JPH0428040B2 - - Google Patents

Info

Publication number
JPH0428040B2
JPH0428040B2 JP18355988A JP18355988A JPH0428040B2 JP H0428040 B2 JPH0428040 B2 JP H0428040B2 JP 18355988 A JP18355988 A JP 18355988A JP 18355988 A JP18355988 A JP 18355988A JP H0428040 B2 JPH0428040 B2 JP H0428040B2
Authority
JP
Japan
Prior art keywords
mercury
adsorbent
sulfide
ppb
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18355988A
Other languages
Japanese (ja)
Other versions
JPH0234688A (en
Inventor
Akio Furuta
Kunio Sato
Kazuo Sato
Tooru Matsuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP18355988A priority Critical patent/JPH0234688A/en
Priority to EP89108594A priority patent/EP0352420B1/en
Priority to CA000599608A priority patent/CA1323321C/en
Priority to AU34827/89A priority patent/AU622177B2/en
Priority to CN89103244A priority patent/CN1018654B/en
Priority to DE8989108594T priority patent/DE68902710T2/en
Priority to US07/352,024 priority patent/US5037552A/en
Priority to KR1019890006473A priority patent/KR900001822A/en
Publication of JPH0234688A publication Critical patent/JPH0234688A/en
Publication of JPH0428040B2 publication Critical patent/JPH0428040B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 天然ガスより回収されるNGL(天然ガスコンデ
ンセート)中には産地により数十〜数百ppbに達
する水銀が含まれており、装置材料として使用さ
れるアルミニウムのアマルガム腐食を起こした
り、NGLを化学原料として用いる場合、触媒が
被毒され、劣化の原因となつている。 本発明は、このような水銀を含有する液状の炭
化水素から水銀を除去する方法に関するものであ
る。 従来の技術 水銀除去法としては工場排水、焼却炉排ガスな
どを対象としたものが一般的であるが、天然ガス
を対象としたものとしては次の二つがある。 (1) 冷却凝縮法 (2) 吸着法(吸収法) 冷却凝縮法は天然ガス液化プラントで採用され
ている方法であるが、断熱膨張を利用するもので
あり、天然ガスコンデンセート中の水銀除去には
使用できない。 吸着法は各種吸着剤が提案されており、例えば
銀を含浸させたアルミナ又はゼオライト、ヨウ化
カリ又は硫黄を含浸させた活性炭又はモレキユラ
ーシーブなどが知られている。しかしこれらは高
価であつたり、吸着容量が小さかつたり、液状炭
化水素の吸着によつて水銀の吸着能が低下するな
どの問題を有している。 一方金属の硫化物による水銀除去方法として、
例えば硫化銅を用いる方法(特開昭52−76284)
や銅、ニツケル、鉄、コバルトなどの金属の多硫
化物を用いる方法がある。 前者の方法では気体又は液体中の水銀除去が可
能とされているが、具体例としてはメタンが大部
分でC5 +成分を殆ど含まず且つ水銀を19μg/m3
程度しか含んでいない天然ガスを主な対象として
おり、天然ガスコンデンセート或はナフサ留分な
どC5以上の留分を多く含む液体成分や高濃度の
水銀を含有するものに対する効果は明らかでな
い。また後者の方法では単体水銀以外の吸着効果
については述べられていない。 本発明者らは上記の欠点を除き、天然ガスコン
デンセート中の水銀を効率よく除去する方法とし
てさきに水銀を含有する液又はガスを、モリブデ
ン、タングステン及びバナジウムよりなる群から
選ばれる一種又は二種以上の金属の硫化物を含有
する吸着剤に接触させることを特徴とする方法を
提案した。(特願昭62−286469) この方法は従来の方法に比べて天然ガスコンデ
ンセートのような炭化水素を主成分とする液体中
の水銀を効率よく除去することができ、常温、常
圧の操作で、しかも吸着剤として水添脱硫触媒な
どの硫化モリブデンを含有する廃触媒を利用する
ことができるので、コストを節約できる等極めて
優れた方法であり、特に単体水銀に対して高い吸
着能を示すことが見出された。 しかし天然ガスコンデンセート中には単体水銀
のほかに難吸着性の水銀(イオン状水銀と思われ
る)などが存在し、上記の金属硫化物を用いた上
記の水銀除去法もこれら水銀に対しては吸着能は
充分とは言えなかつた。 水中に存在するイオン状水銀は、例えば活性炭
やアルミニウム粉末によつて除去されるが、これ
らはNGL中の水銀の除去には有効ではない。 発明が解決しようとする課題 本発明は水銀を含有する液状の炭化水素から高
効率で水銀を除去する方法を提供することを目的
とする。 課題を解決するための手段 本発明による水銀の除去方法は、水銀を含有す
る液状の炭化水素を、 (1) 式MM′S(M及びM′はそれぞれ同一又は異な
り、水素、アルカリ金属又はアンモニウム基を
表す)で表される硫黄化合物で処理する工程及
び (2) 一種又は二種以上の重金属の硫化物を含有す
る吸着剤に接触させる工程とからなる。 即ち、式MM′Sで表される硫黄化合物(以下硫
黄化合物()とよぶことがある)はイオン状水
銀と反応して固体状の難溶性の水銀(硫化水銀と
推定される)を生成し、液状の炭化水素との分離
が容易になるのみならず、重金属硫化物により単
体水銀と同様に吸着される。結局上記2工程を組
み合わせることにより、異なつたタイプで存在す
る水銀が効率よく除去されることが見出された。 本発明の対象とする液状の炭化水素としては、
特に天然ガス又は石油随伴ガスより得られる液状
炭化水素が挙げられる。 天然ガスの成分は、窒素、二酸化炭素、硫化水
素などの無機ガスとC1〜C4ガス状炭化水素、C5
以上の液状炭化水素から成る。但し産地によつて
は硫化水素が含まれない場合も多い。 石油随伴ガスは、無機ガス成分、ガス状炭化水
素、液状炭化水素から成るが、液状炭化水素とし
ては重質油成分までも含まれている。石油随伴ガ
スは沸点370℃を超える成分を蒸溜により除去す
ることが望ましい。 本発明で使用する硫黄化合物()は硫黄原子
に2個の同一又は異なる水素、アルカリ金属、又
はアンモニウム基が結合した化合物で、例えば、
H2S、Na2S、NaHS、K2S、KHS、(NH42Sな
どをあげることができるが、特に硫化水素又は硫
化ナトリウムが好ましい。 硫化水素はそのままガス状で水銀を含有する液
状炭化水素に吹き込むことができるが、水溶液と
して対象液と接触させることもできる。その他の
硫化ナトリウム等は水溶液として使用する。 また本発明に使用する吸着剤である重金属硫化
物としては、モリブデン、タングステン、バナジ
ウム、銅などの硫化物及びこれらの二種以上の金
属の硫化物を挙げることができるが、特にモリブ
デン、タングステン又はバナジウムを含む硫化物
が好適である。 重金属硫化物吸着剤は単独で使用することも出
来るが、担体に担持されたものであつても良い。
担体としてはシリカ、アルミナ、シリカ−アルミ
ナ、ゼオライト、セラミツク、ガラス、樹脂、活
性炭などの粒状の物が使用できるが、その中で特
にアルミナが担体として好ましい。 担体は比表面積が大きいものの方が接触効率が
良くなるので好ましく、5〜400m2/g、特に100
〜250m2/gの比表面積を有するものが好ましい
が、これらに限定されるものではない。 担体に担持する場合、吸着剤の金属担持量は硫
化物となつている金属量で1〜15wt%が適当で
ある。 また吸着剤は他の金属成分又は無機成分を含ん
でいても差支えない。 吸着剤の製造は、モリブデン化合物、タングス
テン化合又はバナジウム化合物をそのまま、もし
くは担持用の物質と混合し、後で硫化物処理を行
う。 例えばモリブデン化合物をアルミナのような担
体物質に含浸し、又は担体物質と混練りし、成型
後450〜550℃で0.1〜2時間空気中で焼成し、最
後に硫化処理を行う。 モリブデン化合物としては、例えばパラモリブ
デン酸アンモニウム基[(NH46Mo7O24
