JPH0791547B2 - Method for removing mercury in hydrocarbon oils - Google Patents

Method for removing mercury in hydrocarbon oils

Info

Publication number
JPH0791547B2
JPH0791547B2 JP63012288A JP1228888A JPH0791547B2 JP H0791547 B2 JPH0791547 B2 JP H0791547B2 JP 63012288 A JP63012288 A JP 63012288A JP 1228888 A JP1228888 A JP 1228888A JP H0791547 B2 JPH0791547 B2 JP H0791547B2
Authority
JP
Japan
Prior art keywords
tin
mercury
hydrocarbon
activated carbon
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63012288A
Other languages
Japanese (ja)
Other versions
JPH01188587A (en
Inventor
隆 鳥畑
悦子 川島
Original Assignee
三井石油化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井石油化学工業株式会社 filed Critical 三井石油化学工業株式会社
Priority to JP63012288A priority Critical patent/JPH0791547B2/en
Priority to CA000588678A priority patent/CA1325992C/en
Priority to AU28619/89A priority patent/AU607037B2/en
Priority to US07/299,025 priority patent/US4946582A/en
Priority to ES198989300567T priority patent/ES2034604T3/en
Priority to DE8989300567T priority patent/DE68902239T2/en
Priority to EP89300567A priority patent/EP0325486B1/en
Priority to AT89300567T priority patent/ATE78861T1/en
Priority to KR1019890000630A priority patent/KR910005348B1/en
Publication of JPH01188587A publication Critical patent/JPH01188587A/en
Priority to GR920402104T priority patent/GR3005782T3/el
Publication of JPH0791547B2 publication Critical patent/JPH0791547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、炭化水素系油中に混在する水銀の除去方法に
関し、特に固−液接触機構を利用した水銀の選択的、効
率的除去方法に関する。
TECHNICAL FIELD The present invention relates to a method for removing mercury mixed in a hydrocarbon oil, and more particularly to a method for selectively and efficiently removing mercury using a solid-liquid contact mechanism. Regarding

<従来の技術> 水添等によって、ナフサ等の炭化水素系油を改質する場
合には、パラジウム担持アルミナ系等の触媒が用いられ
る。ところが、炭化水素系油中に不純物として水銀が存
在すると、触媒が被毒して反応が充分行われない。
<Prior Art> When reforming a hydrocarbon oil such as naphtha by hydrogenation or the like, a palladium-supported alumina catalyst or the like is used. However, if mercury is present as an impurity in the hydrocarbon oil, the catalyst is poisoned and the reaction is not sufficiently carried out.

このため、従来から以下のような水銀の除去方法が行わ
れている。
Therefore, the following mercury removal methods have been conventionally performed.

a)活性炭、モレキュラシーブ、シリカゲル、ゼオライ
ト、アルミナ等の多孔質吸着剤を用いる物理吸着方法。
a) Physical adsorption method using a porous adsorbent such as activated carbon, molecular sieve, silica gel, zeolite or alumina.

b)金属硫化物、あるいは多孔質吸着剤に硫黄を添加
し、水銀と硫黄との反応/吸着によって水銀を除去する
方法。
b) A method in which sulfur is added to a metal sulfide or a porous adsorbent and mercury is removed by a reaction / adsorption of mercury and sulfur.

しかし、a)の物理吸着方法では、炭化水素系油中の重
質分やガム質は効率良く除去されるものの、水銀の除去
率は30〜70wt%と低い。また、b)の反応/吸着方法で
は、反応/吸着後の濾別が困難であると同時に、a)の
物理吸着方法と同様水銀の除去率が低い。
However, in the physical adsorption method of a), although the heavy components and gums in the hydrocarbon-based oil are efficiently removed, the removal rate of mercury is as low as 30 to 70 wt%. Further, in the reaction / adsorption method of b), filtration after reaction / adsorption is difficult, and at the same time, the removal rate of mercury is low as in the physical adsorption method of a).

このため、炭化水素系油中の水銀を選択的かつ効率良く
除去する方法が望まれている。
Therefore, a method for selectively and efficiently removing mercury in hydrocarbon-based oil is desired.

