ流下移動させてもよく、この場合は該導入口
に水素吸蔵金属と熱媒体とを分離する分離器を接続し、
該容器に、該棚の最上段の棚上に該分離器で分離した水
素吸蔵金属を供給する供給口を設けることも可能であ
る。更に該反応を連続して行なうために、該容器を複数
とし、分離器で分離した水素吸蔵金属を他の容器に供給
する構成とすることが好ましい。According to the present invention, a hydrogen storage metal is placed in a container having an inlet and an outlet for a heat medium and an outlet for a hydrogen gas, and the hydrogen gas and the heat medium are circulated through the container. In the method of converting metal hydride from hydrogen storage metal and hydrogen while performing the energy conversion by using the reverse reaction, a plurality of shelves are arranged alternately on the left and right in multiple stages up and down in a container. The above object was achieved by placing the powder of the hydrogen storage metal in a thin layer on each shelf and immersing the hydrogen storage metal in the heat medium from above the container and flowing it down. The hydrogen storage metal powder may be placed on the shelf in a thin layer to prevent it from falling, or may be sequentially moved down to the lower shelf together with the heat medium. In this case, the hydrogen storage metal and the heat are introduced into the inlet. Connect a separator to separate the medium,
The container may be provided with a supply port for supplying the hydrogen storage metal separated by the separator on the uppermost shelf of the shelf. Further, in order to carry out the reaction continuously, it is preferable to adopt a configuration in which a plurality of the containers are provided and the hydrogen storage metal separated by the separator is supplied to another container.
【0006】[0006]
【作用】水素吸蔵金属の粉末を容器内の棚上に薄い層状
に載せ、水素ガスを導出入口から該容器内に導入すると
共に冷却した熱媒体を導入口から導入すると、熱媒体は
該粉末を浸して順次に棚から溢れて流下するので該粉末
は水素の吸蔵反応を生じて発熱し、熱媒体がその反応熱
で昇温するからその熱媒体を温熱源に利用でき、また、
この反応により該粉末が金属水素化物となったのちに加
熱した熱媒体を導入口から導入して棚から溢流させる
と、該粉末に反応熱が供給されて該粉末は水素放出反応
を生じ、そのため流下する熱媒体は冷却されるので、該
熱媒体を冷熱源に利用できる。該粉末は、棚から落下し
ないように薄い層状に載せ、或いは棚を流下する熱媒体
と共に流れ落として分離器により粉末と熱媒体を分離す
るようにしてもよく、水素吸蔵金属は粉末のまま使用で
きるので安価にエネルギーの変換を実施でき、熱効率の
良好性も維持できる。また、該容器を複数個用意し、こ
れらの容器に分離器で分離された水素吸蔵金属を循環さ
せると、各容器に於いて連続して長時間に亘り同一のエ
ネルギ変換を行なうことができる。When the powder of the hydrogen storage metal is placed in a thin layer on a shelf in a container, hydrogen gas is introduced into the container from the outlet, and a cooled heat medium is introduced from the inlet. Since the powder is soaked and overflows sequentially from the shelf and flows down, the powder generates an occlusion reaction of hydrogen and generates heat, and the heat medium is heated by the reaction heat, so that the heat medium can be used as a heat source.
After the powder becomes a metal hydride by this reaction, when a heated heat medium is introduced from the inlet and overflows from the shelf, reaction heat is supplied to the powder, and the powder undergoes a hydrogen releasing reaction, Therefore, the flowing heat medium is cooled, so that the heat medium can be used as a cold heat source. The powder may be placed in a thin layer so as not to fall from the shelf, or may be dropped together with the heat medium flowing down the shelf to separate the powder and the heat medium by a separator. Therefore, energy conversion can be performed at low cost, and good thermal efficiency can be maintained. When a plurality of the containers are prepared and the hydrogen storage metal separated by the separator is circulated in these containers, the same energy conversion can be continuously performed in each container for a long time.
