JPH0791697B2 - Carbon fiber manufacturing method - Google Patents

Carbon fiber manufacturing method

Info

Publication number
JPH0791697B2
JPH0791697B2 JP61248317A JP24831786A JPH0791697B2 JP H0791697 B2 JPH0791697 B2 JP H0791697B2 JP 61248317 A JP61248317 A JP 61248317A JP 24831786 A JP24831786 A JP 24831786A JP H0791697 B2 JPH0791697 B2 JP H0791697B2
Authority
JP
Japan
Prior art keywords
pitch
spinning
orientation
hole
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61248317A
Other languages
Japanese (ja)
Other versions
JPS646123A (en
Inventor
秀行 中島
啓一 猪俣
Original Assignee
株式会社ペトカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ペトカ filed Critical 株式会社ペトカ
Priority to JP61248317A priority Critical patent/JPH0791697B2/en
Publication of JPS646123A publication Critical patent/JPS646123A/en
Publication of JPH0791697B2 publication Critical patent/JPH0791697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はピッチから高性能を有する炭素繊維を製造する
方法に関する。さらに詳しくは炭素分子の配向組織が繊
維断面においては表層オニオン配向芯ランダムの複合構
造を示し、表面に開裂のない、高強度、高弾性率を有す
るピッチ系炭素繊維の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing carbon fiber having high performance from pitch. More specifically, the present invention relates to a method for producing a pitch-based carbon fiber having a high-strength and high elastic modulus in which the orientation structure of carbon molecules exhibits a composite structure of surface layer onion orientation core random in the fiber cross section, without surface cleavage.

(ロ)従来の技術 光学異方性ピッチは特開昭49−19127号などに述べられ
ているように易炭化、易黒鉛化材料であり、高強度、高
弾性率の炭素繊維の原料としてすぐれた性質を示す。
(B) Prior art Optically anisotropic pitch is an easily carbonized and graphitized material as described in JP-A-49-19127, and is an excellent raw material for carbon fiber having high strength and high elastic modulus. It shows the property.

光学異方性ピッチの紡糸は、三次元的に極度の異方性を
持った分子の繊維化であるため、通常の高分子物の溶融
紡糸には認められないような配向挙動を示す。J.B.Barr
らはApplied Polymer Symposia 29 P.161−173(1976)
にこのような配向挙動に対応する層状構造がピッチ系炭
素繊維に存在することを報告しており、配向タイプをラ
ジアル型、オニオンスキン型、ランダム型に分類した。
Spinning with an optically anisotropic pitch is a fiber formation of a molecule having three-dimensionally extreme anisotropy, and therefore exhibits an orientation behavior that is not observed in ordinary melt spinning of a polymer. JBBarr
Et al. Applied Polymer Symposia 29 P.161-173 (1976)
Have reported that a layered structure corresponding to such orientation behavior exists in pitch-based carbon fibers, and the orientation types are classified into radial type, onion skin type, and random type.

ピッチの紡糸の研究の進展により、配向タイプとしては
概してラジアル型をとり易いこと、ラジアル型は他の型
にくらべて表面に開裂きずを生じ易く、機械的変形の繰
り返しに対して弱いことが判明してきた。
Advances in research on pitch spinning have revealed that the radial type is generally easier to adopt as the orientation type, and the radial type is more susceptible to repeated mechanical deformation than the other types because it tends to cause cleavage cracks on the surface. I've been