<発明が解決しようとする課題> 本発明の目的は、炭化水素系油中の微量の水銀を選択的
かつ効率良く除去し、しかも反応後、触媒物質との分離
が容易な炭化水素系油中の水銀の除去方法を提供しよう
とするにある。
<Problems to be Solved by the Invention> An object of the present invention is to remove a trace amount of mercury in a hydrocarbon-based oil selectively and efficiently, and yet to separate it from a catalyst substance after the reaction in a hydrocarbon-based oil. There is an attempt to provide a mercury removal method.

<課題を解決するための手段> 本発明は、錫を担持した活性炭に、水銀を含む炭化水素
系油を接触させることを特徴とする炭化水素系油中の水
銀の除去方法を提供する。
<Means for Solving the Problems> The present invention provides a method for removing mercury in a hydrocarbon-based oil, which comprises bringing a hydrocarbon-based oil containing mercury into contact with activated carbon carrying tin.

ここで、前記錫が錫ハロゲン化物を含むのが良い。Here, the tin preferably contains a tin halide.

前記錫が錫酸化物を含むのが好ましい。It is preferred that the tin comprises tin oxide.

また、前記活性炭が、細孔径10〜500Å、比表面積100〜
1500m2/gであるのが良い。
Further, the activated carbon has a pore size of 10 to 500Å and a specific surface area of 100 to
1500m 2 / g is good.

<発明の構成> 以下に本発明の構成を詳述する。<Structure of the Invention> The structure of the present invention will be described in detail below.

本発明方法を適用する炭化水素系油は、常温で液体の炭
化水素であればいかなるものでもよい。
The hydrocarbon-based oil to which the method of the present invention is applied may be any hydrocarbon as long as it is a liquid hydrocarbon at room temperature.

炭化水素油としては、原油、直留ナフサ、灯油、軽油、
減圧留出物、常圧残存油、エチレンプラントの熱分解装
置で副生される熱分解ガソリン、熱処理を受けた炭化水
素油、接触分解装置で生成されたナフサ留分、リサイク
ル油などが例示される。
Hydrocarbon oils include crude oil, straight-run naphtha, kerosene, diesel oil,
Examples of the distillate under reduced pressure, residual oil under atmospheric pressure, pyrolysis gasoline by-produced in a thermal cracker of an ethylene plant, hydrocarbon oil subjected to heat treatment, naphtha fraction produced in a catalytic cracker, recycled oil, etc. It

特に、天然ガスより液化石油ガス(LPG)を除いたnatur
al gas liquid(NGL)特にNGL中でも高沸点成分を含む
重質天然ガスリキッド中の水銀除去に好適に用いられ
る。
In particular, natur, which is the natural gas excluding liquefied petroleum gas (LPG)
Al gas liquid (NGL) Particularly suitable for removing mercury in heavy natural gas liquid containing a high boiling point component in NGL.

本発明方法では、除去される炭化水素系油中の水銀の存
在形態は、単体水銀、無機水銀、有機水銀等いかなる形
態で存在してもよいが、常温で液体である炭化水素系油
中に存在する有機水銀に対して特に有効である。
In the method of the present invention, the existing form of mercury in the hydrocarbon-based oil to be removed may be any form such as elemental mercury, inorganic mercury, and organic mercury, but in a hydrocarbon-based oil that is liquid at room temperature. It is particularly effective against the organic mercury present.

炭化水素系油中の水銀濃度は、特に限定されるものでは
ないが、400〜600ppb以下、好ましくは100〜150ppb以下
であると反応効率が良い。
The concentration of mercury in the hydrocarbon-based oil is not particularly limited, but the reaction efficiency is good when it is 400 to 600 ppb or less, preferably 100 to 150 ppb or less.

必要な場合は、炭化水素系油中のスラッジ等を、あらか
じめ濾過膜やフィルター等で濾過し、スラッジとともに
濾別される水銀を除去しておくのが良い。
If necessary, it is advisable to previously filter the sludge in the hydrocarbon-based oil with a filter membrane or a filter to remove the mercury that is filtered off together with the sludge.

本発明方法に用いる活性炭は、一般に用いられる粒状ま
たは粉末状の活性炭が用いられ、水蒸気賦活活性炭を用
いることもよい。
The activated carbon used in the method of the present invention is generally used granular or powdery activated carbon, and steam activated carbon may be used.

