JPH0610113A - Method for strengtheing, hardening and joining titanium or titanium alloy - Google Patents

Method for strengtheing, hardening and joining titanium or titanium alloy

Info

Publication number
JPH0610113A
JPH0610113A JP20937592A JP20937592A JPH0610113A JP H0610113 A JPH0610113 A JP H0610113A JP 20937592 A JP20937592 A JP 20937592A JP 20937592 A JP20937592 A JP 20937592A JP H0610113 A JPH0610113 A JP H0610113A
Authority
JP
Japan
Prior art keywords
titanium
alloy
treated
titanium alloy
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20937592A
Other languages
Japanese (ja)
Inventor
Akira Tamaki
明 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMAKI GANGU KK
Original Assignee
TAMAKI GANGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMAKI GANGU KK filed Critical TAMAKI GANGU KK
Priority to JP20937592A priority Critical patent/JPH0610113A/en
Publication of JPH0610113A publication Critical patent/JPH0610113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To subject the surface part or whole body of titanium or an titanium alloy to alloying, strengthening and hardening or diffusion joining by utilizing the diffusion reaction of alloy components in the solid state as they are. CONSTITUTION:The surface of titanium or a titanium alloy is brought into contact with alloy forming substances capable of alloying in the solid or gaseous state, and heat treatment is executed at less than the temp. at which a liq. phase is formed, by which diffusion reaction occurs to form a new titanium alloy. Or, two titanium materials are closely brought into contact with via a master alloy capable of alloying, and heat treatment is similarly executed to allow diffusion joining. In this way, the surface of the titanium or titanium alloy is strengthened and hardened to improve its wear resistance and fatigue resistance, or, the thin sheet of the titanium or titanium alloy is formed into a new titanium alloy thin sheet furthermore increased in strength, by which a high strength titanium alloy thin sheet which can not be obtd. by a rolling method is manufactured. Moreover, by joining plural titanium parts, complicated net shaped parts or composite material can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタンまたはチタン合
金の表面或いは全体を強化、硬化させ、耐摩耗性或いは
硬度、強度を付与するための方法、およびチタンまたは
チタン合金の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for strengthening or hardening the surface or the whole of titanium or a titanium alloy to impart wear resistance or hardness and strength, and a method for joining titanium or a titanium alloy.

【0002】[0002]

【従来の技術】従来の表面硬化方法には表面に窒化チタ
ン、窒化クロムなどの薄い層を物理蒸着させるもの、空
気中で加熱酸化させ表面に薄い酸素含有層を形成させる
ものなどがあるが、いずれも硬化層が非常に薄く表面と
内部の硬度差が大きいため、局部的、衝撃的に押し付け
力が働くと、表面の硬化層が割れ剥がれてしまい用をな
さない。チタン合金は通常、溶解段階で合金元素を添加
して合金化する。そのチタン合金は強度が高く、また熱
間加工でも加工温度範囲が狭いため非常に加工しにく
い。そのため恒温鍛造、超塑性加工、などのコストの高
い方法、或いは単純形状に留める、弱いが加工し易い純
チタンを加工して代用する等としている。
2. Description of the Related Art Conventional surface hardening methods include physical vapor deposition of a thin layer of titanium nitride, chromium nitride or the like on the surface, or thermal oxidation in air to form a thin oxygen-containing layer on the surface. In both cases, since the hardened layer is very thin and the difference in hardness between the surface and the inside is large, when the pressing force acts locally or on an impact, the hardened layer on the surface cracks and is useless. Titanium alloys are usually alloyed by adding alloying elements during the melting stage. The titanium alloy has high strength and is extremely difficult to work even in hot working because the working temperature range is narrow. Therefore, high-cost methods such as isothermal forging and superplastic working, or simple shapes are used, weak pure titanium that is easy to work is used instead.

【0003】[0003]

【発明が解決しようとする課題】従来の表面硬化方法で
は硬化層が薄く硬すぎるため剥離してしまうという問題
点があった。本発明では真空に近い特定雰囲気の下で熱
処理することにより、表面の硬化層を適度の硬さで厚く
し徐々に内部の硬度に近付ける様にすることができ剥離
を防ぎ、良好な耐摩耗性を付与することができる。また
チタン合金の薄板は圧延加工しにくく製造が難しいが、
純チタンの薄板を特定雰囲気の下で熱処理することによ
り表面から合金成分を拡散させ、高強度チタン合金の極
薄板を簡単に造ることができる。またチタン合金は機械
加工が難しく複雑形状の部品の製造には莫大なコストが
かかる。本発明ではチタンまたはチタン合金の素形材、
あるいは板、棒、線、型材をその間に合金形成物質(以
降母合金と記す)を介して密着させ、特定雰囲気の下で
熱処理することにより、接合し複雑形状部品あるいは複
合材料を造ることもできる。
The conventional surface hardening method has a problem that the hardened layer is too thin and hard to peel off. In the present invention, by performing heat treatment in a specific atmosphere close to vacuum, the hardened layer on the surface can be made to have a moderate hardness and gradually come close to the internal hardness, and peeling can be prevented and good wear resistance can be obtained. Can be given. Also, titanium alloy thin plates are difficult to roll and difficult to manufacture,
By heat-treating a thin plate of pure titanium in a specific atmosphere, alloy components can be diffused from the surface, and an extremely thin plate of high-strength titanium alloy can be easily manufactured. In addition, titanium alloys are difficult to machine, and it takes enormous cost to manufacture parts with complicated shapes. In the present invention, titanium or titanium alloy raw material,
Alternatively, a plate, a bar, a wire, and a mold material may be adhered to each other with an alloy-forming substance (hereinafter referred to as a mother alloy) interposed therebetween, and heat-treated in a specific atmosphere to bond them to form a complex-shaped component or a composite material. .