特開昭57−154416号では、このような問題の解決のため
に、遠心紡糸を行う際に高温の気流を用いて冷却するこ
とにより、配向タイプをランダム型またはオニオンスキ
ン型にする方法を開示している。山田らは昭和59年度の
第10回炭素材料学会において、ピッチの粘度の対数と絶
対温度の逆数の関係に現れる折れ曲り点より紡糸温度が
高温側にランダム型とオニオンスキン型、低温側にラジ
アル型が現れると述べている。これらは紡糸条件を徐冷
サイドに持っていくとランダム型ないしオニオンスキン
型になることを示唆しているが、ピッチの曳糸性につい
て考察すると、この紡糸条件はピッチの曳糸性を低下さ
せ、糸条の均一性や紡糸の安定性を阻害する方向に向か
っていることがわかる。ピッチは光学異方性ピッチのよ
うに分子量の大きなものでも一般の高分子材料に較べて
分子量が小さく、その曳糸性は高分子に現れるものとは
異なり一般にガラス状過冷却液体に現れるものと同一と
考えられる。それは液体の表面張力が粘性の割に小さく
なるため、液体の形状が円柱状であることが安定になっ
て、球状に分断されにくくなることによる。ピッチの紡
糸の場合冷却を徐冷サイドに移行させると、液体の粘性
の上昇速度が低下するため、円柱状であることが不安定
である時間が長くなり、液柱にくびれや破断が発生しや
すくなり、紡糸が不安定化するため好ましくない。
JP-A-57-154416 discloses, in order to solve such a problem, a method in which the orientation type is changed to a random type or an onion skin type by cooling with a high-temperature air stream during centrifugal spinning. is doing. Yamada et al., At the 10th Carbon Society of Japan in 1984, the spinning temperature was random type and onion skin type from the bending point appearing in the relationship between the logarithm of pitch viscosity and the reciprocal of absolute temperature. It says that a pattern will appear. These suggest that if the spinning condition is brought to the slow cooling side, it becomes a random type or onion skin type.However, considering the spinnability of the pitch, this spinning condition reduces the spinnability of the pitch. It can be seen that the tendency is to impede the uniformity of yarn and the stability of spinning. Even if the pitch has a large molecular weight such as an optically anisotropic pitch, the molecular weight is smaller than that of a general polymer material, and its spinnability is generally expressed in a glassy supercooled liquid unlike that of a polymer. Considered to be the same. This is because the surface tension of the liquid is small relative to the viscosity, so that the liquid has a cylindrical shape and is stable, and is less likely to be divided into spherical shapes. In the case of pitch spinning, when cooling is transferred to the slow cooling side, the rate of increase in the viscosity of the liquid decreases, and the time in which the columnar shape is unstable becomes longer, causing constriction and breakage in the liquid column. This is not preferable because it becomes easy and spinning becomes unstable.

大谷らは特開昭57−100186号にこの問題点を解決するた
め、光学異方性ピッチを還元して等方化し、その程度を
わずかな外力によって光学異方化する程度とすることに
より、曳糸性の良好な条件で紡糸できることを開示して
いる。また山田らは特開昭58−18421号に光学異方化す
る直前の、まだわずかな外力では光学異方化しないピッ
チで曳糸性が良好な条件で紡糸でき、しかも炭化特性が
光学異方性ピッチと大差ないものが作れることを開示し
ている。これらの方法はたしかに炭素分子の配向をラン
ダム化するためには有効な方法であるが、ピッチが本質
的に分析困難な物質であることから、ピッチ性状の把握
が難しく、品質の安定化が困難であるため大規模な工業
的実施には問題が多い。
In order to solve this problem in Japanese Patent Laid-Open No. 57-100186, Otani et al. Reduce the optical anisotropic pitch to make it isotropic, and the degree is made anisotropic by a slight external force. It is disclosed that the spinning can be performed under the condition that the spinnability is good. Yamada et al. Also described in JP-A-58-18421, just before the optical anisotropy, it was possible to perform spinning under conditions where the spinnability was good with a pitch that did not cause the optical anisotropy with a slight external force, and the carbonization characteristics were the optical anisotropy. It discloses that a product that is not much different from the sex pitch can be made. These methods are certainly effective methods for randomizing the orientation of carbon molecules, but since pitch is a substance that is essentially difficult to analyze, it is difficult to grasp the pitch properties and it is difficult to stabilize the quality. Therefore, there are many problems in large-scale industrial implementation.

この問題点を解決するために本出願人は特開昭59−1634
24号を出願した。この方法は異型断面を有する紡糸ノズ
ルから光学異方性ピッチを溶融紡糸するもので、凝固す
るまでの間に液柱が表面張力によって円形に近いような
形に変形するとともに、炭素分子の配向がランダム化す
るため、炭化後の強度及び弾性率が高くなる効果を有す
る。この方法はたしかにすぐれた方法であるが、紡糸ノ
ズルの異型度が低くて、得られる繊維の断面形が実質的
に真円の場合には炭素分子の配向のランダム化が不十分
であり、配向を十分にランダム化するためには紡糸ノズ
ルの異型度を大きくする必要がある。この場合紡糸ノズ
ルの磨耗変形が生じ易い欠点があるため、ノズルの消耗
によるコスト上昇が大きい欠点がある。
In order to solve this problem, the applicant of the present invention has disclosed Japanese Patent Laid-Open No. 59-1634.
Filed No. 24. In this method, the optically anisotropic pitch is melt-spun from a spinning nozzle having an irregular cross section, and the liquid column is deformed into a shape close to a circle due to surface tension until the solidification, and the orientation of carbon molecules is Since it is randomized, it has the effect of increasing the strength and elastic modulus after carbonization. This method is certainly an excellent method, but the degree of irregularity of the spinning nozzle is low, and when the cross-sectional shape of the obtained fiber is substantially a perfect circle, the randomization of the orientation of the carbon molecules is insufficient, and the orientation In order to sufficiently randomize, it is necessary to increase the degree of irregularity of the spinning nozzle. In this case, there is a drawback that wear deformation of the spinning nozzle is likely to occur, resulting in a large cost increase due to exhaustion of the nozzle.