特に、細孔径10〜500Å、好ましくは10〜100Å、比表面
積100〜1500m2/g、好ましくは、800〜1200m2/gの活性炭
がよい。
Particularly, activated carbon having a pore size of 10 to 500Å, preferably 10 to 100Å, and a specific surface area of 100 to 1500 m 2 / g, preferably 800 to 1200 m 2 / g is good.

この範囲の物性を持つ活性炭を用いると、水銀の除去効
率が向上する効果があるからである。
This is because the use of activated carbon having physical properties in this range has the effect of improving the mercury removal efficiency.

本発明で活性炭への錫(錫化合物)の担持量は担体(活
性炭)重量に耐して0.1〜30重量%が好ましい。上記の
活性炭に担持させる錫は、好ましくは以下の錫またはこ
れらの混合物を用いる。
In the present invention, the amount of tin (tin compound) supported on the activated carbon is preferably 0.1 to 30% by weight based on the weight of the carrier (activated carbon). As the tin supported on the above activated carbon, the following tin or a mixture thereof is preferably used.

これらの錫は、活性炭上で、錫、錫イオン、錫化合物ま
たはこれらの溶媒和物等で存在すると考えられるが、詳
細な形態は不明であり、本発明ではこれらの総称として
「錫」を用いる場合もある。
These tins are considered to exist as tin, tin ions, tin compounds or solvates thereof on activated carbon, but the detailed form is unknown, and in the present invention, "tin" is used as a generic term for them. In some cases.

(1)ハロゲン化錫 ハロゲン化錫としては、SnCl2、SnI2、SnCl4、が好まし
く、これらのハロゲン化錫を、水溶液、塩酸水溶液、ア
ルカリ水溶液等の適切な無機溶媒またはアセトン、アル
コール等の有機溶媒に溶解して溶液とし、この溶液に活
性炭を浸漬し、エバポーレーターで溶媒を除いた後乾
燥、焼成して、錫担持活性炭を調整する。
(1) Tin Halide The tin halide is preferably SnCl 2 , SnI 2 or SnCl 4 , and these tin halides may be used in a suitable inorganic solvent such as an aqueous solution, an aqueous hydrochloric acid solution or an alkaline aqueous solution, or acetone, alcohol or the like. A tin-supported activated carbon is prepared by dissolving it in an organic solvent to form a solution, immersing the activated carbon in the solution, removing the solvent with an evaporator, drying and firing.

(2)酸化錫 錫溶液に活性炭を浸漬し、上述のように乾燥した後に、
酸素雰囲気中で焼成し、酸化錫として用いてもよい。
(2) Tin oxide After immersing activated carbon in a tin solution and drying as described above,
It may be burned in an oxygen atmosphere and used as tin oxide.

錫担持活性炭と、炭化水素系油との接触方法は、各種の
固液接触方式を用いることができ、例えば固定床方式、
移動床方式、流動床方式がある。
As a method for contacting the tin-supporting activated carbon and the hydrocarbon oil, various solid-liquid contact methods can be used, for example, a fixed bed method,
There are moving bed system and fluidized bed system.

好ましくは、以下の反応装置等を用いるが、これらには
限定されない。
The following reactors and the like are preferably used, but not limited to these.

第1図には、錫担持活性炭2を固定床に用いた吸着塔
3、4を備えた装置を示す。
FIG. 1 shows an apparatus equipped with adsorption towers 3 and 4 using a tin-supporting activated carbon 2 as a fixed bed.

第1吸着塔3は、中心部に錫担持活性炭2の固定床を設
えた円筒状反応塔で上部にポンプ6を介して原料1を供
給する原料供給口が設けられ、下部に精製品取出ライン
9が設けられる。
The first adsorption tower 3 is a cylindrical reaction tower having a fixed bed of tin-supporting activated carbon 2 in the center, a raw material supply port for supplying the raw material 1 via a pump 6 is provided in the upper portion, and a purified product take-out line is provided in the lower portion. 9 is provided.

好ましくは、吸着塔は多段に設けられる。Preferably, the adsorption tower is provided in multiple stages.

第1図には、第1吸着塔3と第2吸着塔4が2段に設け
られた例を示す。
FIG. 1 shows an example in which the first adsorption tower 3 and the second adsorption tower 4 are provided in two stages.