4H2O]、タングステン化合物としてはタングス
テン酸アンモニウム基[5(NH42O・12WO3
5H2O]、バナジウム化合物としてはメタバナジ
ン酸アンモニウム基[NH4VO3]などが使用さ
れる。 硫化処理を容易にし、また水銀吸着能を向上さ
せるために、微量のコバルト又はニツケルの化合
物を吸着剤の製造工程において添加することが好
ましい。コバルト又はニツケルの添加量は吸着剤
に対して0.1〜5wt%であることが好ましい。 吸着剤の硫化処理は水素及び硫化水素の混合気
体を使用する。硫化水素は0.1〜10vol%の濃度範
囲で使用するのが好ましい。硫化に必要な温度は
200〜450℃であり、好ましくは300〜400℃の温度
で処理される。 吸着剤は水添脱硫触媒としてケロシンや減圧軽
油(VGO)などの脱硫処理に使用されるモリブ
デン系触媒を使用することが可能である。このモ
リブデン系触媒を硫化処理したもの、或は一定期
間使用して劣化した廃触媒(硫化されている)は
液状炭化水素に含まれる水銀を効果的に吸着する
ことができる。よつて廃触媒を吸着剤として使用
すれば、吸着剤の製造費用を大幅に削減すること
ができるため非常に有利になる。 水銀を含有する液状炭化水素を硫黄化合物
()で処理する工程と重金属の硫化物吸着剤と
接触させる工程は同時処理でも逐次処理でもよ
い。逐次処理の場合、順序は任意に選ぶことがで
きる。 しかし硫化水素を用いてこれを後工程とした場
合は、HgSはH2S水溶液に溶解しないので、生成
したHgSの分離工程が必要となる。これに対し
て同時処理又は吸着剤処理を後工程とする方法を
とれば、生成したHgSが単体水銀とともに重金
属硫化物により吸着されるので、工程及び設備の
簡略化の面から、同時処理方法、又は吸着剤処理
を後工程とする方が好ましい。 一方硫化ナトリウム水溶液で処理した場合は、
HgSは硫化ナトリウム水溶液に溶解するので、
液相分離により容易に分離される。従つて逐次処
理の順序は任意に選ぶことができる。 水銀を含有する炭化水素から水銀を除去する場
合、硫黄化合物()の使用量はS2-がHg2+の10
倍当量もあれば十分である。また処理時間は数分
ないし数十分、通常5〜10分程度、温度は常温、
圧力は常圧で良い。 吸着剤による接触処理温度は200℃以下が好ま
しい。200℃を超えると吸着剤から水銀が放散す
るとか、炭化水素の蒸発やクラツキングを生じる
などの問題を起こす。 水銀を含有する液状炭化水素と吸着剤との接触
方法は任意であるが、特に固定床流通方式が好ま
しい。固定床流通方式を採用することにより連続
運転が可能となる。 以下実施例により本発明を具体的に説明する。 予備試験1 350ppbの水銀(単体換算)を含むインドネシ
ヤ産NGL200mlに2%H2Sガス(残H2)を10分間
吹き込み、そのまま放置して水銀濃度の経時変化
を測定した。結果を第1表に示す。
Industrial Application Fields NGLs (natural gas condensate) recovered from natural gas contain mercury, which can reach tens to hundreds of ppb depending on the production area, and can cause amalgam corrosion of aluminum used as equipment material. When NGL is used as a chemical raw material, the catalyst is poisoned and causes deterioration. The present invention relates to a method for removing mercury from such liquid hydrocarbons containing mercury. Conventional technology Generally, mercury removal methods target industrial wastewater, incinerator exhaust gas, etc., but the following two methods target natural gas. (1) Cooling condensation method (2) Adsorption method (absorption method) The cooling condensation method is a method adopted in natural gas liquefaction plants, but it uses adiabatic expansion and is effective for removing mercury from natural gas condensate. cannot be used. Various adsorbents have been proposed for the adsorption method, such as alumina or zeolite impregnated with silver, activated carbon or molecular sieve impregnated with potassium iodide or sulfur, and the like. However, these have problems such as being expensive, having a small adsorption capacity, and having a reduced mercury adsorption ability due to adsorption of liquid hydrocarbons. On the other hand, as a method for removing mercury using metal sulfide,
For example, a method using copper sulfide (Japanese Patent Application Laid-Open No. 52-76284)
There is a method using polysulfides of metals such as copper, nickel, iron, and cobalt. The former method is said to be able to remove mercury from gases or liquids, but as a specific example, mercury is mostly methane, contains almost no C 5 + components, and contains 19 μg/m 3 of mercury.
The main target is natural gas that contains only a small amount of mercury, and its effects on liquid components that contain a large amount of C5 or higher fractions, such as natural gas condensate or naphtha fraction, or those that contain high concentrations of mercury are not clear. Furthermore, the latter method does not mention the adsorption effect of elements other than elemental mercury. The present inventors have proposed a method for efficiently removing mercury from natural gas condensate by eliminating the above-mentioned drawbacks. We proposed a method characterized by bringing the metal into contact with an adsorbent containing sulfides of the metals mentioned above. (Patent Application No. 62-286469) Compared to conventional methods, this method can remove mercury from liquids mainly composed of hydrocarbons, such as natural gas condensate, and can be operated at room temperature and pressure. Furthermore, since it is possible to use waste catalysts