この問題点を解決する別の方法として本出願人は特開昭
59−163422号を出願した。この方法はノズル内部の最狭
部断面積よりもノズルの出口部断面積が大きい紡糸口金
から光学異方性ピッチを溶融紡糸するもので、紡糸孔中
の高剪断部で生じたディスコティック液晶のラジアル配
向が、紡糸孔の拡大と紡糸孔から吐出後の伸長倍率が大
きいことが原因でランダム化し、さらにオニオンスキン
配向に移行する。この方法は確かに優れた方法である
が、紡糸孔から吐出後の伸長倍率が大きいことが原因
で、繊維の太さ斑が大きい欠点がある。紡糸孔の拡大後
の径を小さくすればこの欠点は緩和されるが、紡糸孔の
深部を細くけずる必要があるため、紡糸孔の加工費が非
常に高くなる欠点がある。この欠点を改良するために、
特開昭59−168127号のように紡糸孔を拡大した後さらに
縮小する方法が提案されているが紡糸孔の加工はさらに
難しく、二枚の紡糸口金を貼り合わせるような加工が必
要となり、非常に高価になる欠点がある。
As another method for solving this problem, the present applicant has disclosed that
Filed No. 59-163422. This method melt-spins an optically anisotropic pitch from a spinneret with a nozzle outlet cross-sectional area larger than the narrowest cross-sectional area inside the nozzle. The radial orientation is randomized due to the enlargement of the spinning holes and the large expansion ratio after discharging from the spinning holes, and further shifts to the onion skin orientation. This method is certainly an excellent method, but it has a drawback that the unevenness in the thickness of the fiber is large due to the large elongation ratio after discharging from the spinning hole. Although this drawback can be alleviated by reducing the diameter of the spinning hole after expansion, there is a drawback that the processing cost of the spinning hole becomes very high because the deep portion of the spinning hole must be finely cut. To remedy this drawback,
As disclosed in JP-A-59-168127, a method of enlarging the spinning hole and then further reducing it has been proposed, but it is more difficult to process the spinning hole, and a process of bonding two spinnerets is required. It has the disadvantage of being expensive.

この欠点を改良する別の方法として米国特許第4,376,74
7号には紡糸孔の中にフィルター材料を充填したものが
開示されている。この口金の加工は比較的容易であり、
この方法はたしかに炭素分子のランダム配向には有効
で、紡糸性も良好であるが、紡糸口金の洗浄が極めて困
難な欠点を有する。
Another way to remedy this drawback is US Pat. No. 4,376,74
No. 7 discloses a spinning hole filled with a filter material. Processing of this base is relatively easy,
This method is effective for random orientation of carbon molecules and has good spinnability, but has a drawback that washing of the spinneret is extremely difficult.

この欠点を改良するさらに別の方法として、特開昭60−
259609号には紡糸孔の導入部にインサートを入れる方法
が提案されている。この方法は口金加工が容易で、洗浄
も容易である利点を有するが炭素分子のランダム配向化
が必ずしも十分でない欠点を有する。
As another method for improving this drawback, JP-A-60-
No. 259609 proposes a method of inserting an insert into the introduction portion of a spinning hole. This method has an advantage that the die processing is easy and the washing is easy, but it has a drawback that the random orientation of carbon molecules is not always sufficient.

(ハ)発明が解決しようとする問題点 本発明は光学異方性ピッチもしくはそれと近似の炭化特
性を有する高軟化点のピッチを溶融紡糸する際、ピッチ
分子が繊維断面に対してラジアル方向に配向し難くし、
炭化後の炭素分子を表面オニオン芯ランダム配向させる
ことにより、ピッチ繊維を炭化あるいはさらに黒鉛化し
た後、表面に開裂のない高強度、高弾性率のものとする
ことを目的とする。
(C) Problems to be Solved by the Invention In the present invention, when melt-spinning an optically anisotropic pitch or a pitch having a high softening point having carbonization characteristics similar thereto, pitch molecules are oriented in the radial direction with respect to the fiber cross section. Hard to do,
The purpose of the present invention is to make the pitch fibers carbonized or further graphitized by randomly orienting the carbon molecules after carbonization on the surface to give high strength and high elastic modulus with no surface cleavage.