炭化水素系油等の原料1は、第1吸着塔3へ供給され、
錫担持活性炭2の固定床を流下し、流下時に炭化水素系
油中の微量の水銀は錫担持活性炭2に吸着、除去され
る。水銀を除去された炭化水素系油は、精製品取出ライ
ン9からさらに第2吸着塔4へ供給され、第1吸着塔3
と同様に炭化水素系油中の水銀が除去される。SV値は、
0.5hr-1〜5.0hr-1、特に0.5hr-1〜2.0hr-1が好ましい。
Raw material 1 such as hydrocarbon oil is supplied to the first adsorption tower 3,
A fixed bed of the tin-supporting activated carbon 2 is flown down, and a small amount of mercury in the hydrocarbon-based oil is adsorbed and removed by the tin-supporting activated carbon 2 during the flow-down. The hydrocarbon-based oil from which mercury has been removed is further supplied to the second adsorption tower 4 from the purified product take-out line 9, and the first adsorption tower 3
The mercury in the hydrocarbon oil is removed in the same manner as in. SV value is
0.5 hr -1 to 5.0 hr -1 , especially 0.5 hr -1 to 2.0 hr -1 is preferable.

第2図は、撹拌器7を有する吸着槽10、11を備えた装置
を示す。
FIG. 2 shows an apparatus equipped with adsorption tanks 10 and 11 having a stirrer 7.

炭化水素系油等の原料1は、吸着槽10に供給され、一方
錫担持活性炭2も吸着槽10に適宜供給される。吸着槽2
内で撹拌器7により撹拌されつつ、原料1と錫担持活性
炭2が接触し、炭化水素系油中の微量の水銀が錫担持活
性炭2に吸着されて除去される。
A raw material 1 such as a hydrocarbon oil is supplied to the adsorption tank 10, while tin-supporting activated carbon 2 is also appropriately supplied to the adsorption tank 10. Adsorption tank 2
While being stirred by the stirrer 7 inside, the raw material 1 and the tin-supporting activated carbon 2 come into contact with each other, and a small amount of mercury in the hydrocarbon oil is adsorbed by the tin-supporting activated carbon 2 and removed.

原料1に含まれる固型分が多い場合には、吸着塔3、
4、吸着槽10、11等の保護のためのプレフィルターない
しは濾過装置を用いるのが良い。濾過材は固型分を取除
くものであればいかなるものでもよい。
When the solid content contained in the raw material 1 is large, the adsorption tower 3,
4. It is preferable to use a prefilter or a filtration device for protecting the adsorption tanks 10 and 11. Any filtering material may be used as long as it removes solid components.

<実施例> 以下に実施例により、具体的に説明する。<Examples> Examples will be specifically described below.

(実施例1〜3) 重質天然リキッド(H−NGL)100mlを0.2μmのミリポ
アフィルターで濾過した。濾別したスラッジ組成は下
記であった。
(Examples 1 to 3) 100 ml of heavy natural liquid (H-NGL) was filtered with a 0.2 μm Millipore filter. The sludge composition filtered out was as follows.

Fe 10.0wt% Si 18.3wt% Hg 3.1wt% S 2.3wt% 濾液中の水銀濃度は130ppbであった。Fe 10.0 wt% Si 18.3 wt% Hg 3.1 wt% S 2.3 wt% The mercury concentration in the filtrate was 130 ppb.

この濾液100mlを、活性炭(比表面積1050m2/g、平均細
孔径20Å、東洋カルゴンCAL)に表1に示す錫を吸着さ
せた錫担持活性炭0.8gと撹拌しながら1時間吸着反応処
理し、処理後の水銀濃度と水銀除去率を表1に示した。
100 ml of this filtrate was subjected to an adsorption reaction treatment for 1 hour while stirring with 0.8 g of tin-supporting activated carbon in which tin shown in Table 1 was adsorbed on activated carbon (specific surface area 1050 m 2 / g, average pore size 20Å, Toyo Calgon CAL), and treated. The subsequent mercury concentration and mercury removal rate are shown in Table 1.

活性炭は、表1に示す錫水溶液中に浸漬し、濾過、水
洗、濾過後、130℃乾燥器で、空気中、3時間乾燥処理
して用いた。
The activated carbon was immersed in the tin aqueous solution shown in Table 1, filtered, washed with water, filtered, and dried in the air at 130 ° C. for 3 hours for use.

