JPH0790543A - Surface hardening method of cemented carbide member - Google Patents

Surface hardening method of cemented carbide member

Info

Publication number
JPH0790543A
JPH0790543A JP24092693A JP24092693A JPH0790543A JP H0790543 A JPH0790543 A JP H0790543A JP 24092693 A JP24092693 A JP 24092693A JP 24092693 A JP24092693 A JP 24092693A JP H0790543 A JPH0790543 A JP H0790543A
Authority
JP
Japan
Prior art keywords
cemented carbide
boron
carbide member
die
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24092693A
Other languages
Japanese (ja)
Inventor
Masatoshi Enomoto
正敏 榎本
Hideji Kaeriyama
秀司 帰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP24092693A priority Critical patent/JPH0790543A/en
Publication of JPH0790543A publication Critical patent/JPH0790543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To excellently stably surface-treat a cemented carbide member at a low treating cost so as to form a hardened layer having excellent hardness and adhesive strength on the surface of the cemented carbide member. CONSTITUTION:This surface treating method of the cemented carbide member is to penetrate and diffuse boron into the base material structure by allowing boron or a boron compound 5 to contact with a prescribed part of the surface of the cemented carbide member 2 and heating. In the treating method, the cemented carbide member 2 is, after heated, preferably slowly cooled at the cooling rate of <=200 deg.C/hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成形用ダイスや摺動材
等のように、超硬合金からなり高い耐摩耗性が要求され
る部材の表面を硬化させる超硬合金部材の表面硬化法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface hardening method for cemented carbide members such as molding dies and sliding materials, which harden the surface of members made of cemented carbide and requiring high wear resistance. It is about.

【0002】[0002]

【従来の技術】成形用ダイス、摺動材等のように高い耐
摩耗性が要求される部材の素材として、WC−Coのよ
うな硬度の高い超硬合金が使用されることが多い。ま
た、これらの部材において、特に大きな摩擦力を生じる
ベアリング部等には、さらに耐摩耗性を向上させるため
に、PVD法,CVD法により母材の表面をTiN、T
iC等の硬化層で被覆することが行われている。
2. Description of the Related Art Cemented carbide having a high hardness such as WC-Co is often used as a material for members such as molding dies and sliding materials which are required to have high wear resistance. In addition, in these members, in order to further improve the wear resistance, in the bearing portion or the like that produces a particularly large frictional force, the surface of the base material is made of TiN or T by the PVD method or the CVD method.
Coating with a hardened layer such as iC is performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
方法には次のような問題点があった。
However, the above-mentioned method has the following problems.

【0004】すなわち、PVD法では、超硬合金部材が
放電加工により複雑な形状に加工されている場合、放電
による溶融層の除去が困難なため、下地処理を充分に行
うことができない。そのため、硬化層の密着性が悪く使
用中に剥離することがある。また、真空を必要とするた
め、設備の点で処理コストが高い。
That is, in the PVD method, when the cemented carbide member is processed into a complicated shape by electric discharge machining, it is difficult to remove the molten layer by electric discharge, and therefore the base treatment cannot be sufficiently performed. Therefore, the adhesiveness of the cured layer is poor and may peel during use. Moreover, since a vacuum is required, the processing cost is high in terms of equipment.

【0005】また、CVD法では、PVD法と同様に充
分に下地処理を行う必要があり、前処理に手間がかか
る。また、1000℃以上の高温で処理する必要がある
ことや、TiCのCが雰囲気ガスからだけでなく母材の
WCからも供給されることにより、母材の表面近傍の硬
さが低下する。また、雰囲気中のH2 がCoに吸蔵され
て靱性低下を引き起こすおそれがある。さらに、C
4 、H2 等の可燃性ガスを扱うこと、生成物中にHC
lが含まれること等から、安全上特に注意を要する。ま
た、PVD法と同様に処理コストも非常に高い。
Further, in the CVD method, as in the PVD method, it is necessary to sufficiently perform the base treatment, and the pretreatment is troublesome. Further, since it is necessary to perform the treatment at a high temperature of 1000 ° C. or higher, and C of TiC is supplied not only from the atmospheric gas but also from the WC of the base material, the hardness near the surface of the base material decreases. Further, H 2 in the atmosphere may be occluded by Co and cause a decrease in toughness. Furthermore, C
Handling flammable gases such as H 4 and H 2 and HC in products
Special attention is required for safety, since 1 is included. Further, the processing cost is very high as in the PVD method.