一般に大型の分子では剪断場内では剪断場方向を含む面
内で回転運動を生じながら配向を高めて行くのである
が、ピッチのような円盤状の分子では紡糸孔中の流動に
より容易にラジアル配向を示すようになる。液晶を形成
するようなピッチの場合には円盤が重なり合った状態が
安定状態であるので、熱拡散によるランダム化は起こら
ずラジアル構造になりやすい。紡糸孔を出たピッチは液
柱状で高倍率に引き伸ばされるので、この過程での表面
拡大によって分子の配向が乱れたり、さらには表面に平
行な分子配列が発達してオニオンスキン配向になるもの
と思われるが、この機構については明らかにされていな
い。
Generally, in a large molecule, in a shear field, the orientation is increased while causing rotational motion in a plane including the shear field direction, but in the case of a disk-shaped molecule such as a pitch, radial orientation is easily caused by the flow in the spinning hole. As shown. When the pitch is such that liquid crystals are formed, the state in which the disks are overlapped is a stable state, so randomization due to thermal diffusion does not occur and a radial structure is likely to occur. Since the pitch exiting the spinning hole is a liquid column and is stretched at a high magnification, the orientation of the molecules is disturbed by surface expansion in this process, and further, the molecular arrangement parallel to the surface develops and becomes an onion skin orientation. Apparently, this mechanism has not been clarified.

(ニ)問題点を解決する手段 本発明は高軟化点のピッチを溶融紡糸したのち、不融化
処理及び炭化あるいはさらに黒鉛化して炭素繊維を製造
する方法に於いて、該溶融紡糸をするに際して、紡糸孔
中に該紡糸孔の吐出口以降にまで達するインサートを紡
糸孔の導入孔側から挿入してピッチ流を紡出することを
特徴とする炭素繊維の製造方法である。本発明において
高軟化点のピッチとは光学異方性のピッチのような易黒
鉛化性ピッチである。易黒鉛化性ピッチはか焼時ニード
ルコークスを生じ、またピッチ繊維の炭化時に無緊張の
炭化においても高弾性率の炭素繊維を生じる。易黒鉛化
性ピッチには光学異方性ピッチのほかに、これと近似の
黒鉛化性を示すドーマントメソフェースピッチやプリメ
ソフェース炭素質が含まれる。
(D) Means for Solving the Problems The present invention is a method for producing carbon fibers by melt spinning a pitch having a high softening point, followed by infusibilization treatment and carbonization or further graphitization, in the melt spinning, It is a method for producing carbon fibers, characterized in that an insert that reaches to a position after a discharge port of the spinning hole is inserted into the spinning hole from an introduction hole side of the spinning hole and a pitch flow is spun out. In the present invention, the pitch having a high softening point is a graphitizable pitch such as an optically anisotropic pitch. The graphitizable pitch produces needle coke during calcination, and also carbon fiber having a high elastic modulus even when the pitch fiber is carbonized without stress. The graphitizable pitch includes, in addition to the optically anisotropic pitch, dormant mesophase pitch and premesophase carbonaceous material that exhibit graphitization properties similar to this.

紡糸孔に挿入されるインサートは少なくとも紡糸孔の吐
出口以降にまでその先端が達している必要がある。この
具体例を第1図に示す。インサートは紡糸孔の形状と同
心的で有っても良いが、紡糸孔の内面に局部的に接触す
ることによりその形状が固定できるようにすることが好
ましい。
The tip of the insert to be inserted into the spinning hole needs to reach at least up to the outlet of the spinning hole. A specific example of this is shown in FIG. The insert may be concentric with the shape of the spinning hole, but it is preferable that the shape can be fixed by locally contacting the inner surface of the spinning hole.