得られた錫担持活性炭中の錫化合物の含有量を表1(以
下実施例、比較例において同様)に示した。
The content of the tin compound in the obtained tin-supporting activated carbon is shown in Table 1 (the same applies to the following Examples and Comparative Examples).

(実施例4) 実施例1〜3と同様の活性炭を用い、10%SnCl2水溶液
で同様に処理して、錫担持活性炭を得、第1図に示す吸
着塔3中に充填し、実施例と同様のH−NGLをSV=1.5hr
-1で流下し、処理後の水銀濃度と水銀除去率を表1に示
した。
(Example 4) Using the same activated carbon as in Examples 1 to 3, the same treatment with a 10% SnCl 2 aqueous solution was carried out to obtain tin-loaded activated carbon, which was filled in the adsorption tower 3 shown in FIG. Same H-NGL as SV = 1.5hr
Table 1 shows the mercury concentration and the mercury removal rate after the treatment at -1 .

(比較例) べつに比較として、表1に示す錫を担持しない活性炭
と、FeCl2、FeCl3、LiCl、NaCl、ZnCl2を担持した実施
例と同様の活性炭を用いて、実施例と同様の処理を行い
結果を表1に示した。
(Comparative Example) As a comparison, the same treatment as in Example 1 was carried out by using the activated carbon not supporting tin shown in Table 1 and the activated carbon similar to the example supporting FeCl 2 , FeCl 3 , LiCl, NaCl and ZnCl 2. The results are shown in Table 1.

<発明の効果> 本発明方法は、炭化水素系油と錫担持活性炭を固−液接
触して、炭化水素系油中の水銀を除去するので、炭化水
素系油中に混在する水銀が選択的に効率良く除去でき、
しかも処理後の精製物の分離が容易である。
<Effects of the Invention> In the method of the present invention, the hydrocarbon-based oil and the tin-carrying activated carbon are brought into solid-liquid contact to remove mercury in the hydrocarbon-based oil, so that the mercury mixed in the hydrocarbon-based oil is selectively present. Can be removed efficiently,
Moreover, the purified product after the treatment can be easily separated.

水銀を除去された炭化水素系油は、触媒被毒成分を含ま
ないので、水添反応等の触媒使用反応に広く利用でき
る。
Since the hydrocarbon-based oil from which mercury has been removed does not contain a catalyst poisoning component, it can be widely used for a reaction using a catalyst such as a hydrogenation reaction.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明方法を実施する装置の1例を示す線図
である。 第2図は、本発明方法を実施する他の装置の例を示す線
図である。 符号の説明 1……原料、2……錫担持活性炭、 3……第1吸着塔、4……第2吸着塔、 5……配管、6……ポンプ、 7……撹拌器、9……精製品取出ライン、 10、11……吸着槽
FIG. 1 is a diagram showing an example of an apparatus for carrying out the method of the present invention. FIG. 2 is a diagram showing an example of another apparatus for carrying out the method of the present invention. Explanation of symbols 1 ... Raw material, 2 ... Tin-supporting activated carbon, 3 ... First adsorption tower, 4 ... Second adsorption tower, 5 ... Piping, 6 ... Pump, 7 ... Stirrer, 9 ... Purified product take-out line, 10, 11 ... Adsorption tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】錫を担持した活性炭に、水銀を含む炭化水
素系油を接触させることを特徴とする炭化水素系油中の
水銀の除去方法。
1. A method for removing mercury from a hydrocarbon-based oil, which comprises bringing a hydrocarbon-based oil containing mercury into contact with activated carbon carrying tin.
【請求項2】前記錫が錫ハロゲン化物を含む特許請求の
範囲第1項に記載の炭化水素系油中の水銀の除去方法。
2. The method for removing mercury in a hydrocarbon oil according to claim 1, wherein the tin contains a tin halide.
【請求項3】前記錫が錫酸化物を含む特許請求の範囲第
1項または第2項に記載の炭化水素系油中の水銀の除去
方法。
3. The method for removing mercury in a hydrocarbon oil according to claim 1 or 2, wherein the tin contains tin oxide.
【請求項4】前記活性炭が、細孔径10〜500Å、比表面
積100〜1500m2/gである特許請求の範囲第1項ないし第
3項のいずれかに記載の炭化水素系油中の水銀の除去方
法。
4. The mercury content of the hydrocarbon oil according to claim 1, wherein the activated carbon has a pore size of 10 to 500Å and a specific surface area of 100 to 1500 m 2 / g. Removal method.
JP63012288A 1988-01-22 1988-01-22 Method for removing mercury in hydrocarbon oils Expired - Lifetime JPH0791547B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP63012288A JPH0791547B2 (en) 1988-01-22 1988-01-22 Method for removing mercury in hydrocarbon oils
CA000588678A CA1325992C (en) 1988-01-22 1989-01-19 Method of removing mercury from hydrocarbon oils
AU28619/89A AU607037B2 (en) 1988-01-22 1989-01-19 Method of removing mercury from hydrocarbon oils
US07/299,025 US4946582A (en) 1988-01-22 1989-01-19 Method of removing mercury from hydrocarbon oils
DE8989300567T DE68902239T2 (en) 1988-01-22 1989-01-20 METHOD FOR REMOVING MERCURY FROM HYDROCARBON OILS.
ES198989300567T ES2034604T3 (en) 1988-01-22 1989-01-20 A METHOD OF ELIMINATION OF MERCURY FROM A HYDROCARBON OIL.
EP89300567A EP0325486B1 (en) 1988-01-22 1989-01-20 Method of removing mercury from hydrocarbon oils
AT89300567T ATE78861T1 (en) 1988-01-22 1989-01-20 PROCESS FOR REMOVAL OF MERCURY FROM HYDROCARBON OILS.
KR1019890000630A KR910005348B1 (en) 1988-01-22 1989-01-21 Method of removing mercury from hydrocarbon oils
GR920402104T GR3005782T3 (en) 1988-01-22 1992-09-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012288A JPH0791547B2 (en) 1988-01-22 1988-01-22 Method for removing mercury in hydrocarbon oils