【0006】本発明は、これらの問題点を解決すること
を目的として、超硬合金部材の表面に優れた硬度や密着
性を有する硬化層を形成できることはもとより、処理コ
ストが安くかつ安全性に優れた超硬合金部材の表面硬化
法を提供しようとするものである。
In order to solve these problems, the present invention is capable of forming a hardened layer having excellent hardness and adhesiveness on the surface of a cemented carbide member, and at the same time has a low processing cost and safety. It is intended to provide an excellent surface hardening method for cemented carbide members.

【0007】[0007]

【課題を解決するための手段】本発明は前記目的を達成
するために、ボロン(B)の高硬度付与性に着目し、該
ボロンを使用して超硬合金部材の表面を硬化させたもの
である。より具体的には、本発明の超硬合金部材の表面
硬化法は、超硬合金部材(2)表面の所定部位にボロン
またはボロン化合物(5)を接触させて加熱することに
よりボロンを母材組織内に浸透、拡散させることを特徴
とするものである。また、前記超硬合金部材(2)の加
熱後、200℃/hr以下の冷却速度で徐冷することが
好ましい。
In order to achieve the above object, the present invention focuses on the high hardness imparting property of boron (B) and hardens the surface of a cemented carbide member using the boron. Is. More specifically, in the surface hardening method for a cemented carbide member of the present invention, boron or a boron compound (5) is brought into contact with a predetermined portion of the surface of the cemented carbide member (2) to heat the base material so that boron is a base material. It is characterized by permeating and diffusing into the tissue. After heating the cemented carbide member (2), it is preferable to gradually cool it at a cooling rate of 200 ° C./hr or less.

【0008】一般に、超硬合金とは、元素周期率表のI
Va,Va,VIa族元素の炭化物、窒化物および/ま
たは炭窒化物(WC,TiC,NbC,TiCN,Ta
N,VC)などの硬質の粒子が、鉄族金属(Co,N
i,Fe)で結合された高硬度の複合合金をいう。本発
明において使用する超硬合金も、これと同義の合金であ
る。種々の超硬合金のなかでも、最もよく用いられるの
は炭化タングステン(WC)を主成分としたものであ
り、その代表組成はWC−Coであり、特にWC−5〜
20wt%Coが好ましい。また、ボロン化合物の形成を
促進するためのCr:0.5〜3wt%、靱性向上のため
のNi:0.5〜3wt%の1種または2種を含有しても
良い。また、表面硬化の対象も押出し、引抜等の成形用
ダイス、摺動材、切削工具などの耐摩耗性を要求される
ものであれば特に限定されない。また、成形用ダイスの
場合、成形材料はアルミニウム、マグネシウム、銅その
他任意の材料が用いられる。
In general, cemented carbide means I in the periodic table of the elements.
Carbides, nitrides and / or carbonitrides of Va, Va and VIa group elements (WC, TiC, NbC, TiCN, Ta)
Hard particles such as N, VC) are iron group metals (Co, N
i, Fe) refers to a high hardness composite alloy. The cemented carbide used in the present invention also has the same meaning. Among various cemented carbides, the one most often used is one containing tungsten carbide (WC) as a main component, and its representative composition is WC-Co, particularly WC-5 to WC-5.
20 wt% Co is preferred. Further, one or two of Cr: 0.5 to 3 wt% for promoting the formation of a boron compound and Ni: 0.5 to 3 wt% for improving toughness may be contained. Further, the object of surface hardening is not particularly limited as long as it is required to have abrasion resistance such as a molding die for extrusion and drawing, a sliding material and a cutting tool. In the case of a molding die, a molding material may be aluminum, magnesium, copper or any other material.

【0009】前記超硬合金部材(2)表面の所定部位に
ボロンまたはボロン化合物(5)を接触させて拡散硬化
層を形成する方法としては特に限定されるものではない
が、図3に示されるように、容器(7)に充填したボロ
ンまたはボロン化合物の粉末(5)の中に超硬合金部材
(2)を埋め込み、容器(7)ごとその超硬合金部材
(2)を加熱する方法が比較的工程数が少なく、設備も
簡略で容易である点で推奨される。この時、超硬合金部
材(2)に硬化させる必要のない部分があれば、その部
分をマスキングしておけば良い。また、このような方法
であれば、複雑な形状の部材であっても工程数を増やす
ことなく容易に拡散硬化層を形成することができる。こ
の他、硬化させる部分のみにボロンまたはボロン化合物
の粉末を置いて加熱する方法、ボロンまたはボロン化合
物のガス化雰囲気中で加熱する方法等が可能である。
The method for forming a diffusion hardened layer by contacting boron or a boron compound (5) at a predetermined portion on the surface of the cemented carbide member (2) is not particularly limited, but is shown in FIG. As described above, a method of burying the cemented carbide member (2) in the powder (5) of boron or boron compound filled in the container (7) and heating the cemented carbide member (2) together with the container (7) is used. It is recommended because it has a relatively small number of processes and the equipment is simple and easy. At this time, if there is a portion of the cemented carbide member (2) that does not need to be hardened, that portion may be masked. Further, with such a method, the diffusion hardened layer can be easily formed without increasing the number of steps even for a member having a complicated shape. In addition, a method of placing powder of boron or a boron compound only on the portion to be hardened and heating, a method of heating in a gasification atmosphere of boron or a boron compound, and the like are possible.