このように紡糸孔中に吐出孔以降に達するインサートを
挿入する効果の一つは紡糸孔中で剪断方向にピッチ分子
が配向し、そのラジアル配向構造が凍結して炭素分子の
ラジアル方向に転化することを防止することと思われ
る。紡糸孔とインサートの間で絞られた溶融ピッチ流は
一旦ラジアル化するものと思われるが、吐出孔以降での
拡張および紡糸孔から出たところにピッチ流が滞留する
量が増加するためか、オニオンスキン配向になる条件が
広くなる傾向が認められ、とくに表面付近のみが表面に
平行な配向を示すことが多くなり、表層オニオン配向芯
部ランダムの複合構造を取り易くなる。その結果本発明
により製造された炭素繊維はすぐれた強度ならびに耐久
性を示すものと推定される。
In this way, one of the effects of inserting the insert that reaches after the discharge hole into the spinning hole is that the pitch molecules are oriented in the shearing direction in the spinning hole, the radial orientation structure freezes and the carbon molecules are converted to the radial direction. It seems to prevent that. The molten pitch flow squeezed between the spinning hole and the insert seems to be once radialized, but is it because of the expansion after the discharge hole and the increase in the amount of the pitch flow retained at the exit from the spinning hole? There is a tendency that the conditions for onion skin orientation become wider, and in particular, only the vicinity of the surface often shows orientation parallel to the surface, and it becomes easy to obtain a composite structure of the surface layer onion orientation core random. As a result, the carbon fiber produced by the present invention is presumed to have excellent strength and durability.

本発明においてインサートの断面積は吐出孔断面積の0.
03倍ないし0.8倍、好ましくは吐出孔断面積の0.1倍ない
し0.6倍である。また吐出孔から出ているインサートの
長さは吐出孔径の30倍以下であることが好ましい。
In the present invention, the cross-sectional area of the insert is 0.
It is 03 times to 0.8 times, preferably 0.1 times to 0.6 times the cross-sectional area of the discharge hole. Further, the length of the insert protruding from the discharge hole is preferably 30 times or less the diameter of the discharge hole.

実施例1,2 熱接触分解(FCC)残油の初溜404℃、終溜560℃(常圧
換算)の溜分にメタンガスを送入しながら420℃で2時
間熱処理し、さらに320℃で16時間加熱してメソフェー
スを44.8%含有するピッチをつくり、これを熟成処理し
て比重差によりメソフェースを沈降分離した。このピッ
チは光学異方性成分をほぼ100%含有し、キノリン不溶
分47%、トルエン不溶分82%、を含有していた。
Examples 1 and 2 Thermal catalytic cracking (FCC) heat treatment was carried out at 420 ° C for 2 hours while feeding methane gas to the first distillate at 404 ° C and the final distillate at 560 ° C (at atmospheric pressure), and at 320 ° C. A pitch containing 44.8% of mesophase was prepared by heating for 16 hours, and this was aged to separate the mesophase by sedimentation due to the difference in specific gravity. This pitch contained almost 100% of optically anisotropic component, 47% of quinoline-insoluble matter and 82% of toluene-insoluble matter.

このピッチを、第1表に示す仕様の普通の口金に、第1
図に示すような吐出孔以降まで達するインサートを挿入
し、第1表に示す条件で紡出した。
This pitch can be adjusted to
As shown in the figure, an insert reaching up to and after the discharge hole was inserted and spun under the conditions shown in Table 1.

炭化後の炭素分子の配向及び物性を調査した結果も合わ
せて第1表に示した。
The results of investigating the orientation and physical properties of carbon molecules after carbonization are also shown in Table 1.

いずれも表面オニオン芯ランダム配向となり、かつ強度
的にすぐれた炭素繊維が得られた。
In all cases, carbon fibers having a surface onion core random orientation and excellent strength were obtained.

比較例1,2 インサートを挿入しないこと以外は第1表に示すよう
に、実施例1,2と同一の口金で、かつ同一の条件でピッ
チを紡出した。
Comparative Examples 1 and 2 As shown in Table 1 except that the insert was not inserted, the pitch was spun with the same die and the same conditions as in Examples 1 and 2.

炭化後の炭素分子の配向は、第1表に示すようにラジア
ル配向となり、強度も低い値を示した。
The orientation of the carbon molecules after carbonization was a radial orientation as shown in Table 1, and the strength also showed a low value.

比較例3 実施例1のインサートのかわりに、普通の紡糸口金の導
入部に焼結合金製のフィルター(ステンレス製厚さ5mm
目ひらき100−200mesh)を押し込んでピッチの紡糸を行
った。
Comparative Example 3 Instead of the insert of Example 1, a filter made of a sintered alloy (stainless steel thickness 5 mm was used at the introduction portion of a normal spinneret).
Pitch spinning was carried out by pressing open eyes (100-200 mesh).

炭素分子の配向ランダム化は生じたが口金の洗浄が極め
て困難であった。
Randomization of orientation of carbon molecules occurred, but it was extremely difficult to clean the die.