containing molybdenum sulfide, such as hydrodesulfurization catalysts, as an adsorbent, it is an extremely excellent method that can save costs and exhibits particularly high adsorption capacity for elemental mercury. was discovered. However, in addition to elemental mercury, natural gas condensate contains mercury that is difficult to adsorb (possibly ionic mercury), and the above mercury removal method using the metal sulfide does not work well for these mercury. The adsorption capacity could not be said to be sufficient. Ionic mercury present in water can be removed by, for example, activated carbon or aluminum powder, but these are not effective in removing mercury from NGLs. Problems to be Solved by the Invention An object of the present invention is to provide a method for removing mercury from liquid hydrocarbon containing mercury with high efficiency. Means for Solving the Problems The method for removing mercury according to the present invention is to remove liquid hydrocarbon containing mercury from the following formula: MM′S (where M and M′ are the same or different, hydrogen, alkali metal or and (2) contacting with an adsorbent containing one or more sulfides of heavy metals. In other words, the sulfur compound represented by the formula MM′S (hereinafter sometimes referred to as sulfur compound ()) reacts with ionic mercury to produce solid, poorly soluble mercury (estimated to be mercury sulfide). Not only is it easy to separate from liquid hydrocarbons, but it is also adsorbed by heavy metal sulfides in the same way as elemental mercury. In the end, it was discovered that mercury, which exists in different types, can be efficiently removed by combining the above two steps. The liquid hydrocarbons targeted by the present invention include:
Particular mention may be made of liquid hydrocarbons obtained from natural gas or petroleum-associated gas. The components of natural gas are inorganic gases such as nitrogen, carbon dioxide, and hydrogen sulfide, and gaseous hydrocarbons from C1 to C4 , C5
Consisting of the above liquid hydrocarbons. However, depending on the production area, it often does not contain hydrogen sulfide. Petroleum-associated gas is composed of inorganic gas components, gaseous hydrocarbons, and liquid hydrocarbons, and even heavy oil components are included as liquid hydrocarbons. It is desirable to remove components of petroleum-associated gas with a boiling point exceeding 370°C by distillation. The sulfur compound () used in the present invention is a compound in which two identical or different hydrogen, alkali metal, or ammonium groups are bonded to a sulfur atom, for example,
Examples include H 2 S, Na 2 S, NaHS, K 2 S, KHS, (NH 4 ) 2 S, and particularly preferred are hydrogen sulfide and sodium sulfide. Hydrogen sulfide can be blown directly into the liquid hydrocarbon containing mercury in gaseous form, but it can also be brought into contact with the target liquid as an aqueous solution. Other sodium sulfide etc. are used as an aqueous solution. Examples of the heavy metal sulfide used as an adsorbent in the present invention include sulfides of molybdenum, tungsten, vanadium, copper, etc., and sulfides of two or more of these metals. Sulfides containing vanadium are preferred. The heavy metal sulfide adsorbent can be used alone, but it may also be supported on a carrier.
Particulate materials such as silica, alumina, silica-alumina, zeolite, ceramic, glass, resin, and activated carbon can be used as the carrier, and among these, alumina is particularly preferred as the carrier. The carrier has a large specific surface area, which improves the contact efficiency, and is therefore preferable, and is preferably 5 to 400 m 2 /g, especially 100 m 2 /g.