Publications (2)

Publication Number Publication Date
JPH01188587A JPH01188587A (en) 1989-07-27
JPH0791547B2 true JPH0791547B2 (en) 1995-10-04

Family

ID=11801164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012288A Expired - Lifetime JPH0791547B2 (en) 1988-01-22 1988-01-22 Method for removing mercury in hydrocarbon oils

Country Status (1)

Country Link
JP (1) JPH0791547B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202301A (en) * 1989-11-22 1993-04-13 Calgon Carbon Corporation Product/process/application for removal of mercury from liquid hydrocarbon
MY175927A (en) * 2015-03-03 2020-07-15 Petroliam Nasional Berhad Petronas Process for removing heavy metals from hydrocarbons

Also Published As

Publication number Publication date
JPH01188587A (en) 1989-07-27

Similar Documents

Publication Publication Date Title
US4986898A (en) Method of removing mercury from hydrocarbon oils
JP2578514B2 (en) Method for removing mercury from liquid hydrocarbon compounds
JP3537581B2 (en) Mercury adsorbent
RU2238299C2 (en) Integrated method for improved purification of diesel fuel
KR910005348B1 (en) Method of removing mercury from hydrocarbon oils
AU3825701A (en) Process for removing mercury from hydrocarbons
JPH07228874A (en) Method for removing mercury in liquid hydrocarbon
AU2001295976B2 (en) Method for removing mercury from liquid hydrocarbon
JPS6322183B2 (en)
JPH0791546B2 (en) Method for removing mercury in hydrocarbon oils
JPH0791547B2 (en) Method for removing mercury in hydrocarbon oils
AU622179B2 (en) Method of removing mercury from hydrocarbon oils
JPH01315489A (en) Method for removing trace amount of mercuries in hydrocarbon-based oil
JPH0791544B2 (en) Method for removing mercury in hydrocarbon oils
JPH0791545B2 (en) Method for removing mercury in hydrocarbon oils
JPH07103377B2 (en) Method for removing mercury in liquid hydrocarbons
JPH0823023B2 (en) Method for removing mercury in hydrocarbon oils
JPH0428040B2 (en)
JPH0633071A (en) Method for removing mercury in liquid hydrocarbon
JPH0823024B2 (en) Method for removing mercury in hydrocarbon oils
KR100368175B1 (en) How to remove mercury in liquid hydrocarbons
JPH05171161A (en) Removal of arsenic compound in liquid hydrocarbon
JPH10110173A (en) Removal of injurious compound in liquid hydrocarbon
JPH0699695B2 (en) Method for removing lead compounds from liquid hydrocarbons