【0004】[0004]

【課題を解決するための手段】本発明に係わるチタンま
たはチタン合金の強化,硬化方法および接合方法は、チ
タンまたはチタン合金からなる被処理材を酸素、窒素、
炭酸ガス、一酸化炭素、などの極低分圧のガスの特定の
雰囲気下で熱処理することにより、被処理材の表面の過
度の反応を抑え、ガスの構成元素を表面から内部に拡散
させ深い部分に迄強度を保たせることを特徴としてい
る。熱処理の雰囲気、温度、時間を変化させることによ
り表層部分を強化させたり、また内部まで合金化強化さ
せ全体の強度を高めることができる。強度と硬度は比例
するので、強度が向上したところは硬度も向上してい
る。
A method of strengthening, hardening and joining titanium or a titanium alloy according to the present invention comprises treating a material to be treated made of titanium or a titanium alloy with oxygen, nitrogen,
By heat treatment in a specific atmosphere of a gas with an extremely low partial pressure such as carbon dioxide or carbon monoxide, excessive reaction on the surface of the material to be treated is suppressed, and the constituent elements of the gas are diffused deep from the surface to the inside. The feature is that it keeps the strength up to the part. By changing the atmosphere, temperature, and time of heat treatment, the surface layer portion can be strengthened, and the entire interior can be alloyed and strengthened to increase the strength of the whole. Since strength is proportional to hardness, hardness is improved where strength is improved.

【0005】Al,C,O,N,Mo,Nb,Ta,
V,Ag,Cu,Fe,Mn,Ni,Co,Cr,P
b,Si,W,Zr,Sn,Zn,Sb,Au,Ag,
Ti、の元素から構成され、これら元素を含むガス、或
いはこれら単独の金属か、これら複数の元素を予め混合
し又は溶解し、チタン合金にさせ得る予備合金とした母
合金の微粉末を、チタンまたはチタン合金からなる被処
理材の表面に均一に密着させ特定の雰囲気下で熱処理す
ると、ガスまたは母合金は被処理材の表面から拡散浸透
し表層部分に新たなチタン合金が生成され、表層の強度
と硬度が向上する。このとき熱処理の雰囲気、温度、時
間を変化させることにより表層部分を合金化し強化、硬
化させるだけでなく、内部まで新たな組成に合金化させ
全体の強度、硬度を高めることができる。母合金微粉末
の場合その大きさは0.1mm以下が好ましく、それ以
上であると拡散に長時間を要する。かつ平均最適粒径は
被処理材の厚さの10分の1以下である。またチタンま
たはチタン合金からなる被処理材に母合金の微粉末を均
一に散布または塗布し、あるいは上記元素の金属箔また
は母合金の箔を置き、もう一つの被処理材を載せ密着さ
せ、特定の雰囲気下で熱処理すると母合金は双方の被処
理材に拡散、合金化し二つの被処理材がその面で接合さ
れることになる。本発明の基本技術はチタン基材中に於
いて、速い拡散速度を持ち且つチタンと合金化可能な合
金形成物質をチタンと接触させ、熱処理中に拡散合金化
させ部分的にあるいは全体を高強度高硬度のチタン合金
にすることである。
Al, C, O, N, Mo, Nb, Ta,
V, Ag, Cu, Fe, Mn, Ni, Co, Cr, P
b, Si, W, Zr, Sn, Zn, Sb, Au, Ag,
Ti, a gas containing these elements, a gas containing these elements, or a single metal thereof, or a fine powder of a master alloy that is a prealloy that can be mixed or melted with a plurality of these elements in advance to form titanium alloy Alternatively, when the surface of the material to be treated made of titanium alloy is evenly adhered and heat-treated in a specific atmosphere, the gas or mother alloy diffuses and permeates from the surface of the material to be treated, and a new titanium alloy is generated in the surface layer portion. Strength and hardness are improved. At this time, not only the surface layer portion is alloyed and strengthened and hardened by changing the atmosphere, temperature, and time of the heat treatment, but also the inside can be alloyed with a new composition to increase the strength and hardness of the whole. In the case of the master alloy fine powder, the size is preferably 0.1 mm or less, and if it is more than that, it takes a long time for diffusion. Moreover, the average optimum particle size is 1/10 or less of the thickness of the material to be treated. In addition, the fine powder of the mother alloy is evenly dispersed or applied to the material to be treated made of titanium or titanium alloy, or the metal foil of the above element or the foil of the mother alloy is placed and another material to be treated is placed in close contact and specified. When heat-treated in the above atmosphere, the mother alloy diffuses and alloys with both the materials to be processed, and the two materials to be processed are bonded on the surface. The basic technique of the present invention is that in a titanium base material, an alloy-forming substance having a high diffusion rate and capable of alloying with titanium is brought into contact with titanium to form a diffusion alloy during heat treatment to partially or entirely increase the strength. It is a high hardness titanium alloy.

【0006】ここでいう特定雰囲気とは、真空あるいは
不活性ガスの中に酸素、窒素、炭酸ガス、一酸化炭素、
炭化水素、アルコール、アンモニア、金属ハロゲン化物
ガス、空気等の活性ガスを単独、またはこれらの混合ガ
スを、これら活性ガスの分圧が百分の一以下である様に
した雰囲気または真空雰囲気を示す。母合金の微粉末、
箔などを被処理材に密着させる方法はロール、プレス、
鍛造、槌叩き、押し出し、引き抜き、等の加工により圧
着させるか、あるいは溶融母合金中への浸漬、メッキな
どで付着させるプロセスでも良い。ここで圧着させる場
合は粉末を薄く塗布することが好ましく、厚く塗布した
いときには塗布、圧着の操作を繰り返すとよい。塗布す
る際には母合金と水、溶剤、接着剤、潤滑材などを混合
してスラリー、ペーストにするのが便利であるが濃度を
適切に選び圧粉したときの母合金の密度を70%以上に
するとよい。熱処理の条件は、被処理材の表層だけを硬
化するときは高目のガス分圧で低温度、短時間とする、
被処理材の内部まで合金化し強化し耐摩耗特性を向上さ
せるときは、低目のガス分圧で高温度、長時間とするの
が基本である。このときの温度は被処理材であるチタン
と母合金間で液相が形成される温度未満であることが重
要であり700度Cから1500度Cの間、時間は0.
1時間から1000時間の間の条件がよい。
The specific atmosphere referred to here is oxygen, nitrogen, carbon dioxide gas, carbon monoxide, in a vacuum or an inert gas,
Indicates an atmosphere or vacuum atmosphere in which an active gas such as hydrocarbon, alcohol, ammonia, metal halide gas, or air is used alone or a mixed gas thereof is made so that the partial pressure of these active gases is not more than 100%. . Fine powder of mother alloy,
The method of adhering foil etc. to the material to be treated is roll, press,
A process of press-fitting by hammering, hammering, extruding, drawing, or the like, or a process of attaching by dipping in a molten mother alloy, plating, or the like may be used. In the case of press-bonding, it is preferable to apply the powder thinly, and when it is desired to apply the powder thickly, the operations of applying and press-bonding may be repeated. When applying, it is convenient to mix the mother alloy with water, solvent, adhesive, lubricant, etc. to form a slurry or paste, but the density of the mother alloy when pressed properly is 70% The above is recommended. The heat treatment conditions are such that when only the surface layer of the material to be treated is cured, the gas partial pressure is high, the temperature is low, and the time is short.
When alloying and strengthening the inside of the material to be treated to improve wear resistance, it is basically necessary to use a low gas partial pressure and high temperature for a long time. It is important that the temperature at this time is lower than the temperature at which a liquid phase is formed between the titanium to be treated and the mother alloy, and the temperature is between 700 ° C and 1500 ° C and the time is 0.
Conditions between 1 hour and 1000 hours are good.