Those having a specific surface area of ~250 m 2 /g are preferred, but are not limited thereto. When supported on a carrier, the amount of metal supported on the adsorbent is suitably 1 to 15 wt% based on the amount of metal in the form of sulfide. The adsorbent may also contain other metal components or inorganic components. Adsorbents are produced by using molybdenum compounds, tungsten compounds, or vanadium compounds as they are, or by mixing them with a supporting material, and then subjecting them to sulfide treatment. For example, a molybdenum compound is impregnated into a carrier material such as alumina or kneaded with the carrier material, and after molding, it is calcined in air at 450 to 550°C for 0.1 to 2 hours, and finally sulfurized. Examples of molybdenum compounds include ammonium paramolybdate group [(NH 4 ) 6 Mo 7 O 24
4H 2 O], as a tungsten compound, ammonium tungstate group [5(NH 4 ) 2 O・12WO 3
5H 2 O], ammonium metavanadate group [NH 4 VO 3 ], etc. are used as the vanadium compound. In order to facilitate the sulfurization treatment and improve the mercury adsorption ability, it is preferable to add a trace amount of a cobalt or nickel compound during the adsorbent production process. The amount of cobalt or nickel added is preferably 0.1 to 5% by weight based on the adsorbent. A mixed gas of hydrogen and hydrogen sulfide is used to sulfurize the adsorbent. Hydrogen sulfide is preferably used in a concentration range of 0.1 to 10 vol%. The temperature required for sulfurization is
The temperature is 200-450°C, preferably 300-400°C. As the adsorbent, a molybdenum-based catalyst used for desulfurization treatment of kerosene, vacuum gas oil (VGO), etc. can be used as a hydrodesulfurization catalyst. This molybdenum-based catalyst that has been sulfurized or a waste catalyst that has deteriorated after being used for a certain period of time (sulfurized) can effectively adsorb mercury contained in liquid hydrocarbons. Therefore, the use of waste catalyst as an adsorbent is very advantageous because the manufacturing cost of the adsorbent can be significantly reduced. The step of treating a liquid hydrocarbon containing mercury with a sulfur compound () and the step of contacting it with a heavy metal sulfide adsorbent may be performed simultaneously or sequentially. For sequential processing, the order can be chosen arbitrarily. However, when hydrogen sulfide is used as a post-process, HgS does not dissolve in the H 2 S aqueous solution, so a separation step for the generated HgS is required. On the other hand, if simultaneous treatment or a method in which adsorbent treatment is performed as a subsequent process is used, the generated HgS will be adsorbed by heavy metal sulfide along with elemental mercury. Alternatively, it is preferable that the adsorbent treatment be performed as a post-process. On the other hand, when treated with sodium sulfide aqueous solution,
Since HgS dissolves in sodium sulfide aqueous solution,
Easily separated by liquid phase separation. Therefore, the order of sequential processing can be arbitrarily selected. When removing mercury from mercury-containing hydrocarbons, the amount of sulfur compounds () used is 10
Double equivalents are also sufficient. In addition, the processing time is several minutes to several tens of minutes, usually about 5 to 10 minutes, and the temperature is room temperature.
The pressure should be normal pressure. The contact treatment temperature with the adsorbent is preferably 200°C or less. If the temperature exceeds 200℃, problems such as mercury dissipating from the adsorbent, evaporation of hydrocarbons, and cracking occur. Although the method of contacting the mercury-containing liquid hydrocarbon with the adsorbent is arbitrary, a fixed bed flow system is particularly preferred. Continuous operation is possible by adopting a fixed bed flow system. The present invention will be specifically explained below using Examples. Preliminary Test 1 2% H 2 S gas (residual H 2 ) was blown into 200 ml of Indonesian NGL containing 350 ppb of mercury (in terms of single substance) for 10 minutes, and the mixture was left to stand to measure changes in mercury concentration over time. The results are shown in Table 1.