【0010】このボロン処理により、ボロンが母材表面
から内部に浸透、拡散されて母材の構成成分であるW,
C,Co等との高硬度の化合物が作られて拡散硬化層が
形成される。
By this boron treatment, boron permeates and diffuses from the surface of the base material to the inside, and W, which is a constituent component of the base material,
A compound having a high hardness such as C and Co is produced to form a diffusion hardened layer.

【0011】上記のようなボロンによる硬化処理におい
て、加熱温度および加熱時間を制御することにより、形
成される拡散硬化層の厚みおよび硬度を調整可能である
が、一般には、800〜900℃×1〜6時間とするの
が良い。800℃未満の加熱温度、1時間未満の加熱時
間では、ボロンの浸透、拡散が不十分で必要な厚さの拡
散硬化層を形成できない恐れがある。一方、900℃を
超える加熱温度、6時間を超える加熱時間では、拡散硬
化層にクラックを生じ易くなり、却って耐摩耗性に劣る
危険がある。特に好ましい加熱条件は825〜875℃
で2〜4時間である。
In the hardening treatment with boron as described above, the thickness and hardness of the diffusion hardened layer formed can be adjusted by controlling the heating temperature and the heating time, but generally 800 to 900 ° C. × 1. ~ 6 hours is good. If the heating temperature is less than 800 ° C. and the heating time is less than 1 hour, the penetration and diffusion of boron may be insufficient and a diffusion hardened layer having a required thickness may not be formed. On the other hand, if the heating temperature is higher than 900 ° C. and the heating time is longer than 6 hours, cracks are likely to occur in the diffusion hardened layer, and there is a risk that the abrasion resistance is rather poor. Particularly preferable heating conditions are 825 to 875 ° C.
It takes 2 to 4 hours.

【0012】加熱後の冷却は、200℃/hr以下の冷
却速度で徐冷することが好ましい。これは、母材が超硬
合金であるために急冷すると熱衝撃によって亀裂が発生
するおそれがあるためである。特に、100℃/hr以
下の徐冷が好ましい。
Cooling after heating is preferably slow cooling at a cooling rate of 200 ° C./hr or less. This is because the base material is a cemented carbide, and if it is rapidly cooled, cracks may occur due to thermal shock. Particularly, slow cooling at 100 ° C./hr or less is preferable.

【0013】[0013]

【作用】超硬合金部材(2)表面の所定部位にボロンま
たはボロン化合物(5)を接触させて加熱すると、ボロ
ン原子が母材組織内に浸透して拡散するとともに、母材
構成元素との化合物を形成して母材と一体化した拡散硬
化層となる。このボロン処理によって形成される拡散硬
化層の厚みおよび硬度は、加熱処理の温度および時間を
変更することにより制御可能であるから、母材の成分組
成、部材の使途に応じた調整が容易である。また、拡散
硬化層は母材と一体化して形成されるために、処理部材
使用時に熱衝撃や大きな剪断力等が付加されても拡散硬
化層が剥離する危険性が極めて少ない。
When the boron or the boron compound (5) is brought into contact with a predetermined portion of the surface of the cemented carbide member (2) and heated, the boron atoms permeate and diffuse into the matrix structure, and at the same time, the boron atom and the constituent element A compound is formed to form a diffusion hardened layer integrated with the base material. Since the thickness and hardness of the diffusion hardened layer formed by this boron treatment can be controlled by changing the temperature and time of the heat treatment, it is easy to adjust according to the component composition of the base material and the purpose of use of the member. . Further, since the diffusion hardened layer is formed integrally with the base material, the risk of peeling of the diffusion hardened layer is extremely small even if a thermal shock or a large shearing force is applied when the processing member is used.