【0007】[0007]

【作用】チタンまたはチタン合金からなる被処理材を真
空加熱容器に入れ例えば10−1torr分圧の酸素の
中で加熱すると、酸素は被処理材の表面で反応し溶け込
みその部分が合金化するがその酸素は直ちに被処理材の
内部に拡散し内部を合金化する。表面部分は再び酸素と
反応し内部に拡散し、これが繰り返されるが雰囲気の酸
素分圧が低いため表層部分の酸素含有量はあまり高くな
らない。従って被処理材の中の酸素含有量は内部から表
面に向かって徐々に高くなり、硬度も強度も表面に向か
って徐々に上がり耐摩耗性が著しく向上した。上記反応
を長時間続けると被処理材全体に酸素を拡散させ、全体
を合金化し被処理材の強度を高めることができる。即ち
純チタンの薄板、筐体を合金化し高強度化することがで
きる。酸素の代わりに一酸化炭素、炭酸ガス、アルコー
ル、炭化水素、窒素、アンモニアなどのガスに置き換え
ると、炭素、窒素などもチタン中に溶け込み合金化し同
様に高強度チタンを得ることができる。
When a material to be treated made of titanium or a titanium alloy is placed in a vacuum heating container and heated in oxygen with a partial pressure of 10 -1 torr, oxygen reacts on the surface of the material to be treated and melts to form an alloy. However, the oxygen immediately diffuses inside the material to be treated and alloys the inside. The surface portion reacts with oxygen again and diffuses inside, and this is repeated, but the oxygen content in the surface portion does not become so high because the oxygen partial pressure in the atmosphere is low. Therefore, the oxygen content in the material to be treated gradually increased from the inside toward the surface, and the hardness and strength gradually increased toward the surface, and the wear resistance was significantly improved. When the above reaction is continued for a long time, oxygen can be diffused throughout the material to be processed, and the whole can be alloyed to increase the strength of the material to be processed. That is, a thin plate of pure titanium and a case can be alloyed to enhance the strength. When carbon monoxide, carbon dioxide, alcohol, hydrocarbons, nitrogen, ammonia, or another gas is used instead of oxygen, carbon, nitrogen, etc. are also dissolved in titanium to form an alloy, and similarly high-strength titanium can be obtained.

【0008】その他、純チタン板の上に60Al−40
V母合金の微粉末ペーストを一様に塗布しもう一枚の純
チタン板を載せサンドイッチ状にし、プレスにより成形
すると同時に二枚の板を密着させる。この成形品を脱脂
した後、真空加熱容器に入れ熱処理すると母合金は双方
の板に拡散しチタン6Al−4V合金になると同時に二
枚のチタン板は接合され強固な筐体が形成される。母合
金の微粉末ペーストを塗った純チタン板一枚だけをプレ
ス成形し熱処理する場合でも同様の効果が得られる。ま
たハーフアロイの被処理材を同様の処理によりフルアロ
イの強固な成形品にすることもできる。αあるいはα+
βチタン合金の板をこの様に複雑な形状に冷間で加工す
ることは難しく、本発明の作用が良く現れている。純チ
タン、ハーフアロイ等被処理材そのものが軟らかく加工
し易いこと、また母合金粉末が硬くプレス等で圧着する
と、母合金が被処理材中に食い込み投錨効果で密着し離
れず拡散が容易に行われることが特徴である。
In addition, 60Al-40 is placed on a pure titanium plate.
A fine powder paste of V mother alloy is uniformly applied, another pure titanium plate is placed on it, and it is sandwiched, and at the same time, the two plates are brought into close contact with each other by pressing. When this molded product is degreased and placed in a vacuum heating container for heat treatment, the mother alloy diffuses into both plates and becomes a titanium 6Al-4V alloy, and at the same time the two titanium plates are joined to form a strong housing. The same effect can be obtained when press-forming and heat-treating only one pure titanium plate coated with the fine powder paste of the mother alloy. Further, the half alloy processed material can be made into a full alloy strong molded product by the same treatment. α or α +
It is difficult to cold work a β titanium alloy plate into such a complicated shape, and the effect of the present invention is well shown. The material to be processed such as pure titanium and half alloy is soft and easy to process.When the mother alloy powder is hard and pressure-bonded with a press, etc., the mother alloy bites into the material to be processed and sticks to it due to the anchoring effect so that diffusion does not easily occur. It is characterized by being exposed.