(ホ)発明の効果 本発明により紡糸されたピッチ繊維は炭素分子の表面が
オニオン配向芯部がランダムな複合構造を示す炭素繊
維、ひび割れを生じにくく強度、耐久性のすぐれた炭素
繊維である。
(E) Effect of the Invention The pitch fiber spun according to the present invention is a carbon fiber having a composite structure in which the surface of the carbon molecule has a random onion oriented core portion, and a carbon fiber which is resistant to cracking and has excellent strength and durability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に用いる紡糸口金の実施様態を示す立面
図の略図であって、インサートの先端が吐出孔からはみ
出るようにした例である。 図面記号の説明 1:紡糸孔の導入孔 2:紡糸孔の縮流部 3:紡糸孔の吐出孔 4:インサート
FIG. 1 is a schematic elevational view showing an embodiment of a spinneret used in the present invention, which is an example in which a tip of an insert is protruded from a discharge hole. Explanation of drawing symbols 1: Spinning hole introduction hole 2: Spinning hole contraction part 3: Spinning hole discharge hole 4: Insert

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高軟化点のピッチを溶融紡糸したのち、不
融化処理及び炭化あるいはさらに黒鉛化して炭素繊維を
製造する方法に於いて、該溶融紡糸をするに際して、紡
糸孔中に該紡糸孔の吐出口以降にまで達するインサート
を紡糸孔の導入孔側から挿入してピッチ流を紡出するこ
とを特徴とする炭素繊維の製造方法。
1. A method for producing a carbon fiber by melt spinning a pitch having a high softening point and then subjecting it to infusibilization treatment and carbonization or further graphitization. When melt spinning is performed, the spinning hole is formed in the spinning hole. The method for producing a carbon fiber characterized in that the pitch flow is spun out by inserting an insert that reaches after the discharge port from the introduction hole side of the spinning hole.
JP61248317A 1986-10-21 1986-10-21 Carbon fiber manufacturing method Expired - Lifetime JPH0791697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61248317A JPH0791697B2 (en) 1986-10-21 1986-10-21 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61248317A JPH0791697B2 (en) 1986-10-21 1986-10-21 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS646123A JPS646123A (en) 1989-01-10
JPH0791697B2 true JPH0791697B2 (en) 1995-10-04

Family

ID=17176280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61248317A Expired - Lifetime JPH0791697B2 (en) 1986-10-21 1986-10-21 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0791697B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326524A (en) * 1989-06-23 1991-02-05 Toppan Printing Co Ltd Insertion device for label
FR2869377B1 (en) * 2004-04-23 2006-06-02 Renault Sas DEFORMATION HOUSING FOR A MOTOR VEHICLE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113827A (en) * 1984-11-06 1986-05-31 Teijin Ltd Production of high-performance pitch-based carbon fiber
JPH0637725B2 (en) * 1985-01-19 1994-05-18 工業技術院長 Carbon fiber manufacturing method
JPS6217722A (en) * 1986-07-28 1987-01-26 Olympus Optical Co Ltd Single objective stereoscopic vision binocular microscope

Also Published As

Publication number Publication date
JPS646123A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
US4115527A (en) Production of carbon fibers having high anisotropy
WO1984003722A1 (en) Process for producing carbon fibers
JPS639045B2 (en)
JPS61167022A (en) Production of carbon yarn and device therefor
JPH07116643B2 (en) Carbon fiber manufacturing method
JPH0791697B2 (en) Carbon fiber manufacturing method
JPH10298829A (en) Production of pitch-based carbon fiber
JPH0781211B2 (en) Carbon fiber manufacturing method
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPH0144805B2 (en)
JPH0545685B2 (en)
US4859382A (en) Process for preparing carbon fibers elliptical in section
JP4601875B2 (en) Carbon fiber manufacturing method
JP2894880B2 (en) Spinnerets for pitch-based carbon fiber spinning
JP2722270B2 (en) Carbon fiber and non-woven fabric containing it as a main component
JP2849156B2 (en) Method for producing hollow carbon fiber
JPH0364525A (en) Production of pitch-based carbon yarn
JP3164704B2 (en) Method for producing pitch-based high compressive strength carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JP2520942Y2 (en) Spinning nozzle for carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS62170527A (en) Production of pitch-based carbon fiber
JPH01156514A (en) Multihole spinning nozzle for producing pitch based carbon fiber
JP2766530B2 (en) Method for producing pitch-based carbon fiber
JPH0518922B2 (en)