【0014】また、このようなボロン処理において、ボ
ロン原子が母材内に浸透する温度に加熱した後に200
℃/hrの冷却速度で徐冷することにより、熱衝撃によ
る亀裂の発生を防ぐことができる。
Further, in such a boron treatment, after heating to a temperature at which boron atoms penetrate into the base material, 200
By gradually cooling at a cooling rate of ° C / hr, the generation of cracks due to thermal shock can be prevented.

【0015】[0015]

【実施例】次の本発明の超硬合金部材の表面硬化法の具
体的一実施例について、図面を参照しつつ説明する。
EXAMPLE A specific example of the surface hardening method for a cemented carbide member according to the present invention will be described with reference to the drawings.

【0016】図1に示されているのは、図2のハーモニ
カチューブ(1)を押出成形するためのダイス(2)で
あり、雄型(3)および雌型(4)からなる。この雄型
(3)はWC−18wt%Coからなる超硬合金で形成さ
れたベアリング部(3a)を基体部(3b)に挿入して
ピン嵌合により一体化させたものであり、雄型(3)の
ベアリング部(3a)は雌型(4)のベアリング部(4
a)に挿入される。
Shown in FIG. 1 is a die (2) for extruding the harmonica tube (1) of FIG. 2, which comprises a male die (3) and a female die (4). This male die (3) is obtained by inserting a bearing portion (3a) made of a cemented carbide made of WC-18wt% Co into a base portion (3b) and integrating them by pin fitting. The bearing part (3a) of (3) is the bearing part (4) of the female mold (4).
inserted in a).

【0017】ボロンによる表面硬化処理は、まず前記雄
型(3)および雌型(4)のベアリング部(3a)(4
a)以外の部分をマスキングした。次に、図3に示され
ているように、このダイス(2)をB4 Cおよびフェロ
−Bの混合ボロン粉末(5)を充填したSUS316か
らなるステンレス容器(7)内に埋め込み、同じくSU
S316からなるステンレス製の蓋(8)をして容器
(7)内に空気が入らないように密閉した。そして、こ
の容器(7)を電気炉(9)内にて800〜900℃で
2〜3時間加熱し、ダイス(2)を電気炉内に入れたま
ま、100℃/hrの冷却速度で室温まで徐冷した。
In the surface hardening treatment with boron, first, the bearing portions (3a) (4) of the male mold (3) and the female mold (4) are used.
Parts other than a) were masked. Next, as shown in FIG. 3, this die (2) was embedded in a stainless steel container (7) made of SUS316 filled with a mixed boron powder (5) of B 4 C and ferro-B, and the same SU was used.
A lid (8) made of S316 made of stainless steel was sealed to prevent air from entering the container (7). Then, this container (7) is heated in an electric furnace (9) at 800 to 900 ° C. for 2 to 3 hours, and the die (2) is kept in the electric furnace at room temperature at a cooling rate of 100 ° C./hr. Slowly cooled to.

【0018】次に、前述のボロン処理を施したダイスお
よび無処理のダイスについて、それぞれの耐摩耗性を比
較した。具体的には、実際にこれらのダイスを用いてA
アルミニウム合金ビレットをハーモニカチューブ(1)
に押出して、各ダイスの雄型のベアリング部における摩
耗量を測定したところ、ボロン処理を行ったダイスで3
9.5トンのアルミニウム合金を押出したときの摩耗量
は1μmであり、無処理のダイスで23.3トンを押出
したときの摩耗量は5μmであった。この押出量と摩耗
量が比例関係にあると仮定すると、これらの関係は図4
のように表すことができる。図4より、39.5トンを
押出したときの摩耗量は、ボロン処理ダイスで1μm、
無処理ダイスで約8.5μmであり、ボロン処理するこ
とにより耐摩耗性が約8.5倍に向上したといえる。
Next, the abrasion resistances of the above-mentioned boron-treated die and untreated die were compared. Specifically, using these dies,
Aluminum alloy billet with harmonica tube (1)
When the amount of wear in the male bearing part of each die was measured, the amount of wear was measured using a boron-treated die.
The amount of wear when extruding 9.5 tons of aluminum alloy was 1 μm, and the amount of wear when extruding 23.3 tons with an untreated die was 5 μm. Assuming that the extrusion amount and the wear amount are in a proportional relationship, these relationships are shown in FIG.
Can be expressed as From FIG. 4, the amount of wear when extruding 39.5 tons is 1 μm with the boron treatment die,
The untreated die has a thickness of about 8.5 μm, and it can be said that the wear resistance is improved by about 8.5 times by the boron treatment.