【0007】[0007]
【実施例】本発明の実施例を図面に基づき説明すると、
図1に於いて符号1は、熱媒体の導入口2と水素ガスの
導出入口3を上方に設けると共に下方に熱媒体の導出口
4を設けた容器を示し、該容器1の内部の壁面には多段
でしかも左右の壁面から交互に突出させて複数の平板状
の棚5を設けるようにした。各棚5には、水素吸蔵金属
の例えば粒径50メッシュから数ミクロン程度のLa-Ni-
Al合金の粉末6を薄い層状に載置する。該導入口2は、
最上段の棚5の粉末6に広く熱媒体7が降り注ぐように
シャワーヘッド状に構成し、該導入口2と導出口4を該
容器1の外部に於いて循環回路8を介して接続した。該
循環回路8には循環ポンプ9と熱交換器10が設けら
れ、該熱交換器10との熱交換で外部配管11に温水や
冷水が得られるようにした。図1に示した棚5は、これ
に載置した薄い層状の粉末6の落下を阻止するための立
上がり縁部12を設けるようにした。更に、水素吸蔵金
属の移動を防ぐために、層面に適当な膜を用いてもよ
い。該熱媒体7としては、水もしくは有機溶剤、シリコ
ン、n.トリデカン等の安定な溶液が使用される。BRIEF DESCRIPTION OF THE DRAWINGS FIG.
In FIG. 1, reference numeral 1 denotes a container provided with a heat medium inlet 2 and a hydrogen gas outlet 3 at the upper side and a heat medium outlet 4 at the lower side. Is provided with a plurality of flat shelves 5 that are multistage and alternately protrude from the left and right wall surfaces. Each of the shelves 5 has, for example, La-Ni-
The Al alloy powder 6 is placed in a thin layer. The inlet 2 is
The inlet 2 and the outlet 4 were connected via a circulation circuit 8 outside the vessel 1 so that the heat medium 7 was widely poured down onto the powder 6 on the uppermost shelf 5. The circulation circuit 8 is provided with a circulation pump 9 and a heat exchanger 10, and heat exchange with the heat exchanger 10 allows hot or cold water to be obtained in the external piping 11. The shelf 5 shown in FIG. 1 is provided with a rising edge 12 for preventing the thin layered powder 6 placed thereon from falling. Further, in order to prevent the movement of the hydrogen storage metal, an appropriate film may be used on the layer surface. As the heat medium 7, water or an organic solvent, silicon, or a stable solution such as n. Tridecane is used.
【0008】以上の構成により、水素吸蔵金属に水素吸
蔵反応又は水素放出反応を行わせる場合、該容器1内へ
水素ガスの導出入口3から水素ガスを導入し、熱交換器
10により冷却した熱媒体7を導入口2から最上段の棚
5上の水素吸蔵金属の層状の粉末6に降り注ぎ、最上段
の棚から溢れた該熱媒体7は順次にその下方の棚の粉末
6の層を浸透して最後に導出口4から外部へ取り出さ
れ、流れる熱媒体により粉末6の反応熱が吸収されるの
で該粉末6は水素を吸蔵し、これとは逆に熱交換器10
で加熱した熱媒体を降り注げば該粉末6は加熱されて吸
収していた水素を放出する。When the hydrogen storage metal is caused to undergo a hydrogen storage reaction or a hydrogen release reaction by the above configuration, hydrogen gas is introduced into the vessel 1 from the hydrogen gas outlet 3 and cooled by the heat exchanger 10. The medium 7 is poured from the inlet 2 into the layered powder 6 of the hydrogen storage metal on the uppermost shelf 5, and the heat medium 7 overflowing from the uppermost shelf sequentially permeates the layer of the powder 6 on the lower shelf. Finally, the powder 6 is taken out from the outlet 4 to the outside and the heat of reaction of the powder 6 is absorbed by the flowing heat medium, so that the powder 6 absorbs hydrogen, and conversely, the heat exchanger 10
When the heat medium heated in step is dropped, the powder 6 is heated to release the absorbed hydrogen.