【表】 濃度低下に時間がかかるように見えるが、これ
は生成した不溶性のHg化合物が沈降するのに時
間がかかるためである。 実施例 1 350ppbの水銀(単体換算)を含むインドネシ
ヤ産NGLに2%H2Sガス(残H2)を10分間吹き
込み、ついで吸着剤としてモリブデンを7wt%、
コバルトを2wt%含むCo・Mo硫化物/Al2O3
1g充填した吸着塔に固定床流通式で300ml/時
で6時間供給し流出液の水銀濃度を測定したとこ
ろ2ppb以下であつた。 予備試験2 予備試験1で使用した原料100mlと硫化ナトリ
ウム5%水溶液100mlを分液ロートにとり、10分
間ふり混ぜた。次いで水層と油層とをわけ、油層
の水銀濃度を測定したところ60ppbに低下してい
た。 実施例 2 予備試験2で得られた油層100mlに吸着剤とし
て実施例1で使用したのと同じCo・Mo硫化物/
Al2O3を0.1g添加し、これをふた付きガラス容器
に入れ、10分間ゆるやかに振盪機で揺動したのち
油層の水銀濃度を測定したところ、1ppb以下で
あつた。 実施例 3 実施例1の原料に単位水銀約2ppmを溶解した
ものに2%H2S(残H2)ガスを10分間吹き込みこ
れを実施例1と同じ吸着剤(Co・Mo硫化物/
Al2O3)1gを充填した吸着塔に300ml/時で供
給した。出口水銀濃度を測定したところ、10時間
後においても2.5ppbであつた。この結果から本発
明における金属硫化物吸着剤は、H2S処理により
生成する不溶性水銀化合物及び単体水銀の両方に
有効であることが判つた。 実施例 4〜10 MM′S及び吸着剤として第2表に示すものを用
いた以外は実施例2と同様な試験を行い、油層の
水銀濃度を測定した。その結果を第2表に示す。
[Table] It seems that it takes time for the concentration to decrease, but this is because it takes time for the formed insoluble Hg compounds to settle. Example 1 2% H 2 S gas (residual H 2 ) was blown into Indonesian NGL containing 350 ppb of mercury (single amount) for 10 minutes, and then 7 wt % of molybdenum was added as an adsorbent.
The mercury concentration in the effluent was measured when it was fed into an adsorption tower filled with 1 g of Co.Mo sulfide/Al 2 O 3 containing 2 wt% cobalt at a fixed bed flow rate of 300 ml/hour for 6 hours and found to be less than 2 ppb. Preliminary Test 2 100 ml of the raw material used in Preliminary Test 1 and 100 ml of 5% sodium sulfide aqueous solution were placed in a separating funnel and mixed by shaking for 10 minutes. Next, the water layer and oil layer were separated and the mercury concentration in the oil layer was measured and found to have decreased to 60 ppb. Example 2 The same Co/Mo sulfide used in Example 1 was added to 100 ml of the oil layer obtained in Preliminary Test 2 as an adsorbent.
0.1 g of Al 2 O 3 was added, this was placed in a glass container with a lid, and after being gently shaken for 10 minutes, the mercury concentration in the oil layer was measured and found to be less than 1 ppb. Example 3 2% H 2 S (residual H 2 ) gas was blown into the raw material of Example 1 and about 2 ppm of mercury dissolved therein for 10 minutes.
300 ml/hour was supplied to an adsorption tower packed with 1 g of Al 2 O 3 ). When the outlet mercury concentration was measured, it was still 2.5 ppb even after 10 hours. From these results, it was found that the metal sulfide adsorbent of the present invention is effective against both insoluble mercury compounds and elemental mercury produced by H 2 S treatment. Examples 4 to 10 The same test as in Example 2 was conducted, except that the MM'S and adsorbent shown in Table 2 were used, and the mercury concentration in the oil layer was measured. The results are shown in Table 2.

