JPH07103377B2 - Method for removing mercury in liquid hydrocarbons - Google Patents

Method for removing mercury in liquid hydrocarbons

Info

Publication number
JPH07103377B2
JPH07103377B2 JP1159593A JP15959389A JPH07103377B2 JP H07103377 B2 JPH07103377 B2 JP H07103377B2 JP 1159593 A JP1159593 A JP 1159593A JP 15959389 A JP15959389 A JP 15959389A JP H07103377 B2 JPH07103377 B2 JP H07103377B2
Authority
JP
Japan
Prior art keywords
mercury
adsorbent
sulfide
ngl
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1159593A
Other languages
Japanese (ja)
Other versions
JPH0326790A (en
Inventor
昭男 古田
邦男 佐藤
一夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP1159593A priority Critical patent/JPH07103377B2/en
Publication of JPH0326790A publication Critical patent/JPH0326790A/en
Publication of JPH07103377B2 publication Critical patent/JPH07103377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 イ.発明の目的 産業上の利用分野 液状炭化水素、例えば天然ガスより回収されるNGL(天
然ガスコンデンセート)中には産地により数十〜数百μ
g/lに達する水銀が含まれている。NGLを化学原料として
使う分野、例えばエチレン原料として使う場合、深冷分
離工程の熱交換器の腐蝕、アセチレン、ジエン等を水添
する工程の触媒の劣化が問題になる。
Detailed Description of the Invention a. Purpose of the invention Industrial field Liquid hydrocarbons such as NGL (Natural Gas Condensate) recovered from natural gas, depending on the origin, may be several tens to several hundreds μ
It contains mercury up to g / l. When NGL is used as a chemical raw material, for example, as an ethylene raw material, corrosion of the heat exchanger in the cryogenic separation process and deterioration of the catalyst in the process of hydrogenating acetylene, diene, etc. pose problems.

天然ガスなどガス状炭化水素中の水銀除去については、
すでに硫黄担持活性炭などが使われていたが、液状炭化
水素ついてはまだ工業化されたプロセスがない。
For removing mercury in gaseous hydrocarbons such as natural gas,
Sulfur-supporting activated carbon was already used, but there is no industrialized process for liquid hydrocarbons.

従来の技術 本発明者らは、水銀を含有する液又はガスを、モリブデ
ン、タングステン及びバナジウムよりなる群から選ばれ
る一種又は二種以上の金属の硫化物を含有する吸着剤を
接触させることを特徴とする水銀の除去方法(特開平2
−2873)を提案した。しかしNGLには単体水銀のほかに
塩酸水溶液で抽出可能なイオン状水銀や有機水銀などの
水銀化合物が含まれている。上記のように重金属硫化物
からなる吸着剤は単体水銀の除去には有効であるが、水
銀化合物が除去に関してはあまり有効ではない。
2. Description of the Related Art The present inventors have characterized in that a liquid or gas containing mercury is brought into contact with an adsorbent containing a sulfide of one or more metals selected from the group consisting of molybdenum, tungsten and vanadium. Method for removing mercury as
-2873) was proposed. However, NGL contains mercury compounds such as ionic mercury and organic mercury that can be extracted with hydrochloric acid in addition to elemental mercury. As described above, the adsorbent composed of heavy metal sulfide is effective in removing elemental mercury, but not so effective in removing mercury compounds.

イオン状水銀や高分子量の有機水銀も除去するために硫
化ソーダ、ポリ硫化ソーダなどの水溶液と接触させて吸
収させる手段を併用する方法も有効であるが、プロセス
的に複雑になることは避けられない。
In order to remove ionic mercury and high molecular weight organic mercury, it is also effective to use a method of contacting with an aqueous solution such as sodium sulfide or sodium polysulfide to absorb it, but it is possible to avoid complication in the process. Absent.

発明が解決しようとする課題 本発明は、簡単な操作で液状炭化水素中の各種形態の水
銀を除去する方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to provide a method for removing various forms of mercury in a liquid hydrocarbon by a simple operation.