【0009】[0009]

【実施例】純チタンまたはチタン合金の被処理材を密閉
加熱容器の中に入れ内部を真空にし純酸素で満たし60
0℃で1000時間保持すると被処理材の表面から内部
に酸素が拡散浸透する。しかしこのとき温度が低いため
拡散速度は遅く被処理材中の酸素含有量は分布図1の細
い実線の分布に示すとうりで表面部分だけに限られる。
そして表面の酸素分圧が高すぎるので表面だけが極端に
酸化される。この場合表面の強度、硬度が高く内部は低
いので表面が剥離しやすく、耐摩耗性に乏しい。そこで
真空中または純アルゴンガス中に百分の一気圧の分圧の
酸素を入れ900℃で10時間熱処理すると雰囲気の酸
素分圧が低いので表面の酸化は抑えられ、かつ拡散速度
は速くなり図1の破線で示す様に内部に迄酸素が拡散
し、深さ方向の強度、硬度分布は緩やかになる。同一雰
囲気の中700℃で1000時間保持しても同様の効果
が得られる。この様な硬度分布では良い耐摩耗性を示
す。次に十万分の一気圧の酸素分圧の雰囲気中で150
0℃で0.1時間熱処理すると表面の酸化は抑えられ、
拡散速度は一層速くなり、図1の太い実線に示すとうり
酸素はより深く浸透拡散し、深さ方向の強度、硬度分布
はより緩やかになり、ほぼ鋼に於ける浸炭と同様の分布
を呈する。このときの耐摩耗性は浸炭鋼に匹敵する程良
くなった。前述の例に於いて酸素を窒素に置き換えて同
様の実験を試みると図2に示す結果が得られ、良好な耐
摩耗性を示す。
EXAMPLE A material to be treated of pure titanium or a titanium alloy was placed in a closed heating vessel, the inside was evacuated and filled with pure oxygen.
When kept at 0 ° C. for 1000 hours, oxygen diffuses and permeates from the surface of the material to be treated to the inside. However, at this time, since the temperature is low, the diffusion rate is slow, and the oxygen content in the material to be treated is limited to only the surface portion due to the ridge as shown by the distribution of the thin solid line in Distribution chart 1.
And since the oxygen partial pressure on the surface is too high, only the surface is extremely oxidized. In this case, since the strength and hardness of the surface are high and the inside is low, the surface is easily peeled off and wear resistance is poor. Therefore, if oxygen at a partial pressure of 1/100 atm is put in vacuum or pure argon gas and heat-treated at 900 ° C for 10 hours, the oxygen partial pressure of the atmosphere is low, so that surface oxidation is suppressed and the diffusion rate becomes faster. Oxygen diffuses into the interior as indicated by the broken line 1 and the strength and hardness distribution in the depth direction becomes gentle. The same effect can be obtained by keeping the same atmosphere at 700 ° C. for 1000 hours. Such hardness distribution shows good wear resistance. Next, in an atmosphere with an oxygen partial pressure of 1 / 100,000 atm, 150
Heat treatment at 0 ° C for 0.1 hour suppresses surface oxidation,
The diffusion rate becomes faster, and as shown by the thick solid line in Fig. 1, urine oxygen permeates and diffuses deeper, the strength and hardness distribution in the depth direction becomes gentler, and the distribution is almost the same as that of carburizing in steel. . The wear resistance at this time was as good as that of carburized steel. When the same experiment was attempted by replacing oxygen with nitrogen in the above-mentioned example, the results shown in FIG. 2 were obtained, showing good wear resistance.

【0010】COガス、またはCOガスの分圧が一万
分の一気圧以下の雰囲気の中に純チタンまたはチタン合
金の被処理材を入れ1000℃で1時間熱処理すると、
酸素と炭素が同時に被処理材の表面から浸入拡散し、図
3、図4に示す様な含有量分布を呈する。したがって強
度、硬度分布も図のようになる。これは鋼の浸炭現象に
於いて表面のCO、CO分圧がその表面硬度の効果を
左右するのに似ている。この様に内部から表面に向かっ
て緩やかに硬度を高くすると耐摩耗性が著しく向上す
る。この場合には酸素と炭素の双方の強化、硬化能力が
発揮されるのでより効果が大きくなる。
When the material to be treated of pure titanium or titanium alloy is placed in an atmosphere in which the partial pressure of CO gas or CO 2 gas is less than 1 / 10,000 atmospheric pressure, and heat-treated at 1000 ° C. for 1 hour,
Oxygen and carbon simultaneously infiltrate and diffuse from the surface of the material to be treated, and exhibit the content distribution as shown in FIGS. 3 and 4. Therefore, the strength and hardness distributions are as shown in the figure. This is similar to that the surface CO and CO 2 partial pressure influences the effect of the surface hardness in the carburization phenomenon of steel. When the hardness is gradually increased from the inside toward the surface in this way, the wear resistance is remarkably improved. In this case, both oxygen and carbon can be strengthened and the curing ability is exerted, so that the effect is further enhanced.

【0011】純チタンまたはチタン合金の被処理材の表
面にTiOの微粉末のスラリーを薄く均一に塗布し、
これをプレスなどで圧着させ、真空加熱容器の中に入れ
真空中あるいは不活性ガス雰囲気中で熱処理すると、T
iO中の酸素が被処理材の表面から浸入拡散し、酸素
含有量と強度、硬度は図5の様な分布になる。これは図
1と良く似ており酸素を気体でも固体の状態でも被処理
材に接する様に位置させれば同様の効果をもたらすこと
を示している。耐摩耗性も同様に向上した。ここでTi
微粉末の代わりにTiN微粉末を用いたところ図6
の関係が得られ同様の効果が得られた。また、TiC微
粉末の場合にも同様の効果が得られた。TiOあるい
はTiN、TiCの微粉末を圧着させる代わりに、予め
表面を酸化、あるいは窒化,炭化させ表面にTiO
るいはTiN、TiCの被膜を生成させておいてから熱
処理して拡散させても全く同様の効果が得られた。熱処
理が終わった段階で表面にTiO層、あるいはTiN
層、TiC層の被膜が残っている場合にはショットブラ
ストで除去することができる。ショットブラストをかけ
ると表面の残留応力により耐疲労強度が向上する。
A slurry of fine powder of TiO 2 is thinly and evenly applied on the surface of the material to be treated of pure titanium or titanium alloy,
When this is pressed with a press or the like, placed in a vacuum heating container and heat-treated in a vacuum or in an inert gas atmosphere, T
Oxygen in iO 2 permeates and diffuses from the surface of the material to be treated, and the oxygen content, strength, and hardness have distributions as shown in FIG. This is very similar to FIG. 1 and shows that oxygen or a gas in a solid state can be brought into contact with the material to be treated to bring about the same effect. Abrasion resistance was also improved. Where Ti
When TiN fine powder was used instead of O 2 fine powder, FIG.
And the same effect was obtained. Further, the same effect was obtained in the case of TiC fine powder. Instead of pressing fine powder of TiO 2, TiN, or TiC, the surface may be oxidized, nitrided, or carbonized in advance to form a coating film of TiO 2, TiN, or TiC on the surface and then heat-treated to diffuse. Similar effects were obtained. TiO 2 layer or TiN on the surface after heat treatment
If the coating of the layer and the TiC layer remains, it can be removed by shot blasting. When shot blasting is applied, the fatigue strength is improved due to the residual stress on the surface.