【表】 註:吸着剤はすべてγ−アルミナ担持
比較例 1 350ppbの水銀(単体換算)を含むインドネシ
ア産NGLを、吸着剤として実施例1同じCo・
Mo硫化物/Al2O3を1g充填した吸着塔に300
ml/時で供給し、流出液の水銀濃度を測定したと
ころ、1時間後は4ppbであつたが、5時間後に
は100ppbを越え、吸着容量が極めて小さいこと
が分かつた。なお同一条件で単体水銀を含む
NGLを処理したときは50時間後でも水銀は殆ど
検出されなかつた。 比較例 2 実施例1におけるH2S吹込後のNGLを、シリ
カ1gを充填した吸着塔に300ml/時で供給した。
吸着塔出口の濃度は実験開始直後から30ppbあ
り、H2S吹込によつて不溶性となつた水銀化合物
の捕集能力は金属硫化物より劣り、硫化水素又は
硫化ナトリウム処理は、重金属硫化物吸着剤処理
と組み合わせると非常に有効であることが分かつ
た。 参考例 H2S処理によつて除去できる水銀のタイプが何
かを見るために、単体水銀、ジエチル水銀、塩化
第二水銀、メチルクロル水銀をそれぞれ300ppb
になるようにライトナフサに溶解し、H2S処理効
果を見た。塩化第二水銀はH2S処理により除去で
きたが、他のものに対しては殆ど効果がなかつ
た。この結果より、実施例1で用いたNGL中の
水銀のタイプはHg2+と推定される。 発明の効果 液状炭化水素中の単体水銀、及びイオン状水
銀を同時に高効率で除去できる。 硫化水素又は硫化ナトリウム処理はともに常
温常圧でできるので設備費が安価である。 吸着剤として水添脱硫触媒などの硫化モリブ
デンを含有する廃触媒を利用することができ、
コストを節約できる。 固定床流通方式を採用することにより連続運
転が可能となる。
[Table] Note: All adsorbents are comparative examples of supporting γ-alumina. 1 NGL produced in Indonesia containing 350 ppb of mercury (in terms of single substance) was used as an adsorbent for the same Co.
300 in an adsorption tower filled with 1g of Mo sulfide/Al 2 O 3
When the mercury concentration in the effluent was measured by feeding at a rate of ml/hour, it was 4 ppb after 1 hour, but exceeded 100 ppb after 5 hours, indicating that the adsorption capacity was extremely small. In addition, elemental mercury is included under the same conditions.
When NGL was treated, almost no mercury was detected even after 50 hours. Comparative Example 2 The NGL after H 2 S injection in Example 1 was supplied at 300 ml/hour to an adsorption tower packed with 1 g of silica.
The concentration at the outlet of the adsorption tower was 30 ppb immediately after the start of the experiment, and the ability to collect mercury compounds made insoluble by H 2 S injection was inferior to that of metal sulfides. It turned out that it is very effective when combined with processing. Reference example: To see what types of mercury can be removed by H2S treatment, 300 ppb each of elemental mercury, diethylmercury, mercuric chloride, and methylchloromercury were used.
It was dissolved in light naphtha and the effect of H 2 S treatment was observed. Mercury chloride could be removed by H 2 S treatment, but it had little effect on other substances. From this result, the type of mercury in the NGL used in Example 1 is estimated to be Hg 2+ . Effects of the invention Elemental mercury and ionic mercury in liquid hydrocarbons can be removed simultaneously with high efficiency. Both hydrogen sulfide and sodium sulfide treatments can be performed at room temperature and pressure, so equipment costs are low. Waste catalysts containing molybdenum sulfide, such as hydrodesulfurization catalysts, can be used as adsorbents.
You can save costs. Continuous operation is possible by adopting a fixed bed flow system.