ロ.発明の構成 課題を解決するための手段 本発明による液状炭化水素中の水銀除去法は、水銀を含
有する液状炭化水素を200℃以上に加熱する工程と、加
熱後の液状酸化水素を200℃以下の温度でモリブデンの
硫化物を含む吸着剤に接触させる工程とからなることを
特徴とする。
B. Structure of the invention Means for solving the problem The method for removing mercury in a liquid hydrocarbon according to the present invention is a step of heating a liquid hydrocarbon containing mercury to 200 ° C. or higher, and heating the liquid hydrogen oxide to 200 ° C. or lower. And a step of contacting with an adsorbent containing a sulfide of molybdenum.

加熱処理温度は200℃以上であれば良い。200℃以下では
水銀化合物の単体水銀への変化が不十分である。なお加
熱処理は重質分カットのための蒸留をかねて実施しても
良いし、単に熱を加えるだけでも良いが、NGL中には固
体成分も含まれているケースがあるので、これらを吸着
塔に入れないという点では蒸留のほうが好ましい。
The heat treatment temperature may be 200 ° C. or higher. Below 200 ° C, the conversion of mercury compounds to elemental mercury is insufficient. Note that the heat treatment may be performed while also performing distillation for cutting heavy components, or simply by applying heat, but since there are cases where solid components are also contained in NGL, these may be adsorbed in an adsorption column. Distillation is preferable in that it cannot be put in

加熱処理温度の上限は対象炭化水素の分解温度以下とす
べきは当然であり、370℃前後の上限とする。
Naturally, the upper limit of the heat treatment temperature should be lower than the decomposition temperature of the target hydrocarbon, and the upper limit is around 370 ° C.

加熱処理によりイオン状水銀や高分子量の有機水銀はす
べて単体水銀となるので、吸着剤だけで10μg/l以下ま
で水銀レエルを下げることができる。
By heat treatment, ionic mercury and high-molecular-weight organic mercury are all converted to elemental mercury, so the mercury level can be reduced to less than 10 μg / l using the adsorbent alone.

吸着剤としてはモリブデンの硫化物を含むもの、或はそ
れらシリカ、アルミナ、シリカ−アルミナ、ゼオライ
ト、セラミック、ガラス、樹脂又は活性炭などの担体を
担持したものを挙げることができる。
Examples of the adsorbent include those containing a sulfide of molybdenum, or those containing a carrier such as silica, alumina, silica-alumina, zeolite, ceramic, glass, resin or activated carbon.

担体に担持する場合、吸着剤の金属担持量は硫化物とな
っているので金属量で1〜20wt%が適当である。また他
の金属成分又は無機成分を含んでいても差支えない。
In the case of supporting on a carrier, the amount of metal supported on the adsorbent is sulfide, so 1 to 20 wt% of metal is suitable. Moreover, it does not matter even if other metal components or inorganic components are included.

担体は比表面積が大きいものの方が接触効率が良くなる
ので好ましく、5〜400m2/g、特に100〜250m2/gの比表
面積を有するものが好ましいが、これらに限定されるも
のではない。
It preferred because the carrier has a direction of having a large specific surface area the better the contact efficiency, 5~400m 2 / g, particularly preferably those having a specific surface area of 100 to 250 m 2 / g, but is not limited thereto.

吸着剤としては水脱硫触媒としてケロシンや減圧軽油
(VGO)などの脱硫処理に使用されるモリブデン系(Mo
−Co,Ni系)触媒を硫化処理したもの、或は一定期間使
用して劣化した廃触媒(硫化されている)を用いること
ができる。よって廃触媒を吸着剤として使用すれば、吸
着剤の製造費用を大幅に削減することができるため非常
に有利になる。
As an adsorbent, a molybdenum-based (Mo) that is used for desulfurization treatment of kerosene and vacuum gas oil (VGO) as a water desulfurization catalyst
It is possible to use a sulfurized (Co, Ni-based) catalyst or a waste catalyst (sulfurized) that has deteriorated after being used for a certain period of time. Therefore, if the waste catalyst is used as an adsorbent, the manufacturing cost of the adsorbent can be significantly reduced, which is very advantageous.

水銀を含有する液状炭化水素から水銀を除去する場合、
吸着剤による接触処理温度は200℃以下が好ましい。200
℃を超えると炭化水素の蒸発やクラッキングを生じるな
どの問題を起こす。
When removing mercury from liquid hydrocarbons containing mercury,
The contact treatment temperature with the adsorbent is preferably 200 ° C. or lower. 200
If the temperature exceeds ℃, problems such as evaporation of hydrocarbons and cracking occur.