【0009】また、該粉末6から熱回収を行う場合は、
容器1内に加圧した水素ガスを導入して該粉末6に水素
の吸蔵反応を行わせ、これに伴う発熱を降り注ぐ熱媒体
で吸収して熱交換器10で外部配管11の流体を加熱す
ることにより回収され、逆に該容器1内の水素ガスを減
圧すると該粉末6は水素放出反応による吸熱作用が生
じ、該粉末6に降り注がれる熱媒体が冷却されるので、
熱交換器10の外部配管11の流体を冷却することがで
きる。実際の例では、熱媒体の種類にもよるが、該粉末
6を30mm以下の厚さの層とする。La-Ni-Al合金の粉末
6の10gに対して30℃の水の熱媒体を1.3cc流
して水素吸蔵反応を行った場合の反応率と時間の関係は
図3の曲線Aに示すようになり、同じ粉末の10gに対
して30℃のn.トリデカンの熱媒体を1.3cc流した
場合の反応率と時間の関係は図3の曲線Bに示すように
なった。更に、同条件で、粉末にCuメッキしたもの
は、一層良くなり、水の熱媒体の場合に曲線Cとなり、
トリデカンの場合、曲線Dとなった。これに対し、La-N
i-Al合金としてCuメッキプレスした直径20mmの小塊
片を使用し、該小塊片10g当たり0.5ccの水を流
して水素吸蔵反応を行ったとき、及び該小塊片10g当
たり0.5ccのn.トリデカンを流して水素吸蔵反応を
行ったときの反応率と時間の関係は夫々曲線E、Fのよ
うであった。これより明らかなように、粉末でも適当な
表面処理、適当な熱媒体、適当な薄い層状では小塊片と
大差ない反応率が得られた。When heat is recovered from the powder 6,
Pressurized hydrogen gas is introduced into the container 1 to cause the powder 6 to perform a hydrogen storage reaction, and the heat generated thereby is absorbed by the heat medium flowing down, and the fluid in the external piping 11 is heated by the heat exchanger 10. When the hydrogen gas in the container 1 is depressurized, the powder 6 has an endothermic effect due to the hydrogen release reaction, and the heat medium poured down to the powder 6 is cooled.
The fluid in the external piping 11 of the heat exchanger 10 can be cooled. In an actual example, the powder 6 is a layer having a thickness of 30 mm or less, depending on the type of the heat medium. The relationship between the reaction rate and time when the hydrogen storage reaction was performed by flowing 1.3 cc of a 30 ° C. water heating medium to 10 g of the La-Ni-Al alloy powder 6 is shown as a curve A in FIG. The relationship between the reaction rate and the time when 1.3 cc of a heating medium of n. Tridecane at 30 ° C. was flowed into 10 g of the same powder was as shown by a curve B in FIG. Further, under the same conditions, the one plated with Cu on the powder is better, and the curve C is obtained in the case of a heating medium of water,
In the case of tridecane, curve D was obtained. In contrast, La-N
A small lump piece having a diameter of 20 mm pressed with Cu plating was used as the i-Al alloy, and 0.5 cc of water was flowed per 10 g of the lump piece to perform a hydrogen storage reaction. The relationship between the reaction rate and the time when the hydrogen storage reaction was carried out by flowing 5 cc of n. Tridecane was as shown by curves E and F, respectively. As is clear from this, even with the powder, a suitable surface treatment, a suitable heat medium, and a suitable thin layered form provided a reaction rate not much different from that of the small pieces.
【0010】該水素吸蔵金属は表面積の大きい粉末であ
るから、熱媒体や水素ガスとの接触面積も大きく、水素
吸収量も大きくなりエネルギー変換効率は低下すること
がなく、従来のように塊状に成形する必要がないから水
素吸蔵金属は安価ですみ、保守費用が安くてすむ。[0010] Since the hydrogen storage metal is a powder having a large surface area, it has a large contact area with a heat medium or hydrogen gas, increases the amount of absorbed hydrogen, and does not lower the energy conversion efficiency. Since there is no need for molding, the hydrogen storage metal can be inexpensive and the maintenance cost can be low.
【0011】図2に示した実施例は、熱媒体と共に粉末
6も落下するようにしたもので、該棚5には図1のよう
な縁部12がなく、熱媒体の導出口4に繋がる循環回路
8には、熱媒体と該粉末6とを分離する分離器13を介
在させ、該容器1の上方には最上段の棚5の上に分離器
13により分離された粉末6を循環して供給する粉末供
給口14を設けた。この場合は、粉末6自体が棚5から
の落下による撹拌を受けるので、より水素ガスや熱媒体
との接触効率が高まり、エネルギー交換効率が良好にな
るのみならず、粉末6は分離器に於いて回収されるので
容器1を開放することなく粉末の交換を行える。15は
輸送装置である。In the embodiment shown in FIG. 2, the powder 6 is also dropped together with the heat medium. The shelf 5 does not have the edge 12 as shown in FIG. 1 and is connected to the outlet 4 for the heat medium. In the circulation circuit 8, a separator 13 for separating the heat medium and the powder 6 is interposed, and the powder 6 separated by the separator 13 is circulated above the uppermost shelf 5 above the container 1. And a powder supply port 14 for supply. In this case, since the powder 6 itself is agitated by dropping from the shelf 5, the contact efficiency with the hydrogen gas and the heat medium is increased, and not only the energy exchange efficiency is improved, but also the powder 6 is separated in the separator. The powder can be exchanged without opening the container 1. Reference numeral 15 denotes a transport device.