【0012】0.5mm厚さの純チタンまたはチタン合
金の被処理材、薄板を百分の一気圧以下の酸素分圧の雰
囲気中で熱処理すると板の両面から酸素が浸入拡散し、
酸素含有量は図7の様な分布になるので、板の全体の強
度、硬度が共に高くなり、あたかも高強度チタン合金の
薄板の様な特性を持った板ができる。次に窒素の百分の
一気圧以下の窒素分圧雰囲気中で熱処理すると図8の様
な分布が得られ、同様に板の強度、硬度を高めることが
できる。これは板の表面にTiO、TiNの微粉末を
圧着し、あるいは表面を酸化、窒化してから真空中で熱
処理した場合でも同様の効果を得ることができる。
When a 0.5 mm-thick material to be treated made of pure titanium or a titanium alloy or a thin plate is heat-treated in an atmosphere having an oxygen partial pressure of not more than 1/100 atm, oxygen permeates and diffuses from both sides of the plate.
Since the oxygen content has a distribution as shown in FIG. 7, both strength and hardness of the whole plate are increased, and a plate having characteristics like a thin plate of high strength titanium alloy can be obtained. Next, a heat treatment is performed in a nitrogen partial pressure atmosphere of not more than one-tenth atmospheric pressure of nitrogen to obtain a distribution as shown in FIG. 8, and similarly, the strength and hardness of the plate can be increased. The same effect can be obtained even when fine powders of TiO 2 and TiN are pressure-bonded to the surface of the plate, or the surface is oxidized and nitrided and then heat-treated in vacuum.

【0013】純チタンの被処理材の表面に、60%Al
40%V母合金の微粉末(100μ以下)を散布あるい
は塗布しプレスまたはロールで圧着させる。そして真空
中或いはアルゴンガス等の不活性ガス雰囲気中に置き9
00℃で1時間熱処理したところ、AlとVは被処理材
中に表面から浸透拡散し図9に示すとうり200μ深さ
の表層部分が略6Al4Vチタン合金になり表層部分の
強度と硬度が向上した。表面に若干の未反応層が残って
いたがショットブラストで除去したところきれいな表面
が得られた。6Al4Vチタン合金の被処理材の表面に
52%Mo,27%Zr、21%Snの母合金微粉末を
散布し同様の方法で熱処理したところ、表層部分に11
%Mo、6%Zr,4%Snのβチタン合金が生成さ
れ、BCCに変態し膨脹するため、表面に圧縮残留応力
が働き疲労強度が向上した。次に純チタンの0.5mm
薄板の双方の表面に60%Al40%V母合金の微粉末
(20μ以下)と潤滑材を混合した粉末、またはスラリ
ーをそれぞれ0.05mmの厚さに散布あるいは塗布
し、それを冷間でプレス成形し筐体とし被処理材と母合
金を密着させた。これを真空加熱あるいは溶媒で脱脂し
た後、アルゴン雰囲気中で同様の熱処理を施したところ
図10に示す通り薄板全体にAlとVが拡散し、6Al
4Vチタン合金薄板の筐体ができた。これをカメラの筐
体として使用したところ非常に軽く堅固で表面疵の付き
にくいカメラボディとなった。
On the surface of the pure titanium material to be treated, 60% Al
Fine powder (100 μm or less) of 40% V mother alloy is sprinkled or applied and pressed by a press or a roll. Then, place it in a vacuum or in an inert gas atmosphere such as argon gas 9
When heat-treated at 00 ° C for 1 hour, Al and V permeated and diffused from the surface into the material to be treated, and as shown in Fig. 9, the surface layer portion with a depth of 200 µm became approximately 6Al4V titanium alloy and the strength and hardness of the surface layer portion were improved. did. Although some unreacted layer remained on the surface, a clean surface was obtained when removed by shot blasting. When a fine powder of mother alloy of 52% Mo, 27% Zr and 21% Sn was sprinkled on the surface of the 6Al4V titanium alloy material to be treated and heat-treated in the same manner, 11
A β-titanium alloy containing 6% Mo, 6% Zr and 4% Sn was formed, transformed into BCC and expanded, so that compressive residual stress was exerted on the surface and fatigue strength was improved. Next, 0.5 mm of pure titanium
Powder or slurry in which fine powder of 60% Al 40% V mother alloy (20μ or less) and lubricant is mixed is sprayed or applied to each surface of the thin plate to a thickness of 0.05 mm, and cold pressed. It was molded into a case and the material to be treated and the mother alloy were brought into close contact with each other. When this was heated in vacuum or degreased with a solvent and then subjected to the same heat treatment in an argon atmosphere, Al and V were diffused throughout the thin plate as shown in FIG.
A 4V titanium alloy thin plate housing was completed. When this was used as a camera housing, it became a very light and strong camera body with less surface flaws.