【0019】[0019]

【発明の効果】以上のように、本発明の超硬合金部材の
表面硬化法は、超硬合金部材表面の所定部位にボロンま
たはボロン化合物を接触させて加熱することによりボロ
ンを母材組織内に浸透、拡散させることにより、母材表
面に母材と一体化したボロン拡散層からなる硬化層を形
成させるものである。したがって、超硬合金部材に優れ
た耐摩耗性を付与することができ、大きな摩擦力に対し
ても摩耗しにくくなって、部材の寿命が長くなる。しか
も、このようなボロン処理に要する設備は、PVD法や
CVD法と比べて極めて簡単なもので済み、高品質の耐
摩耗性部材を低コストで製造できる。また、可燃性ガス
の使用や有毒ガスの発生もないから、処理時の安全管理
も簡単である。
As described above, according to the surface hardening method for a cemented carbide member of the present invention, boron or a boron compound is brought into contact with a predetermined portion of the surface of the cemented carbide member to heat the boron in the base metal structure. By penetrating and diffusing into the base material, a hardened layer composed of a boron diffusion layer integrated with the base material is formed on the surface of the base material. Therefore, it is possible to impart excellent wear resistance to the cemented carbide member, make it difficult to wear even with a large frictional force, and prolong the life of the member. Moreover, the equipment required for such a boron treatment is extremely simple as compared with the PVD method and the CVD method, and a high-quality wear-resistant member can be manufactured at low cost. In addition, since no flammable gas is used and no toxic gas is generated, safety management during processing is easy.

【0020】また、ボロン処理における加熱温度および
時間を制御することにより、拡散硬化層の厚さおよび硬
度を容易に調整できるとともに、ボロン処理時に超硬合
金部材の硬化不要部分をマスキングすることにより任意
の部分を硬化処理できるため、複雑な形状の部材あって
も、任意の部分のみを容易に硬化処理できる。
Further, by controlling the heating temperature and time in the boron treatment, the thickness and hardness of the diffusion hardened layer can be easily adjusted, and at the time of the boron treatment, a portion of the cemented carbide member which does not need to be hardened is masked to be arbitrarily set. Since the part can be cured, even if the member has a complicated shape, only an arbitrary part can be easily cured.

【0021】さらに、前述の表面硬化処理法において、
前記超硬合金部材の加熱後、200℃/hr以下の冷却
速度で徐冷することにより、亀裂の発生を防いで処理品
の品質を一層向上させることができる。
Further, in the above-mentioned surface hardening method,
After heating the cemented carbide member, by gradually cooling it at a cooling rate of 200 ° C./hr or less, the occurrence of cracks can be prevented and the quality of the treated product can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に使用するダイスの斜視図であ
る。
FIG. 1 is a perspective view of a die used in an embodiment of the present invention.

【図2】図1のダイスによって押出されるハーモニカチ
ューブの斜視図である。
FIG. 2 is a perspective view of a harmonica tube extruded by the die of FIG.

【図3】本実施例におけるボロン処理装置の概略図であ
る。
FIG. 3 is a schematic diagram of a boron processing apparatus in this embodiment.

【図4】押出加工におけるボロン処理ダイスおよび無処
理ダイスの摩耗量を示すグラフである。
FIG. 4 is a graph showing wear amounts of a boron-treated die and an untreated die in extrusion processing.

【符号の説明】[Explanation of symbols]

2…超硬合金部材(ダイス) 5…ボロンまたはボロン粉末(混合ボロン粉末) 2 ... Cemented carbide member (die) 5 ... Boron or boron powder (mixed boron powder)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金部材(2)表面の所定部位にボ
ロンまたはボロン化合物(5)を接触させて加熱するこ
とによりボロンを母材組織内に浸透、拡散させることを
特徴とする超硬合金部材の表面硬化法。
1. A cemented carbide characterized in that boron or a boron compound (5) is brought into contact with a predetermined portion of the surface of a cemented carbide member (2) and heated to allow boron to penetrate into and diffuse into the matrix structure. Surface hardening method for alloy members.
【請求項2】 前記超硬合金部材(2)の加熱後、20
0℃/hr以下の冷却速度で徐冷することを特徴とする
請求項1に記載の超硬合金部材の表面硬化法。
2. After heating the cemented carbide member (2), 20
The surface hardening method for a cemented carbide member according to claim 1, wherein the surface is gradually cooled at a cooling rate of 0 ° C / hr or less.
JP24092693A 1993-09-28 1993-09-28 Surface hardening method of cemented carbide member Pending JPH0790543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24092693A JPH0790543A (en) 1993-09-28 1993-09-28 Surface hardening method of cemented carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24092693A JPH0790543A (en) 1993-09-28 1993-09-28 Surface hardening method of cemented carbide member