水銀を含有する液状炭化水素と吸着剤との接触方法は任
意であるが、特に固定床流通方式が好ましい。固定床流
通方式を採用することにより連続運転が可能となる。
The method of contacting the liquid hydrocarbon containing mercury with the adsorbent is arbitrary, but the fixed bed flow system is particularly preferable. Continuous operation is possible by adopting the fixed bed distribution method.

以下実施例により本発明を具体的に説明する。The present invention will be specifically described below with reference to examples.

実施例1 単体水銀約50μg/l及びイオン状水銀約200μg/lを含むN
GLをASTM D86に準じて蒸留することにより、250℃以下
の留分よりなる溜出分と残渣とに分けた。このときNGL
液温度は約300℃であった。溜出分は約80vol%、残渣は
約20vol%であった。
Example 1 N containing about 50 μg / l elemental mercury and about 200 μg / l ionic mercury
By distilling GL according to ASTM D86, it was separated into a distillate consisting of a fraction at 250 ° C or lower and a residue. At this time NGL
The liquid temperature was about 300 ° C. The distillate was about 80 vol% and the residue was about 20 vol%.

溜出分及び残渣の水銀含量を測定したところ、溜出分中
の水銀は205μg/l、残渣中の水銀は3μg/lであった。
水銀の回収量が100%にならないのは、一部は装置への
付着、一部は軽質ガスに同伴されて系外に逃げたための
ロスであると思われる。
When the mercury contents of the distillate and the residue were measured, the mercury in the distillate was 205 μg / l and the mercury in the residue was 3 μg / l.
The reason why the amount of mercury recovered does not reach 100% is considered to be a loss due to part of the mercury adhering to the equipment and part of it being carried by the light gas and escaped to the outside of the system.

次に溜出分100mlにとり、これにアルミナ担持Co−Mo硫
化物(硫化前の金属成分;Co:0.94wt%,Mo:6.70wt%)0.
1gを加えて30分間攪拌後瀘過し、瀘液中の水銀含有量を
測定したところ2.1μg/lであった。
Next, the distillate was taken to 100 ml, and Co-Mo sulfide on alumina (metal component before sulfiding; Co: 0.94 wt%, Mo: 6.70 wt%) was added to this.
After adding 1 g and stirring for 30 minutes and filtering, the mercury content in the filtrate was 2.1 μg / l.

比較例1 実施例1で使用したのと同じNGL100mlを加熱せずに実施
例1で使用したのと同じ吸着剤(アルミナ担持Co−Mo硫
化物)0.1gを加えて30分間攪拌し瀘過後瀘液の水銀濃度
を測定したところ190μg/lであった。また瀘液に1N−HC
lを100ml加えて10分間攪拌した後のNGL中の水銀は1μg
/l以下であった。これは吸着後液中に残った水銀は全て
イオン状水銀であったことを意味する。すなわち吸着剤
によって単体水銀のほかはイオン状水銀の一部しか除去
できないことを示している。
Comparative Example 1 0.1 g of the same adsorbent (Co-Mo sulfide on alumina) as that used in Example 1 was added to 100 ml of the same NGL used in Example 1 without heating, and the mixture was stirred for 30 minutes and filtered after filtration. When the mercury concentration in the liquid was measured, it was 190 μg / l. In addition, 1N-HC for the filtrate
1 μg of mercury in NGL after adding 100 ml and stirring for 10 minutes
It was less than / l. This means that the mercury remaining in the liquid after adsorption was all ionic mercury. That is, it is shown that the adsorbent can remove only part of ionic mercury in addition to elemental mercury.

実施例2 有機水銀を約5mg/(Hgとして)含むNGLを実施例1と
同様にして蒸留し200℃以下の留分よりなる溜出分と残
渣とに分けた。このときNGL液温度は約240℃であった。
溜出分は82vol%、残渣は約16vol%であった。
Example 2 NGL containing about 5 mg / (as Hg) of organic mercury was distilled in the same manner as in Example 1 to separate a distillate consisting of a fraction at 200 ° C. or lower and a residue. At this time, the NGL liquid temperature was about 240 ° C.
The distillate was 82 vol% and the residue was about 16 vol%.

溜出分中の水銀濃度は蒸溜直後は3.4mg/であったが、
1日後1.3mg/となり、それ以後の変化はなかった。こ
れは蒸溜直後には飽和溶解度以上含まれていたためであ
ると思われる。残渣中の水銀濃度は3.4μg/lであった。
The mercury concentration in the distillate was 3.4 mg / immediately after distillation,
It became 1.3 mg / day, and there was no change thereafter. This is probably because the saturated solubility was included immediately after the distillation. The mercury concentration in the residue was 3.4 μg / l.

この場合も、水銀の回収率は100%に達していないが、
これも実施例1で説明したのと同じ理由によるものと思
われる。
In this case as well, the recovery rate of mercury has not reached 100%,
It is considered that this is also due to the same reason as described in Example 1.

次に、溜出分100mlをとり、これに実施例1で使用した
のと同じ吸着剤(アルミナ担持Co−Mo硫化物)0.1gを加
えて30分間攪拌後瀘過し、瀘液中の水銀含量を測定した
ところ4.1μg/lであった。
Next, 100 ml of the distillate was taken, to which 0.1 g of the same adsorbent (alumina-supported Co-Mo sulfide) used in Example 1 was added, and the mixture was stirred for 30 minutes and filtered to remove mercury in the filtrate. When the content was measured, it was 4.1 μg / l.

実施例2で用いた原料のNGLをNo.5C瀘紙で瀘過し固形分
を分離したところ、水銀濃度は1.6mg/であった。この
NGL100mlは実施例1で使用したとの同じ吸着剤(Co−Mo
硫化物)0.1gを加えて30分間攪拌し、瀘過後瀘液の水銀
濃度を測定したところ殆ど変化なかった。次にこの瀘液
に活性白土を5wt%加えて30分間攪拌し瀘過後瀘液の水
銀濃度を測定したところ1μg/l以下となった。この結
果は、このNGL中の水銀が有機水銀(高分子量の)であ
ることを示している。
When the raw material NGL used in Example 2 was filtered with No. 5C filter paper to separate solids, the mercury concentration was 1.6 mg /. this
100 ml of NGL is the same adsorbent used in Example 1 (Co-Mo
0.1 g of sulfide) was added and the mixture was stirred for 30 minutes, and the concentration of mercury in the filtered solution after filtration was found to be almost unchanged. Next, 5 wt% of activated clay was added to this filtrate and the mixture was stirred for 30 minutes, and the concentration of mercury in the filtrate after filtration was measured and found to be 1 μg / l or less. The results indicate that the mercury in this NGL is organic mercury (high molecular weight).

比較例2 実施例2で使用したのと同じ有機水銀を約5mg/l(Hgと
して)含むNGLを180℃に加熱し、150℃以下で留分と残
渣に分けた。溜出量は4vol%で、水銀濃度は23μg/lで
あった。一方、残渣中の水銀濃度は10.4mg/lであった。
これは蒸溜前のNGL中の水銀4mg/lに相当する。すなわち
この温度ではほとんど分解していないことが判った。
Comparative Example 2 NGL containing about 5 mg / l (as Hg) of the same organic mercury as used in Example 2 was heated to 180 ° C., and fractionated into a fraction and a residue at 150 ° C. or lower. The distillate amount was 4 vol% and the mercury concentration was 23 μg / l. On the other hand, the mercury concentration in the residue was 10.4 mg / l.
This corresponds to 4 mg / l mercury in NGL before distillation. That is, it was found that almost no decomposition occurred at this temperature.

ハ.発明の効果 1.プロセスを簡略化できる。C. Effects of the Invention 1. The process can be simplified.

2.設備費を低減できる。2. Equipment costs can be reduced.

3.後処理が不要である。3. No post-treatment required.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水銀を含有する液状炭化水素を200℃以上
に加熱する工程と、加熱後の液状炭化水素を200℃以下
の温度でモリブデンの硫化物を含む吸着剤に接触させる
工程とからなることを特徴とする液状炭化水素中の水銀
除去法。
1. A step of heating a liquid hydrocarbon containing mercury to 200 ° C. or higher, and a step of bringing the heated liquid hydrocarbon into contact with an adsorbent containing a sulfide of molybdenum at a temperature of 200 ° C. or lower. A method for removing mercury in liquid hydrocarbons, which is characterized in that
【請求項2】吸着剤がMo−Co系硫化物又はMo−Ni系硫化
物を担体に担持したものである請求項第1項記載の液状
炭化水素中の水銀除去法。
2. The method for removing mercury from liquid hydrocarbons according to claim 1, wherein the adsorbent is one in which Mo-Co sulfide or Mo-Ni sulfide is supported on a carrier.
JP1159593A 1989-06-23 1989-06-23 Method for removing mercury in liquid hydrocarbons Expired - Lifetime JPH07103377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159593A JPH07103377B2 (en) 1989-06-23 1989-06-23 Method for removing mercury in liquid hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159593A JPH07103377B2 (en) 1989-06-23 1989-06-23 Method for removing mercury in liquid hydrocarbons

Publications (2)

Publication Number Publication Date
JPH0326790A JPH0326790A (en) 1991-02-05
JPH07103377B2 true JPH07103377B2 (en) 1995-11-08

Family

ID=15697096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159593A Expired - Lifetime JPH07103377B2 (en) 1989-06-23 1989-06-23 Method for removing mercury in liquid hydrocarbons

Country Status (1)

Country Link
JP (1) JPH07103377B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116445B2 (en) * 1992-03-19 1995-12-13 日揮株式会社 Method for decomposing and removing mercury compound in hydrocarbon
FR2698372B1 (en) * 1992-11-24 1995-03-10 Inst Francais Du Petrole Process for the removal of mercury and possibly arsenic from hydrocarbons.
US7968063B2 (en) 2005-02-24 2011-06-28 Jgc Corporation Mercury removal apparatus for liquid hydrocarbon
RU2389752C2 (en) * 2005-02-24 2010-05-20 Джей Джи Си КОРПОРЕЙШН Plant for removing mercury from liquid hydrocarbon
JP5192653B2 (en) * 2006-03-31 2013-05-08 日本インスツルメンツ株式会社 Mercury reduction catalyst, mercury conversion unit, and total mercury measurement device in exhaust gas using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819422B2 (en) * 1988-06-14 1996-02-28 三井石油化学工業株式会社 Method for removing trace amounts of mercury in hydrocarbon oils

Also Published As

Publication number Publication date
JPH0326790A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
JP2578514B2 (en) Method for removing mercury from liquid hydrocarbon compounds
JP2633484B2 (en) Method for removing mercury from liquid hydrocarbons
US4986898A (en) Method of removing mercury from hydrocarbon oils
KR910005348B1 (en) Method of removing mercury from hydrocarbon oils
EA015209B1 (en) Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks
US20030075484A1 (en) Method for removing mercury from liquid hydrocarbon
DK165324B (en) PROCEDURE FOR CLEANING FLUID WASTE MATERIAL Contaminated with HALOGENE, NITROGEN AND SULFUR COMPOUNDS
JPH07103377B2 (en) Method for removing mercury in liquid hydrocarbons
NO163906B (en) PROCEDURES FOR REFINING USED OILS.
US6793805B2 (en) Process for capturing mercury and arsenic comprising evaporation then condensation of a hydrocarbon-containing cut
KR100733799B1 (en) Process for capturing mercury and arsenic in a distilled hydrocarbon cut
JPH0649458A (en) Decomposition and removal of mercury compound in hydrocarbon
JP2978251B2 (en) Method for removing mercury from liquid hydrocarbons
JPH01188586A (en) Removing method for mercury in hydrocarbon base oil
JPH0428040B2 (en)
JPH0791547B2 (en) Method for removing mercury in hydrocarbon oils
JPH04227794A (en) Method for removing mercury in liquid hydrocarbon
JPH0791544B2 (en) Method for removing mercury in hydrocarbon oils
JPH0633071A (en) Method for removing mercury in liquid hydrocarbon
JPH0524194B2 (en)
JPH0633368B2 (en) Pretreatment method for petroleum fraction
US20010050246A1 (en) Process for capturing mercury and arsenic comprising evaporation then condensation of a hydrocarbon-containing cut
JPH01188585A (en) Removing method for mercury in hydrocarbon base oil
JPH10110173A (en) Removal of injurious compound in liquid hydrocarbon
JPH0823023B2 (en) Method for removing mercury in hydrocarbon oils