【0012】図1及び図2の装置に於いて、容器1を例
えば2基設けるようにしてもよく、一方の容器1内の粉
末に例えば深夜電力等の余剰エネルギーを利用して加熱
した熱媒体で水素放出反応を起こさせ、これで放出され
る水素ガスをもう一方の容器1内へ導いて吸蔵し、昼間
にその内部の粉末に水素放出反応を起こさせるようにす
れば、余剰エネルギー利用の蓄冷熱を行える。更に、図
4のように複数の容器1の一方から他方へ粉末6を移動
させれば、その一方の容器で水素吸蔵反応を連続して行
ない、他方の容器で水素放出反応を連続して行なうこと
ができる。In the apparatus shown in FIGS. 1 and 2, for example, two containers 1 may be provided, and a heat medium heated by using excess energy such as late-night power in the powder in one container 1 is used. The hydrogen release reaction is caused by the above, the hydrogen gas released by this is guided into the other container 1 and occluded, and the hydrogen release reaction is caused to occur in the powder in the daytime during the day. It can perform cold storage heat. Furthermore, if the powder 6 is moved from one of the plurality of containers 1 to the other as shown in FIG. 4, the hydrogen storage reaction is continuously performed in one of the containers, and the hydrogen release reaction is continuously performed in the other container. be able to.
【0013】[0013]
【発明の効果】以上のように本発明によるときは、熱媒
体の導入口と導出口及び水素ガスの導出入口を備えた容
器内に、上下に多段で左右交互に複数の棚を配置して各
棚に薄い層状に載せた水素吸蔵金属の粉末に該熱媒体を
浸して流下させるようにしたので、水素吸蔵金属として
安価な粉末を使用して安価にエネルギー変換を行え、該
粉末を棚に沿って熱媒体と共に流動させることにより安
価でしかも該粉末の交換が容易になり、該容器の上下に
該導入口と導出口を配置し、該容器内に該水素吸蔵金属
の粉末を薄い層状に載せる上下に多段で左右交互に複数
の棚を設ける構成とすることにより、粉末の水素吸蔵金
属を用いたエネルギー変換装置が簡単安価に製作でき、
請求項7の構成とすることにより連続長時間に亘り同一
のエネルギ変換を継続できる等の効果がある。As described above, according to the present invention, a plurality of shelves are alternately arranged on the upper and lower sides in a container provided with an inlet and an outlet for the heat medium and an outlet for the hydrogen gas. Since the heat medium is immersed in the hydrogen storage metal powder placed in a thin layer on each shelf and allowed to flow down, energy conversion can be performed at low cost using inexpensive powder as the hydrogen storage metal, and the powder is stored on the shelf. It is inexpensive and easy to exchange the powder by flowing it along with the heat medium along.The inlet and outlet are arranged above and below the container, and the powder of the hydrogen storage metal is formed into a thin layer in the container. By adopting a configuration in which a plurality of shelves are provided alternately on the upper and lower sides in multiple stages, an energy conversion device using powdered hydrogen storage metal can be easily and inexpensively manufactured.
According to the configuration of claim 7, there is an effect that the same energy conversion can be continued for a long continuous time.
【図1】 請求項1、2、4及び5の発明の実施例の説
明図FIG. 1 is an explanatory view of an embodiment of the invention according to claims 1, 2, 4 and 5;
【図2】 請求項3及び6の発明の実施例の説明図FIG. 2 is an explanatory view of an embodiment of the invention according to claims 3 and 6;
【図3】 反応率と時間の関係を示す線図FIG. 3 is a diagram showing a relationship between a reaction rate and time.
【図4】 本発明の他の実施例の説明図FIG. 4 is an explanatory view of another embodiment of the present invention.