【0014】ここでは60%Al40%Vの母合金を用
いたが、種々のチタン合金に適合する組成の母合金を用
いればそれに応じたチタン合金の薄板を造ることができ
る。例えばAl−Sn、Al−Mo、Al−V−Sn、
Al−V−Cr、Al−V−Fe、Al−V−Fe−M
oなどの母合金で良いが、これに極少量の遷移金属を予
め合金化しておくと熱処理中に遷移金属の高い拡散速度
に助けられて、その他の金属の拡散も速まり組成の均一
な合金が造られる。ハーフアロイの3Al2Vチタン合
金の薄板を被処理材とすると半量の母合金で良いので軽
い熱処理で済む。これら被処理材全体の強度を上げる場
合の母合金の重量は被処理材の重量の1%から25%の
範囲が良い。
Although a master alloy of 60% Al 40% V was used here, if a master alloy having a composition compatible with various titanium alloys is used, a thin plate of titanium alloy corresponding thereto can be manufactured. For example, Al-Sn, Al-Mo, Al-V-Sn,
Al-V-Cr, Al-V-Fe, Al-V-Fe-M
A mother alloy such as o may be used, but if a small amount of transition metal is pre-alloyed with this, the high diffusion rate of the transition metal during heat treatment will accelerate the diffusion of other metals, and an alloy with a uniform composition. Is built. If a thin plate of 3Al2V titanium alloy of a half alloy is used as a material to be treated, a half amount of the mother alloy is sufficient, and therefore a light heat treatment is sufficient. The weight of the mother alloy in the case of increasing the strength of the whole material to be treated is preferably in the range of 1% to 25% of the weight of the material to be treated.

【0015】6Al4Vチタン合金の厚板の上に60%
Al40%Vの母合金の微粉末を均一に散布し、その上
に純チタンの薄板を載せ二枚の板をロールで圧延し、母
合金と二枚の板を密着させる。そして真空中あるいは不
活性ガス雰囲気中で900℃、2時間の熱処理を加えた
ところ、母合金の拡散により二枚の板は接合され複合材
料が造られた。このときの板の内部の組成分布は図11
に示すとうりであり、純チタン板側の表面は純チタンの
ままであり耐蝕性はそのまま保たれる。強度と耐蝕性を
要求される化学プラントのタンク等に使われる。
60% on a thick plate of 6Al4V titanium alloy
A fine powder of a master alloy of Al 40% V is evenly dispersed, a thin plate of pure titanium is placed thereon, and the two plates are rolled by a roll to bring the master alloy and the two plates into close contact with each other. Then, when a heat treatment was applied at 900 ° C. for 2 hours in a vacuum or in an inert gas atmosphere, the two plates were joined by the diffusion of the mother alloy and a composite material was produced. The composition distribution inside the plate at this time is shown in FIG.
The surface of the pure titanium plate side remains pure titanium and the corrosion resistance is maintained as it is. Used in tanks of chemical plants where strength and corrosion resistance are required.

【0016】二つの6Al4Vチタン合金の部品を接合
しようとする面に60%Al40%Vの母合金の微粉末
を均一に塗布し、その面で合わせプレスで強く圧着さ
せ、真空中あるいは不活性ガス雰囲気中で1300℃、
1時間の熱処理を加えたところ、母合金の拡散により二
つの部品は強固に接合され複雑な形状の部品ができた。
部品の内部の組成分布は図12に示すとうり接合部分だ
けAlとVが少し高いが完全に合金化しており強度は充
分である。
Fine powder of a mother alloy of 60% Al 40% V is evenly applied to the surfaces on which two 6Al4V titanium alloy parts are to be joined, and the surfaces are strongly pressed together by a pressing press, and then in a vacuum or an inert gas. 1300 ℃ in the atmosphere,
When heat treatment was applied for 1 hour, the two parts were firmly joined due to the diffusion of the mother alloy, and a part having a complicated shape was formed.
As for the composition distribution inside the component, as shown in FIG. 12, Al and V are slightly higher only in the welded joint portion, but they are completely alloyed and the strength is sufficient.

【0017】[0017]

【発明の効果】本発明は以上説明した様に構成されてお
り、以下に記載するような効果を示す。図1、図2、図
3、図4、図5、図6に示す様に表面だけの過度の硬化
を抑え、内部へも徐々に適度の強度と硬度を付与するこ
とができるので、表層の硬化層が剥離しにくい。図13
に示すとおり被処理材の表層から内部まで徐々に強化硬
化したものは耐摩耗性が著しく向上する効果が得られ
た。
The present invention is constructed as described above and exhibits the effects as described below. As shown in FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6, excessive hardening of only the surface can be suppressed, and moderate strength and hardness can be gradually given to the inside. Hardened layer is difficult to peel off. FIG.
As shown in Fig. 5, the material which was gradually strengthened and hardened from the surface layer to the inside of the material to be treated had the effect of significantly improving the wear resistance.

【0018】図7、図8、図10に示す処理を施した薄
板を引張試験に供し図14の結果を得た。酸素、窒素、
炭素を拡散させた純チタンの薄板では強度は向上したが
伸びが若干減少した。また60%Al40%V母合金を
拡散させ合金化させた6Al4V合金薄板は、伸びを減
少させずに強度を大きく向上させることができ、通常の
チタン6Al4V合金薄板の強度特性にほぼ近くなっ
た。
The thin plate subjected to the treatment shown in FIGS. 7, 8 and 10 was subjected to a tensile test and the results shown in FIG. 14 were obtained. Oxygen, nitrogen,
The strength of the pure titanium sheet with carbon diffused improved, but the elongation decreased slightly. Further, the 6Al4V alloy thin plate obtained by diffusing and alloying the 60% Al40% V mother alloy was able to greatly improve the strength without reducing the elongation, and was close to the strength characteristics of the ordinary titanium 6Al4V alloy thin plate.