Publications (1)

Publication Number Publication Date
JPH0790543A true JPH0790543A (en) 1995-04-04

Family

ID=17066706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24092693A Pending JPH0790543A (en) 1993-09-28 1993-09-28 Surface hardening method of cemented carbide member

Country Status (1)

Country Link
JP (1) JPH0790543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210525A (en) * 2001-01-12 2002-07-30 Denso Corp Carbide tool
CN1293227C (en) * 2004-10-29 2007-01-03 武汉理工大学 Quick preparation method of metal surface boronizing layer
JP2010007098A (en) * 2008-06-24 2010-01-14 Kentech Inc Surface treatment method
CN112969674A (en) * 2018-10-30 2021-06-15 瑞典海博恩材料与技术有限公司 Method for boronizing sintered bodies, tool for cold forming operations and hollow wear-resistant part with boronized sintered bodies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107242A (en) * 1976-03-05 1977-09-08 Yoshinobu Kobayashi Surface treating process for cemented carbide
JPS55161063A (en) * 1979-05-31 1980-12-15 Mitsubishi Electric Corp Boron layer forming treatment
JPH03257151A (en) * 1990-03-08 1991-11-15 Shizuoka Prefecture Surface hardening treatment of titanium material and cemented carbide by paste method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107242A (en) * 1976-03-05 1977-09-08 Yoshinobu Kobayashi Surface treating process for cemented carbide
JPS55161063A (en) * 1979-05-31 1980-12-15 Mitsubishi Electric Corp Boron layer forming treatment
JPH03257151A (en) * 1990-03-08 1991-11-15 Shizuoka Prefecture Surface hardening treatment of titanium material and cemented carbide by paste method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210525A (en) * 2001-01-12 2002-07-30 Denso Corp Carbide tool
CN1293227C (en) * 2004-10-29 2007-01-03 武汉理工大学 Quick preparation method of metal surface boronizing layer
JP2010007098A (en) * 2008-06-24 2010-01-14 Kentech Inc Surface treatment method
CN112969674A (en) * 2018-10-30 2021-06-15 瑞典海博恩材料与技术有限公司 Method for boronizing sintered bodies, tool for cold forming operations and hollow wear-resistant part with boronized sintered bodies

Similar Documents

Publication Publication Date Title
US4731253A (en) Wear resistant coating and process
JP3934160B2 (en) Method for producing cemented carbide with surface area enriched in binder phase
US4276096A (en) Method for producing hard metal bodies of increased wear resistance
US2206395A (en) Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof
US5283030A (en) Coated cemented carbides and processes for the production of same
US6194088B1 (en) Stainless steel coated with intermetallic compound and process for producing the same
Shankar et al. Mechanism and preventive measures for die soldering during Al casting in a ferrous mold
Vojtěch et al. Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment
Schintlmeister et al. Properties, applications and manufacture of wear-resistant hard material coatings for tools
CN100436639C (en) Metal material and method for production thereof
JPH0790543A (en) Surface hardening method of cemented carbide member
Haq et al. An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite
JP2004052094A (en) Sputtering target, hard coating, and hard-coated member
EP3530383B1 (en) A method of manufacturing an austenitic iron alloy
Kawata Development of mass-production-type plasma chemical vapour deposition equipment and its application to various dies
JP3083292B1 (en) Aluminum diffusion method to steel surface
Reinhold et al. Plasma nitriding of aluminum alloys
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
Duarte et al. Characterisation of interface formed at 650 C between AISI H13 steel and Al–12Si–1Cu aluminium melt
JP2747400B2 (en) Molding die and method of manufacturing the same
US5645944A (en) Application of molybdenum alloys
US20040211493A1 (en) Process to enhance brazability of carbide bits
JP2770372B2 (en) Coated cemented carbide for wear-resistant tools and method for producing the same
FR2304590A1 (en) Cementation process for forming a refractory metal carbide layer - on a (metal) substrate using a volatile halide of the metal to increase its diffusion rate
JPH0610113A (en) Method for strengtheing, hardening and joining titanium or titanium alloy