【符号の説明】 1 容器 2 熱媒体の導入口 3 水
素ガスの導出入口 4 熱媒体の導出口 5 棚 6 水
素吸蔵金属の粉末 7 熱媒体 12 縁部 13 分
離器 14 供給口[Description of Signs] 1 Container 2 Inlet for heat medium 3 Outlet for hydrogen gas 4 Outlet for heat medium 5 Shelf 6 Powder of hydrogen storage metal 7 Heat medium 12 Edge 13 Separator 14 Supply port
Claims (7)
導出入口を備えた容器内に水素吸蔵金属を収め、水素ガ
ス及び熱媒体を該容器内に流通させながら水素吸蔵金属
と水素とから金属水素化物を生成する反応及びその逆の
反応を利用してエネルギー変換する方法に於いて、容器
内に上下に多段で左右交互に複数の棚を配置して各棚に
該水素吸蔵金属の粉末を薄い層状に載せ、該熱媒体を該
容器の上方から該水素吸蔵金属を浸して流下させること
を特徴とする水素吸蔵金属を用いたエネルギー変換方
法。1. A hydrogen storage metal is placed in a container having an inlet and an outlet for a heat medium and an outlet for a hydrogen gas, and the hydrogen storage metal and the hydrogen are exchanged while flowing the hydrogen gas and the heat medium through the container. In the method of converting metal hydrides from energy to energy by utilizing a reaction for producing metal hydride from the reaction and vice versa, a plurality of shelves are alternately arranged left and right in a multistage manner in a container, and the hydrogen storage metal is placed on each shelf. An energy conversion method using a hydrogen storage metal, wherein the powder is placed in a thin layer, and the heat medium is immersed in the hydrogen storage metal from above the container and allowed to flow down.
を防止して薄い層状に載せたことを特徴とする請求項1
に記載の水素吸蔵金属を用いたエネルギー変換方法。2. The hydrogen storage metal powder is placed on a shelf in a thin layer so as to prevent the powder from dropping.
An energy conversion method using the hydrogen storage metal according to 1.
に順次に下方の棚へ流下移動することを特徴とする請求
項1に記載の水素吸蔵金属を用いたエネルギー変換方
法。3. The energy conversion method using a hydrogen storage metal according to claim 1, wherein the powder of the hydrogen storage metal sequentially moves down to a lower shelf together with a heat medium.
導出入口を備えた容器内に水素吸蔵金属を収め、水素ガ
ス及び熱媒体を該容器内に流通させながら水素吸蔵金属
と水素とから金属水素化物を生成する反応及びその逆の
反応を利用してエネルギー変換する装置に於いて、該容
器の上方に該導入口を配置すると共にその下方に導出口
を配置し、該容器内に該水素吸蔵金属の粉末を薄い層状
に載せる上下に多段で左右交互に複数の棚を設けたこと
を特徴とする水素吸蔵金属を用いたエネルギー変換装
置。4. A hydrogen storage metal is placed in a container having an inlet and an outlet for a heat medium and an outlet for hydrogen gas, and the hydrogen storage metal and the hydrogen are mixed while flowing the hydrogen gas and the heat medium through the container. In a device for converting energy by utilizing a reaction for producing metal hydride from the above and a reverse reaction, an inlet is arranged above the vessel and an outlet is arranged below the vessel, and the inside of the vessel is An energy conversion device using a hydrogen storage metal, wherein a plurality of shelves are provided alternately on the upper and lower sides of the hydrogen storage metal powder in a thin layer in a multilayered manner.
吸蔵金属の落下を阻止する縁部を有することを特徴とす
る請求項4に記載の水素吸蔵金属を用いたエネルギー変
換装置。5. The energy conversion device using a hydrogen storage metal according to claim 4, wherein the shelf has an edge for preventing a thin layered hydrogen storage metal placed on the shelf from falling.
媒体とを分離する分離器を接続し、上記容器に、上記棚
の最上段の棚上に該分離器で分離した水素吸蔵金属を供
給する供給口を設けたことを特徴とする請求項4に記載
の水素吸蔵金属を用いたエネルギー変換装置。6. A separator for separating the hydrogen storage metal and the heat medium is connected to the outlet, and the hydrogen storage metal separated by the separator is placed on the uppermost shelf of the shelf in the container. The energy conversion device using a hydrogen storage metal according to claim 4, wherein a supply port is provided.