【0019】二つのチタン6Al4V合金部品を母合金
を介して拡散接合させた図12の被処理材を接合面に垂
直方向に引張ったところ、接合面では切れず他の部分で
切断された。接合面は完全に合金化しており合金組成が
高いため強度も高くこの部分の接合強度は溶接材以上で
あった。
When the material to be treated in FIG. 12 in which two titanium 6Al4V alloy parts were diffusion-bonded through a mother alloy was pulled in the direction perpendicular to the joint surface, it was not cut at the joint surface and was cut at other portions. Since the joint surface was completely alloyed and the alloy composition was high, the joint strength was high and the joint strength in this part was higher than that of the welded material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 酸素雰囲気中で熱処理したときのチタン中
の酸素溶解量分布と強度・硬度分布を示す図。
FIG. 1 is a diagram showing an oxygen dissolution amount distribution and strength / hardness distribution in titanium when heat-treated in an oxygen atmosphere.

【図2】 チタン中の窒素溶解量分布と強度・硬度分
布を示す図。
FIG. 2 is a diagram showing a nitrogen dissolution amount distribution and strength / hardness distribution in titanium.

【図3】 チタン中の酸素炭素溶解量分布と強度・硬
度分布を示す図。
FIG. 3 is a diagram showing an oxygen-carbon dissolved amount distribution and strength / hardness distribution in titanium.

【図4】 チタン中の酸素炭素溶解量分布と強度・硬
度分布を示す図。
FIG. 4 is a diagram showing an oxygen-carbon dissolved amount distribution and strength / hardness distribution in titanium.

【図5】 TiO微粉末を圧着、又は表面に酸化層
を生成させ熱処理したときのチタン中の酸素溶解量分布
と強度・硬度分布を示す図。
FIG. 5 is a diagram showing an oxygen dissolution amount distribution and a strength / hardness distribution in titanium when TiO 2 fine powder is pressure-bonded or an oxide layer is formed on the surface and heat treatment is performed.

【図6】 チタン中の窒素溶解量分布と強度・硬度分
布を示す図。
FIG. 6 is a diagram showing a nitrogen dissolution amount distribution and strength / hardness distribution in titanium.

【図7】 チタン薄板中の酸素溶解量分布と強度・硬
度分布を示す図。
FIG. 7 is a diagram showing an oxygen dissolution amount distribution and a strength / hardness distribution in a titanium thin plate.

【図8】 チタン薄板中の窒素溶解量分布と強度・硬
度分布を示す図。
FIG. 8 is a diagram showing a nitrogen dissolution amount distribution and a strength / hardness distribution in a titanium thin plate.

【図9】 チタン中へ拡散したAl、Vの溶解量分布
を示す図。
FIG. 9 is a diagram showing a dissolution amount distribution of Al and V diffused in titanium.

【図10】 チタン薄板中へ拡散したAl、Vの溶解量
分布を示す図。
FIG. 10 is a diagram showing a distribution of the amounts of Al and V dissolved in a titanium thin plate.

【図11】 純チタン、チタン合金接合面のAl、V溶
解量分布を示す図。
FIG. 11 is a view showing Al and V dissolution amount distributions of a pure titanium and titanium alloy joint surface.

【図12】 二つのチタン合金部品接合面とAl、V溶
解量分布を示す図。
FIG. 12 is a view showing a joint surface of two titanium alloy parts and distributions of Al and V dissolution amounts.

【図13】 本発明品の耐摩耗性を示す図。FIG. 13 is a diagram showing the wear resistance of the product of the present invention.

【図14】 本発明品薄板の強度、伸び特性を示す図。FIG. 14 is a diagram showing strength and elongation characteristics of the thin plate of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 10/52 7516−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C23C 10/52 7516-4K

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 チタンまたはチタン合金からなる被処理
材に特定の雰囲気下で熱処理を施し拡散させることを特
徴とするチタンまたはチタン合金の強化、硬化方法及び
接合方法。
1. A method for strengthening, hardening, and joining titanium or a titanium alloy, which comprises subjecting a material to be treated made of titanium or a titanium alloy to a heat treatment in a specific atmosphere to diffuse the material.
【請求項2】 被処理材の形状が薄板または箔、薄板ま
たは箔を成形した筐体、複数枚の板または筐体を重ね合
わせ密着させたもの、或いは厚板、棒、線、型材、素形
材、またそれらを密着させたもので、被処理材の表面あ
るいは密着させた被処理材の間に合金形成物質を置く
か、被処理材の表面に予め合金形成物質を反応生成付着
させた請求項1記載のチタンまたはチタン合金の強化、
硬化方法及び接合方法。
2. The material to be treated has a shape of a thin plate or foil, a case formed by molding a thin plate or foil, a plurality of plates or cases in which the cases are superposed and adhered to each other, or a thick plate, a bar, a wire, a mold material, or an element. Shaped materials or those in which they are adhered to each other, and an alloy-forming substance is placed on the surface of the material to be treated or between the adhered materials to be treated, or the alloy-forming material is preliminarily formed by reaction on the surface of the material to be treated Reinforcement of titanium or titanium alloy according to claim 1,
Curing method and joining method.
【請求項3】 合金形成物質はその組成がAl,C,
O,N,Mo,Nb,Ta,V,Ag,Cu,Fe,M
n,Ni,Co,Cr,Pb,Si,W,Zr,Sn,
Zn,Sb,Au,Ag,Ti,の元素から構成され、
これら元素を含むガス、或いはこれら単独の金属か、こ
れら複数の元素を合金化した母合金であり、母合金の大
きさは0.1mm以下の微粉末、或いは0.1mm以下
の薄い板である請求項2記載のチタンまたはチタン合金
の強化、硬化方法及び接合方法。
3. The alloy forming material has a composition of Al, C,
O, N, Mo, Nb, Ta, V, Ag, Cu, Fe, M
n, Ni, Co, Cr, Pb, Si, W, Zr, Sn,
Composed of elements such as Zn, Sb, Au, Ag, Ti,
A gas containing these elements, or a single metal of these, or a mother alloy in which a plurality of these elements are alloyed, and the mother alloy is a fine powder of 0.1 mm or less, or a thin plate of 0.1 mm or less. A method of strengthening, hardening, and joining titanium or a titanium alloy according to claim 2.
【請求項4】 母合金の微粉末をそのまま、或いは水、
溶剤、接着剤、等に均一混合しスラリー或いはペースト
状としたものを被処理材の表面に均一に散布、塗布し、
あるいは更にロール、プレス、鍛造、押し出し、引き抜
き、等の加工により圧着させ、あるいはメッキなどで合
金形成物質を付着させるようにした請求項2記載のチタ
ンまたはチタン合金の強化、硬化方法及び接合方法。
4. A fine powder of a mother alloy as it is, or with water,
Slurry or paste that is uniformly mixed with solvent, adhesive, etc. is evenly spread and applied on the surface of the material to be treated,
3. The method for strengthening, hardening and joining titanium or titanium alloy according to claim 2, wherein the titanium or titanium alloy is further made to adhere by alloying by pressing such as rolling, pressing, forging, extrusion, drawing or the like, or by plating.
【請求項5】 特定の雰囲気は真空、或いは酸素、窒
素、炭酸ガス、一酸化炭素、炭化水素、アルコール、ア
ンモニア、金属ハロゲン化物ガス、空気、等の活性ガス
の単独、又はそれらの混合ガスからなり、その分圧が百
分の一気圧以下である請求項1記載のチタンまたはチタ
ン合金の強化、硬化方法及び接合方法。
5. The specific atmosphere is a vacuum, or an active gas such as oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrocarbon, alcohol, ammonia, metal halide gas, air, or a mixture thereof. The method for strengthening, hardening, and joining titanium or a titanium alloy according to claim 1, wherein the partial pressure is 100% or less.
【請求項6】 熱処理の温度が700度C以上、被処理
材と合金形成物質間で液層が形成される温度未満、時間
が0.1時間以上1000時間以下である請求項1記載
のチタンまたはチタン合金の強化、硬化方法及び接合方
法。
6. The titanium according to claim 1, wherein the temperature of the heat treatment is 700 ° C. or higher and lower than the temperature at which a liquid layer is formed between the material to be treated and the alloy-forming substance, and the time is 0.1 hour or more and 1000 hours or less. Alternatively, a method of strengthening, hardening and joining a titanium alloy.
JP20937592A 1992-06-29 1992-06-29 Method for strengtheing, hardening and joining titanium or titanium alloy Pending JPH0610113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20937592A JPH0610113A (en) 1992-06-29 1992-06-29 Method for strengtheing, hardening and joining titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20937592A JPH0610113A (en) 1992-06-29 1992-06-29 Method for strengtheing, hardening and joining titanium or titanium alloy

Publications (1)

Publication Number Publication Date
JPH0610113A true JPH0610113A (en) 1994-01-18

Family

ID=16571888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20937592A Pending JPH0610113A (en) 1992-06-29 1992-06-29 Method for strengtheing, hardening and joining titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JPH0610113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514985A (en) * 1999-10-14 2003-04-22 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Component having layer and method for producing such layer
JP2005120474A (en) * 2003-09-29 2005-05-12 Howmet Research Corp Method of forming aluminide diffusion coating
US20150258627A1 (en) * 2012-10-15 2015-09-17 Karlsruher Institut Für Technologie (Kit) Layer composite
CN112046099A (en) * 2020-08-25 2020-12-08 合肥工业大学 Preparation method of high-bonding-strength low-density magnesium-lithium/titanium composite board
CN115074659A (en) * 2022-06-08 2022-09-20 希诺股份有限公司 Penetrating agent for local reinforcement of surface of thin-wall titanium product and reinforcement process thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514985A (en) * 1999-10-14 2003-04-22 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Component having layer and method for producing such layer
JP2005120474A (en) * 2003-09-29 2005-05-12 Howmet Research Corp Method of forming aluminide diffusion coating
US20150258627A1 (en) * 2012-10-15 2015-09-17 Karlsruher Institut Für Technologie (Kit) Layer composite
CN112046099A (en) * 2020-08-25 2020-12-08 合肥工业大学 Preparation method of high-bonding-strength low-density magnesium-lithium/titanium composite board
CN112046099B (en) * 2020-08-25 2024-06-04 合肥工业大学 Preparation method of magnesium-lithium/titanium composite board with high bonding strength and low density
CN115074659A (en) * 2022-06-08 2022-09-20 希诺股份有限公司 Penetrating agent for local reinforcement of surface of thin-wall titanium product and reinforcement process thereof
CN115074659B (en) * 2022-06-08 2024-01-26 希诺股份有限公司 Penetrating agent for local strengthening of surface of thin-wall titanium product and strengthening process thereof

Similar Documents

Publication Publication Date Title
US5366139A (en) Catalytic converters--metal foil material for use therein, and a method of making the material
US2786265A (en) Process of producing composite metal products
JPS60238489A (en) Formatin of metallic coating layer on surface
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
US5812925A (en) Low temperature bonding of materials
US4978054A (en) Diffusion bonding process for aluminum and aluminum alloys
JPH09164490A (en) Method for bonding of intermetallic reactive sintering of material part and its application
JPS5919088A (en) Copper composite material and its manufacture
EP0117671B1 (en) Bonding metals
JPH0610113A (en) Method for strengtheing, hardening and joining titanium or titanium alloy
JP2006342409A (en) Iron-based parts and manufacturing method therefor
US3299503A (en) Process for the production of bonded metal structures
US3672037A (en) Nitride strengthened stainless steel composite and production thereof
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
JP2947099B2 (en) Forming titanium sheet
JPH0790543A (en) Surface hardening method of cemented carbide member
JPS60230986A (en) Method for highly alloying metal of metallic surface
WO1999050009A1 (en) High-strength metal solidified material and acid steel and manufacturing methods thereof
JP3551749B2 (en) Manufacturing method of surface hardened parts
JP3097190B2 (en) Manufacturing method of composite member
JP3283963B2 (en) Composite structure superplastic material, method of manufacturing the same, and method of controlling thickness distribution of superplastic molded product using the same
JPH0754068A (en) Production of niti intermetallic compound
JPH0452181B2 (en)
JPH0331434A (en) Production of clad material containing metal matrix composite
JP2681395B2 (en) Manufacturing method of composite type damping steel sheet