Claims (1)

【特許請求の範囲】 1 水銀を含有する液状の炭化水素を、 (1) 式MM′S(M及びM′はそれぞれ同一又は異な
り、水素、アルカリ金属又はアンモニウム基を
表す)で表される硫黄化合物で処理する工程及
び (2) 一種又は二種以上の重金属の硫化物を含有す
る吸着剤に接触させる工程とからなる水銀の除
去方法。
[Scope of Claims] 1 A liquid hydrocarbon containing mercury is a sulfur compound represented by the formula MM′S (M and M′ are each the same or different and represent hydrogen, an alkali metal, or an ammonium group). A method for removing mercury comprising the steps of treating with a compound and (2) contacting with an adsorbent containing one or more sulfides of heavy metals.
JP18355988A 1988-07-25 1988-07-25 Method for removal of mercury Granted JPH0234688A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP18355988A JPH0234688A (en) 1988-07-25 1988-07-25 Method for removal of mercury
EP89108594A EP0352420B1 (en) 1988-07-25 1989-05-12 A process for removal of mercury from a liquid hydrocarbon
CA000599608A CA1323321C (en) 1988-07-25 1989-05-12 Process for removal of mercury from a liquid hydrocarbon
AU34827/89A AU622177B2 (en) 1988-07-25 1989-05-12 A process for removal of mercury from a liquid hydrocarbon
CN89103244A CN1018654B (en) 1988-07-25 1989-05-12 Method for removal of mercury from liquid hydrocarbon
DE8989108594T DE68902710T2 (en) 1988-07-25 1989-05-12 METHOD FOR REMOVING MERCURY FROM A LIQUID HYDROCARBON.
US07/352,024 US5037552A (en) 1988-07-25 1989-05-15 Process for removal of mercury from a liquid hydrocarbon
KR1019890006473A KR900001822A (en) 1988-07-25 1989-05-15 How to remove mercury in liquid hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18355988A JPH0234688A (en) 1988-07-25 1988-07-25 Method for removal of mercury

Publications (2)

Publication Number Publication Date
JPH0234688A JPH0234688A (en) 1990-02-05
JPH0428040B2 true JPH0428040B2 (en) 1992-05-13

Family

ID=16137921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18355988A Granted JPH0234688A (en) 1988-07-25 1988-07-25 Method for removal of mercury

Country Status (1)

Country Link
JP (1) JPH0234688A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594061Y2 (en) * 1991-04-15 1999-04-19 富士写真光機株式会社 Film unit with lens
US6350372B1 (en) * 1999-05-17 2002-02-26 Mobil Oil Corporation Mercury removal in petroleum crude using H2S/C
CN1394230A (en) * 2000-10-30 2003-01-29 出光石油化学株式会社 Process for removing mercury from liquid hydrocarbon
FR3037580B1 (en) 2015-06-17 2019-08-16 Sarp Industries METHOD FOR STABILIZING METAL MERCURY

Also Published As

Publication number Publication date
JPH0234688A (en) 1990-02-05

Similar Documents

Publication Publication Date Title
EP0352420B1 (en) A process for removal of mercury from a liquid hydrocarbon
CA2373502C (en) Mercury removal in petroleum crude using sulfur compounds and adsorption
EP0357873B1 (en) Method for removing mercury from hydrocarbons
JP2578514B2 (en) Method for removing mercury from liquid hydrocarbon compounds
US9598648B2 (en) Process, method, and system for removing heavy metals from fluids
JPH05507310A (en) Removal of sulfur contaminants from hydrocarbons using N-halogeno compounds
AU2001295976B2 (en) Method for removing mercury from liquid hydrocarbon
KR910005348B1 (en) Method of removing mercury from hydrocarbon oils
AU2015339634A1 (en) Process, method and system for removing heavy metals from fluids
JPH0428040B2 (en)
JP2978251B2 (en) Method for removing mercury from liquid hydrocarbons
CA1334193C (en) Adsorbent composition and a method for removing mercury from a liquid hydrocarbon
JPH0524193B2 (en)
JPH0524194B2 (en)
JPH0326790A (en) Removal of mercury in liquid hydrocarbon
JPH04227794A (en) Method for removing mercury in liquid hydrocarbon
JPH01188586A (en) Removing method for mercury in hydrocarbon base oil
JP3824460B2 (en) How to remove mercury
JPH07118668A (en) Method for removing sulfur compound in sulfur-containing gas
JPH02160728A (en) Removal of trace sulfur compound in hydrocarbon
JPH0450294A (en) Removal of mercury in liquid hydrocarbon
JPH0791544B2 (en) Method for removing mercury in hydrocarbon oils
JPH069965A (en) Removal of mercury from liquid hydrocarbon
JPH01188585A (en) Removing method for mercury in hydrocarbon base oil
JPH1150065A (en) Removal of heavy metal in liquid hydrocarbon