導出入口を備えた容器内に水素吸蔵金属を収め、水素ガ
ス及び熱媒体を該容器内に流通させながら水素吸蔵金属
と水素とから金属水素化物を生成する反応及びその逆の
反応を利用してエネルギー変換する装置に於いて、該容
器を少なくとも2個用意し、各容器の上方に該導入口及
び水素吸蔵金属を最上段の棚上へ供給する供給口を配置
すると共にその下方に導出口を配置し、各容器内に該水
素吸蔵金属の粉末を薄い層状に載せる上下に多段で左右
交互に複数の棚を設け、各導出口に水素吸蔵金属と熱媒
体とを分離する分離器を接続し、1の容器の分離器で分
離された水素吸蔵金属を他の容器の供給口へ供給するこ
とを特徴とする水素吸蔵金属を用いたエネルギー変換装
置。7. A hydrogen storage metal is placed in a container having an inlet and an outlet for a heat medium and an outlet for hydrogen gas, and the hydrogen storage metal and the hydrogen are mixed while the hydrogen gas and the heat medium are passed through the container. In a device for converting energy by utilizing a reaction for producing metal hydride from the above and a reverse reaction, at least two containers are prepared, and the inlet and the hydrogen storage metal are placed above each container in the uppermost stage. A supply port for supplying on the shelf is arranged, and an outlet is disposed below the supply port, and a plurality of shelves are provided alternately in left and right in a multistage manner in which the hydrogen absorbing metal powder is placed in a thin layer in each container. A separator for separating the hydrogen storage metal and the heat medium is connected to the outlet, and the hydrogen storage metal separated by the separator of one container is supplied to a supply port of another container. Energy conversion device used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP515995A JP2769985B2 (en) | 1995-01-17 | 1995-01-17 | Energy conversion method and apparatus using hydrogen storage metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP515995A JP2769985B2 (en) | 1995-01-17 | 1995-01-17 | Energy conversion method and apparatus using hydrogen storage metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08193765A JPH08193765A (en) | 1996-07-30 |
JP2769985B2 true JP2769985B2 (en) | 1998-06-25 |
Family
ID=11603481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP515995A Expired - Fee Related JP2769985B2 (en) | 1995-01-17 | 1995-01-17 | Energy conversion method and apparatus using hydrogen storage metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2769985B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110219802A1 (en) * | 2010-03-09 | 2011-09-15 | Exxonmobil Research And Engineering Company | Sorption systems having improved cycle times |
-
1995
- 1995-01-17 JP JP515995A patent/JP2769985B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08193765A (en) | 1996-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2536501C2 (en) | Reservoir for accumulation and hydrogen and/or heat withdrawal | |
CA1108821A (en) | Apparatus and method for transferring heat to and from a bed of metal hydrides | |
GB2574673A (en) | Hydrogen storage device and method of producing a hydrogen storage device | |
US20180017337A1 (en) | Thermal energy storage apparatus | |
JP2769985B2 (en) | Energy conversion method and apparatus using hydrogen storage metal | |
US4099558A (en) | Method of heat accumulation and a thermal accumulator for the application of said method | |
US4099557A (en) | Method of heat accumulation and a thermal accumulator for the application of said method | |
JPH0121432B2 (en) | ||
JPH0794935B2 (en) | Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container | |
JP2001241599A (en) | Recovery storage container for hydrogen | |
JP2002160901A (en) | Device for activating hydrogen storage alloy | |
JPH0227387B2 (en) | ||
JPH02110263A (en) | Heat-utilizing system utilizing hydrogen storage alloy and operation thereof | |
JPS5852921B2 (en) | Method for thermal decomposition of metal hydrides and apparatus for its implementation | |
JPH01239001A (en) | Reactor for hydrogen storage alloy | |
JPH0663674B2 (en) | Energy conversion method and device using hydrogen storage metal | |
JPH02233954A (en) | Ice making machine utilizing metallic hydrogen compound | |
JP2020132450A (en) | Hydrogen supply apparatus and hydrogen supply method | |
JPS60114672A (en) | Heat pump method by metallic hydride | |
JPS58156192A (en) | Heat transfer device by use of solid/gas reversible reactant | |
JPH02279501A (en) | Device for maintaining hydrogen purity in generator by metal hydride | |
JPS6229446Y2 (en) | ||
JP2004053047A (en) | Exhaust heat recovery/transportation system | |
JPS59212600A (en) | Storing method of hydrogen | |
JPS59137778A (en) | Re-liquefier for low-temperature liquefied gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |