JP2002210525A - Carbide tool - Google Patents

Carbide tool

Info

Publication number
JP2002210525A
JP2002210525A JP2001005391A JP2001005391A JP2002210525A JP 2002210525 A JP2002210525 A JP 2002210525A JP 2001005391 A JP2001005391 A JP 2001005391A JP 2001005391 A JP2001005391 A JP 2001005391A JP 2002210525 A JP2002210525 A JP 2002210525A
Authority
JP
Japan
Prior art keywords
cemented carbide
nitriding
surface treatment
punch
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001005391A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hideshima
保広 秀島
Ryoji Nishigori
良治 錦織
Yasuhiro Horikoshi
康弘 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAKKU KK
Denso Corp
Original Assignee
KANAKKU KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAKKU KK, Denso Corp filed Critical KANAKKU KK
Priority to JP2001005391A priority Critical patent/JP2002210525A/en
Publication of JP2002210525A publication Critical patent/JP2002210525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the service life of a carbide tool. SOLUTION: The carbide tool (e.g. a punch for press die) is made of cemented carbide in which a WC powder is sintered with Co, and the product is put through a surface treatment by nitriding or soft nitriding. When the cemented carbide is subjected to nitriding (or soft nitriding), N atoms for example diffuse and penetrate through the surface of the alloy, thereby nitriding the composition of impurities to provide a hardening effect. As a result, the surface hardness is enhanced through the reinforcement of WC-Co bonding strength, while wear resistance and fatigue strength are also improved through the increase in compressive stress. However, the effect of the surface treatment for hardness varies depending on the Co content in the cemented carbide; to obtain an expected effect, a proper range for the Co content seems to exist.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超硬合金より製造
される超硬工具に関する。
The present invention relates to a cemented carbide tool manufactured from a cemented carbide.

【0002】[0002]

【従来の技術】従来より、例えばプレス型に用いられる
パンチの寿命向上を図る手段として、パンチに使用され
る金属素材の特性(耐摩耗性、表面硬度等)を向上させ
るために窒化処理(または軟窒化処理)が行われること
がある。窒化処理は、Fe, Cr,Al, Moと言った金属元素
と窒素とが反応して窒化物を生成する。しかし、それら
元素の存在しない超硬合金に適用された実績はない。そ
こで、超硬合金より製造される工具(例えば刃具、パン
チ等)は、加工条件を考慮して硬度及び靱性に優れた材
料を選定し、更にTiC, TiN, TiCN, DLC といった表面処
理(コーティング等)を活用することで寿命向上が図ら
れている。
2. Description of the Related Art Heretofore, as a means for improving the life of a punch used in a press die, for example, a nitriding treatment (or abrasion resistance, surface hardness, etc.) of a metal material used for the punch has been carried out (or a nitriding treatment). Nitrocarburizing treatment). In the nitriding treatment, metal elements such as Fe, Cr, Al, and Mo react with nitrogen to generate nitrides. However, there is no record of application to cemented carbides without these elements. Therefore, for tools manufactured from cemented carbide (for example, cutting tools, punches, etc.), select materials with excellent hardness and toughness in consideration of processing conditions, and further, surface treatments such as TiC, TiN, TiCN, DLC (coating etc.) ) Is used to improve the service life.

【0003】[0003]

【発明が解決しようとする課題】しかし、硬度が上がれ
ば、素材としての抗拆力、耐衝撃性が劣り、チッピング
等の問題が発生するため、一般的には、抗拆力、耐衝撃
性を考慮して若干低い硬度の材料を選定してきた。ま
た、表面処理等により表面硬度アップや摩擦係数を下げ
る効果を付加する場合においも、特に硬度の高い超硬合
金では素地との十分な密着性が得られず、加工途中に表
面処理が剥離し、狙いとする寿命向上の効果が得られて
いない。以上のことから、これまで超硬合金を使用した
工具は、その硬さを活用するものの十分に寿命向上させ
る手段が知られていなかった。本発明は、上記事情に基
づいて成されたもので、その目的は、超硬工具の寿命向
上を実現することにある。
However, if the hardness increases, the material has poor resistance to rejection and impact resistance, and causes problems such as chipping. In consideration of the above, a material having a slightly lower hardness has been selected. Also, when adding the effect of increasing the surface hardness or lowering the friction coefficient by surface treatment, etc., sufficient adhesion to the base material cannot be obtained especially with a hard metal having high hardness, and the surface treatment peels off during processing. However, the intended effect of improving the life is not obtained. From the above, a tool using a cemented carbide has been hitherto utilized, but there has been no known means for sufficiently improving the life of the tool. The present invention has been made based on the above circumstances, and an object of the present invention is to realize an improvement in the life of a carbide tool.

【0004】[0004]

【課題を解決するための手段】本発明の超硬工具は、WC
(炭化タングステン)の粉末をCo(コバルト)で焼結成
形した超硬合金より製造され、その製造品に窒化または
軟窒化による表面処理が施されていることを特徴とす
る。WCとCoを焼結した超硬合金には、WC, Co以外に微量
ながら不純物が存在する。この超硬合金に窒化処理また
は軟窒化処理を施すと、合金の表面からN原子等が拡散
浸透し、不純物の成分が窒化されて硬化作用を発現し、
その結果、WC-Co 間の結合力が強化されるものと推定で
きる。これにより、超硬工具の表面硬度が向上し、且つ
圧縮応力の増加により、耐摩耗性及び疲労強度を改善で
きる。
According to the present invention, there is provided a cemented carbide tool comprising a WC
(Tungsten carbide) is manufactured from a cemented carbide obtained by sintering and forming a powder with Co (cobalt), and the manufactured product is subjected to a surface treatment by nitriding or nitrocarburizing. The cemented carbide obtained by sintering WC and Co contains impurities in small amounts in addition to WC and Co. When a nitriding treatment or a soft nitriding treatment is applied to the cemented carbide, N atoms and the like diffuse and infiltrate from the surface of the alloy, and the components of the impurities are nitrided to develop a hardening action,
As a result, it can be estimated that the bonding force between WC and Co is strengthened. Thereby, the surface hardness of the cemented carbide tool is improved, and the wear resistance and the fatigue strength can be improved by increasing the compressive stress.

【0005】但し、硬さに対する表面処理の効果は、超
硬合金に含まれるCoの含有量によって異なり、期待され
る効果を得るためには、Co含有量に適正範囲が存在する
ものと考えられる。本願発明者の測定結果によれば、Co
含有量8重量%で最も高い効果(表面硬度の向上)を得
ることができた。更に、超硬合金のCo含有量が所定量
(例えば8重量%)を超えると、表面処理(窒化処理、
軟窒化処理)によって表面粗度が上昇する(表面が粗く
なる)ため、その上に必要なコーティングを施す場合
に、コーティング層との密着性を大幅に改善できる効果
が得られる。
[0005] However, the effect of the surface treatment on the hardness depends on the content of Co contained in the cemented carbide, and it is considered that an appropriate range exists for the Co content in order to obtain the expected effect. . According to the measurement results of the present inventor, Co
The highest effect (improvement of surface hardness) could be obtained with a content of 8% by weight. Further, when the Co content of the cemented carbide exceeds a predetermined amount (for example, 8% by weight), the surface treatment (nitriding treatment,
Since the surface roughness is increased (the surface is roughened) by the nitrocarburizing treatment, the effect of significantly improving the adhesion to the coating layer can be obtained when a necessary coating is applied thereon.

【0006】[0006]

【発明の実施の形態】次に、本発明の実施形態を図面に
基づいて説明する。本実施例の超硬工具は、WCの粉末を
Coで焼結成形した超硬合金より製造されるもので、例え
ば切削工具やプレス型の部品(パンチ、ダイ)等であ
り、窒化処理(または軟窒化処理)が施されている。窒
化処理は、ガス雰囲気中にて窒素を素材(超硬合金)中
に拡散浸透させ、素材中の含有元素(WC, Co以外に存在
する微量成分:Fe, Mo等)と化合して窒化物を生成する
ことにより、素材表面に硬化層を形成するものである。
Next, embodiments of the present invention will be described with reference to the drawings. The cemented carbide tool of this embodiment uses WC powder.
It is manufactured from a cemented carbide sintered and formed of Co, and is, for example, a cutting tool or a press-type component (punch, die) or the like, and has been subjected to nitriding (or nitrocarburizing). In nitriding, nitrogen is diffused and permeated into the material (hard alloy) in a gas atmosphere, and combined with the elements contained in the material (trace components other than WC and Co: Fe, Mo, etc.) to form nitrides. Is formed to form a cured layer on the surface of the material.

【0007】この表面処理の効果について説明する。 1)超硬素材の表面硬度 Co含有量の異なる3種類の超硬素材を準備し、それぞれ
表面処理を実施する前と実施した後で、各素材の表面か
ら0.01mm毎に内部硬度を測定した。なお、硬度測定
に使用した3種類の超硬素材は、Co含有量6重量%のV
10種、Co含有量8重量%のV30種、Co含有量13重
量%のV50種である(図1参照)。この硬度測定の結
果、図1に示す様に、V30種の超硬素材が最も効果を
発揮し、表面付近の硬度はV10種の超硬素材と同レベ
ルまで上昇した。また、V50種の超硬素材は、処理表
面から0.06mmまでの深さで効果が得られた。これに
対し、V10種の超硬素材では、期待した効果は得られ
なかった。
The effect of this surface treatment will be described. 1) Surface hardness of cemented carbide material Three kinds of cemented carbide materials with different Co contents are prepared, and before and after the surface treatment, the internal hardness is measured every 0.01 mm from the surface of each material. did. The three types of cemented carbide materials used for the hardness measurement were V with a Co content of 6% by weight.
10 kinds, 30 kinds of V with 8% by weight of Co, and 50 kinds of V with 13% by weight of Co (see FIG. 1). As a result of the hardness measurement, as shown in FIG. 1, the V30 super hard material exhibited the most effect, and the hardness near the surface increased to the same level as the V10 super hard material. In addition, the effect was obtained at a depth of 0.06 mm from the treated surface of the V50 type super-hard material. On the other hand, the expected effect was not obtained with the V10 superhard material.

【0008】2)面粗度・摩耗 a)上記3種類の超硬素材に対し、それぞれ表面処理を
実施する前と実施した後で、各素材の面粗度を測定し
た。面粗度を測定した結果、図2(b)に示す様に、V
10種では表面処理後の方が面粗度が向上している(面
粗度を示す数値が小さくなっている)が、V30及びV
50種では表面処理後の方が面粗度が悪化している(面
粗度を示す数値が大きくなっている)。
2) Surface Roughness / Wear a) The surface roughness of each of the above three types of carbide materials was measured before and after the surface treatment. As a result of measuring the surface roughness, as shown in FIG.
In the ten types, the surface roughness is improved after the surface treatment (the numerical value indicating the surface roughness is small).
In the 50 types, the surface roughness is worse after the surface treatment (the numerical value indicating the surface roughness is larger).

【0009】b)上記3種類の超硬素材に対し、それぞ
れ表面処理を実施する前と実施した後で、ピン−ディス
ク式摩耗試験を実施した。試験方法は、図2(a)に示
す様に、ディスク1(超硬素材)の表面に荷重を付加し
たピン2(SK材)を一定速度で所定時間回転させ、デ
ィスク表面とピン2の摩耗状況を確認する。この摩耗試
験の結果、図2(c)に示す様に、V10種では表面処
理後の方がピン2の摩耗量が増加(処理前の約2.5
倍)しているが、V30及びV50種では表面処理後の
方がピン2の摩耗量が低減(処理前の約1/3)してい
る。
B) A pin-disk abrasion test was performed on each of the three types of carbide materials before and after the surface treatment. As shown in FIG. 2 (a), the test method is as follows: a pin 2 (SK material) with a load applied to the surface of the disc 1 (carbide material) is rotated at a constant speed for a predetermined time, and the disc surface and the pin 2 are worn. Check the situation. As a result of the wear test, as shown in FIG. 2 (c), the wear amount of the pin 2 increased after the surface treatment for the V10 type (about 2.5% before the treatment).
However, in the V30 and V50 types, the abrasion amount of the pin 2 is reduced after the surface treatment (about 1/3 of that before the treatment).

【0010】また、V30種においては、表面処理前の
ディスク表面には摩耗が生じたが、表面処理後のディス
ク表面には摩耗が見られなかった。上記の結果、V30
及びV50種では、表面処理によってディスク表面の面
粗度が悪化(数値が上昇)しているにも係わらず、ピン
2の摩耗量が低減していることから、ディスク表面の潤
滑性が向上しているものと推定される。これは、Co含有
量が多いほど、面粗度を示す数値が大きくなっているこ
とから、素材表面のCo成分がガス中に遊離した結果であ
ると考えられる。
In the case of V30, wear occurred on the disk surface before the surface treatment, but no wear was observed on the disk surface after the surface treatment. As a result of the above, V30
In the case of V50 and V50, although the surface roughness of the disk surface was deteriorated (increased in numerical value) due to the surface treatment, the amount of wear of the pin 2 was reduced, and the lubricity of the disk surface was improved. It is estimated that This is considered to be a result of the Co component on the material surface being liberated into the gas, since the numerical value indicating the surface roughness increases as the Co content increases.

【0011】続いて、上述のV30種の超硬素材より製
造された超硬工具(プレス型のパンチ)を使用して表面
処理の効果を調査した。なお、使用する超硬工具は、ス
タータのアーマチャコアに用いられるラミネーションコ
ア3を成形するプレス型(図3参照)に用いられるもの
で、図4(a)に示す様に、ラミネーションコア3のス
ロット3aを打ち抜くためのパンチ4である。なお、ア
ーマチャコアは、同形状にプレス成形された複数枚のラ
ミネーションコア3を重ね合わせて構成される。
Subsequently, the effect of surface treatment was investigated using a carbide tool (press-type punch) manufactured from the above-mentioned V30 type carbide material. The cemented carbide tool used is used for a press die (see FIG. 3) for molding the lamination core 3 used for the armature core of the starter. As shown in FIG. 4 (a), the slot of the lamination core 3 is used. A punch 4 for punching 3a. Note that the armature core is formed by laminating a plurality of lamination cores 3 that are press-formed in the same shape.

【0012】[調査結果1] 評価方法:プレス型に使用される21本のパンチ4のう
ち、1本に表面処理を実施したパンチ4を組み込み、そ
の表面処理の有無による差異を比較した。但し、100
万ショットをインターバルショット数として再研磨(再
研磨量:0.2mm)する。インターバルショット数:製
品品質上問題となるバリが発生するショット数。 評価項目:インターバルショット毎のパンチ先端の摩
耗、チッピング量を測定する。パンチ4の測定部位は、
図4(a)に示す様に、摩耗が発生しやすい2箇所
(、)を選定した。
[Investigation result 1] Evaluation method: Of 21 punches 4 used for a press die, one of which had been subjected to surface treatment was incorporated, and the difference depending on the presence or absence of the surface treatment was compared. However, 100
Re-polishing (re-polishing amount: 0.2 mm) is performed with 10,000 shots as the number of interval shots. Number of interval shots: The number of shots at which burrs that cause problems in product quality occur. Evaluation items: Abrasion of tip of punch and amount of chipping at every interval shot are measured. The measurement site of the punch 4 is
As shown in FIG. 4 (a), two places (,) where wear easily occurs were selected.

【0013】測定の結果、図4(b)に示す様に、表面
処理を施していないパンチは、インターバルショット毎
に摩耗量が増加し、且つパンチ側面(測定部位)にダ
レが発生した。その結果、700万ショットの時点で
は、パンチ側面のダレ量(0.58mm)が大きく、完全
に除去するには研磨量約0.6mm必要となる。これに対
し、表面処理を施したパンチ4は、パンチ側面にダレが
発生することはなく、且つ摩耗量もインターバルショッ
ト毎に増加することなく略安定(平均摩耗量:0.16
mm)し、研磨量0.2mmで摩耗部位を完全に除去でき
る。上記の様に、表面処理の有無によってパンチ先端部
の摩耗量に大差が生じ、表面処理の実施によりパンチ4
の摩耗量減少に優れた効果が得られた。
As a result of the measurement, as shown in FIG. 4 (b), in the punch not subjected to the surface treatment, the amount of wear increased at every interval shot, and sag occurred on the side surface of the punch (measurement site). As a result, at the time of 7 million shots, the amount of sag (0.58 mm) on the side surface of the punch is large, and a polishing amount of about 0.6 mm is required for complete removal. On the other hand, in the punch 4 subjected to the surface treatment, no dripping occurs on the side surface of the punch, and the wear amount is substantially stable without increasing at every interval shot (average wear amount: 0.16).
mm), and the worn portion can be completely removed with a polishing amount of 0.2 mm. As described above, there is a great difference in the amount of wear at the tip of the punch depending on the presence or absence of the surface treatment.
An excellent effect of reducing the amount of wear was obtained.

【0014】[調査結果2] 評価方法:21本全てに表面処理を実施したパンチと、
21本全てに表面処理を実施していないパンチとで、そ
れぞれ表面処理の有無によるパンチ側面のダレ量の推移
を調査した。なお、インターバルショット数を200万
ショットとする。 評価項目:インターバルショット毎のパンチ刃先の摩耗
量、パンチ側面のダレ量を測定する。
[Investigation Result 2] Evaluation method: punches subjected to surface treatment for all 21 pieces,
The change in the amount of sag on the side surface of the punch with and without the surface treatment was investigated for all 21 punches that had not been subjected to the surface treatment. It is assumed that the number of interval shots is 2,000,000 shots. Evaluation items: The wear amount of the punch tip and the amount of sag on the side surface of the punch are measured for each interval shot.

【0015】測定の結果、図5に示す様に、表面処理を
施していないパンチでは、摩耗量が大きいため、インタ
ーバルショット毎の再研磨量が大きくなり、且つ100
0万ショット毎にパンチ側面のダレを除去する必要が生
じる。その結果、300万ショットで全研磨量がパンチ
4の有効刃長さ(8mm)に到達する。これに対し、表面
処理を施したパンチ4では、上記の[調査結果1]に示
した様に、パンチ側面のダレが発生しないため、インタ
ーバルショット毎に0.2mm研磨するだけで常にパンチ
刃先を最良な状態に維持することができる。その結果、
8000万ショットまでパンチの寿命を延ばすことがで
き、表面処理の無いパンチと比較すると、約2.7倍の
寿命延長を実現できる。
As a result of the measurement, as shown in FIG. 5, in the case of a punch that has not been subjected to a surface treatment, the amount of re-polishing for each interval shot is large because the amount of wear is large.
It becomes necessary to remove the sag on the side surface of the punch every 100,000 shots. As a result, the total polishing amount reaches the effective blade length (8 mm) of the punch 4 in 3 million shots. On the other hand, in the punch 4 which has been subjected to the surface treatment, as shown in the above [Investigation result 1], the sagging of the side surface of the punch does not occur. It can be maintained in the best condition. as a result,
The service life of the punch can be extended up to 80 million shots, and the service life can be extended by about 2.7 times compared to a punch without surface treatment.

【0016】上記の様に、超硬合金への窒化処理によっ
て素材の特性(表面硬度、耐摩耗性等)が向上する調査
結果が得られたことにより、今まで実績が無かった超硬
合金への窒化処理に対する期待及び需要が増大する可能
性が高い。ここで、Fe, Cr, Al, Moを含有していない超
硬合金でも窒化処理による効果が得られたことに対し考
察した結果、推論ではあるが以下のように考えることが
できる。超硬合金は、WCとCoの焼結体であるが、微量な
がらCoに不純物(Fe, Mo等)が含まれている。この超硬
合金に窒化処理を実施すると、図6(a)に示す様に不
純物の成分(Fe, Mo等)が窒化されて効果作用を発現す
るものと推定できる。その結果、WC-Co 間の結合力が強
化されて耐摩耗性が向上し、且つ窒化された成分が潤滑
性能も有するものと考えられる。
As described above, the results of the investigation that the properties (surface hardness, wear resistance, etc.) of the material are improved by nitriding the cemented carbide have been obtained. There is a high possibility that the expectation and demand for the nitridation treatment of the steel will increase. Here, as a result of studying that the effect of the nitriding treatment was obtained even with a cemented carbide that does not contain Fe, Cr, Al, and Mo, it can be considered as follows, though inferred. Cemented carbide is a sintered body of WC and Co, but Co contains impurities (Fe, Mo, etc.) in a small amount. When this cemented carbide is subjected to nitriding treatment, it can be estimated that the impurity components (Fe, Mo, etc.) are nitrided as shown in FIG. As a result, it is considered that the bonding force between WC and Co is strengthened, the wear resistance is improved, and the nitrided component also has lubrication performance.

【0017】また、Co含有量が多い程、面粗度を示す数
値が大きくなる理由は、素材表面のCo成分がガス中に遊
離するものと考えられる。従って、Co含有量が少ないV
10種の超硬素材は、図6(b)に示す様に、Co成分の
遊離によって硬いWCが多く露出するため、被加工物(実
施例ではピン2)側を摩耗しやすくなる。一方、Co含有
量が多いV50種の超硬素材は、図6(c)に示す様
に、潤滑性のある成分がCoと共に残りやすいため、表面
処理によって面粗度を示す数値が大きくなっているにも
係わらず、窒化された成分の影響で潤滑性が向上するも
のと思われる。但し、硬度については、微量成分による
硬化作用よりもCoの延性の影響が大きく、それほど硬度
は向上しない。
The reason why the numerical value indicating the surface roughness increases as the Co content increases is considered that the Co component on the material surface is released into the gas. Therefore, V with low Co content
As shown in FIG. 6 (b), the ten kinds of carbide materials expose a large amount of hard WC due to liberation of the Co component, so that the workpiece (pin 2 in the example) is easily worn. On the other hand, as shown in FIG. 6 (c), in the V50 type carbide material having a large Co content, a lubricating component tends to remain together with Co, so that the surface treatment increases the numerical value indicating the surface roughness. Nevertheless, it is considered that lubricating properties are improved by the effect of the nitrided components. However, regarding the hardness, the influence of the ductility of Co is greater than the hardening action by the trace component, and the hardness does not improve so much.

【0018】(本実施例の効果)超硬合金により製造さ
れた超硬工具に窒化処理(または軟窒化処理)を施すこ
とにより、耐摩耗性及び疲労強度を改善でき、超硬工具
の寿命を大幅に延長することができる。特に、実施例で
説明したラミネーションコア3等のプレス成形品は、コ
ストの約50%を型費が占めているため、工具(パンチ
4)の寿命向上により型費の低減が可能となる。また、
超硬合金のCo含有量が所定量(例えば8重量%)を超え
ると、窒化処理によって面粗度が上昇するため、その上
に必要なコーティングを施す場合に、コーティング層と
の密着性を大幅に改善できる効果が得られる。
(Effects of the present embodiment) By subjecting a cemented carbide tool made of cemented carbide to nitriding treatment (or nitrocarburizing treatment), wear resistance and fatigue strength can be improved, and the life of the cemented carbide tool can be extended. Can be extended significantly. Particularly, in the case of a press-formed product such as the lamination core 3 described in the embodiment, the mold cost accounts for about 50% of the cost. Therefore, the mold cost can be reduced by improving the life of the tool (punch 4). Also,
If the Co content of the cemented carbide exceeds a predetermined amount (for example, 8% by weight), the surface roughness increases due to nitriding, and when applying the necessary coating thereon, the adhesion with the coating layer is greatly increased. The effect that can be improved is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】硬度に対する表面処理の効果を測定したグラフ
である。
FIG. 1 is a graph showing the effect of a surface treatment on hardness.

【図2】面粗度及び摩耗量に対する表面処理の効果を測
定したグラフである。
FIG. 2 is a graph showing the effect of surface treatment on surface roughness and abrasion loss.

【図3】プレス型の側面図とラミネーションコアの平面
図である。
FIG. 3 is a side view of a press die and a plan view of a lamination core.

【図4】パンチの斜視図(a)と摩耗量の測定結果を示
すグラフ(b)である。
FIG. 4 is a perspective view of a punch (a) and a graph (b) showing a measurement result of a wear amount.

【図5】表面処理の有無によるパンチ寿命の差異を示す
グラフである。
FIG. 5 is a graph showing a difference in punch life depending on the presence or absence of a surface treatment.

【図6】表面処理の作用を説明する図面である。FIG. 6 is a view for explaining the operation of the surface treatment.

【符号の説明】[Explanation of symbols]

4 パンチ(超硬工具) 4 Punch (carbide tool)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 錦織 良治 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 堀越 康弘 静岡県静岡市沓谷6丁目13番5号 有限会 社カナック内 Fターム(参考) 3C046 FF03 FF09 FF32 FF39 FF52 4E050 JA03 JB07 JB09 JD03  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Ryoji Nishikori 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Co., Ltd. (72) Inventor Yasuhiro Horikoshi 6-13-5 Kutsuya, Shizuoka-shi, Shizuoka Pref. F term in Kanak (reference) 3C046 FF03 FF09 FF32 FF39 FF52 4E050 JA03 JB07 JB09 JD03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】WC(炭化タングステン)の粉末をCo(コバ
ルト)で焼結成形した超硬合金より製造され、その製造
品に窒化または軟窒化による表面処理が施されているこ
とを特徴とする超硬工具。
(1) It is manufactured from a cemented carbide obtained by sintering WC (tungsten carbide) powder with Co (cobalt), and the manufactured product is subjected to a surface treatment by nitriding or nitrocarburizing. Carbide tool.
【請求項2】請求項1に記載した超硬工具は、Co含有量
が8重量%であることを特徴とする超硬工具。
2. The cemented carbide tool according to claim 1, wherein the Co content is 8% by weight.
JP2001005391A 2001-01-12 2001-01-12 Carbide tool Pending JP2002210525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001005391A JP2002210525A (en) 2001-01-12 2001-01-12 Carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005391A JP2002210525A (en) 2001-01-12 2001-01-12 Carbide tool

Publications (1)

Publication Number Publication Date
JP2002210525A true JP2002210525A (en) 2002-07-30

Family

ID=18873437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005391A Pending JP2002210525A (en) 2001-01-12 2001-01-12 Carbide tool

Country Status (1)

Country Link
JP (1) JP2002210525A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123353A1 (en) * 2005-05-20 2006-11-23 Ajay Jariwala Kantilal A metal punch used in the manufacture of artificial stones, the method and apparatus for making such punch
JP2007535648A (en) * 2004-04-30 2007-12-06 シークアル テクノロジーズ, インコーポレイテッド Needle valve for flow control
JP2016078136A (en) * 2014-10-10 2016-05-16 新日鐵住金株式会社 Cemented-carbide tool
JP2016169408A (en) * 2015-03-11 2016-09-23 新日鐵住金株式会社 Super hard metal tool and manufacturing method of super hard metal tool
JP2017036488A (en) * 2015-08-13 2017-02-16 新日鐵住金株式会社 Hard metal tool and manufacturing method therefor
JP2017056498A (en) * 2015-09-15 2017-03-23 新日鐵住金株式会社 Carbide tool and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250134A (en) * 1986-04-23 1987-10-31 Mitsubishi Metal Corp Manufacture of tungsten carbide-base sintered hard alloy
JPH0790543A (en) * 1993-09-28 1995-04-04 Showa Alum Corp Surface hardening method of cemented carbide member
JPH105850A (en) * 1996-06-19 1998-01-13 Sumitomo Light Metal Ind Ltd Die for extrusion
JP2001009542A (en) * 1999-06-30 2001-01-16 Silver Roi:Kk Tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250134A (en) * 1986-04-23 1987-10-31 Mitsubishi Metal Corp Manufacture of tungsten carbide-base sintered hard alloy
JPH0790543A (en) * 1993-09-28 1995-04-04 Showa Alum Corp Surface hardening method of cemented carbide member
JPH105850A (en) * 1996-06-19 1998-01-13 Sumitomo Light Metal Ind Ltd Die for extrusion
JP2001009542A (en) * 1999-06-30 2001-01-16 Silver Roi:Kk Tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535648A (en) * 2004-04-30 2007-12-06 シークアル テクノロジーズ, インコーポレイテッド Needle valve for flow control
WO2006123353A1 (en) * 2005-05-20 2006-11-23 Ajay Jariwala Kantilal A metal punch used in the manufacture of artificial stones, the method and apparatus for making such punch
JP2016078136A (en) * 2014-10-10 2016-05-16 新日鐵住金株式会社 Cemented-carbide tool
JP2016169408A (en) * 2015-03-11 2016-09-23 新日鐵住金株式会社 Super hard metal tool and manufacturing method of super hard metal tool
JP2017036488A (en) * 2015-08-13 2017-02-16 新日鐵住金株式会社 Hard metal tool and manufacturing method therefor
JP2017056498A (en) * 2015-09-15 2017-03-23 新日鐵住金株式会社 Carbide tool and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4513058B2 (en) Casting parts
Psyllaki et al. Microstructure and tribological behaviour of liquid nitrocarburised tool steels
WO2012026098A1 (en) Method of producing cutting tool
JP4656473B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
JP4771223B2 (en) Durable hard material coated mold for plastic working
Da Silva et al. A surface and sub-surface quality evaluation of three cast iron grades after grinding under various cutting conditions
KR100987685B1 (en) Hard-material-coated member excellent in durability
JP2002210525A (en) Carbide tool
EP3006601B1 (en) Method for manufacturing mold for cold working use
WO2004039517A1 (en) Mold for casting and method of surface treatment thereof
JP5748983B2 (en) Aluminum can tool excellent in seizure resistance and manufacturing method thereof
CZ413297A3 (en) Base material for producing basic blades for circular saws, cutting blades, frame saws as well as cutting and scraping devices
JP3381812B2 (en) Casting mold or molten metal material with excellent erosion resistance
JP4883400B2 (en) Casting parts
JP4865438B2 (en) Surface treatment method of aluminum extrusion die and aluminum extrusion die
JP2005305510A (en) Press die tool
JP6416735B2 (en) Nitride component manufacturing method and nitride component
JP3620329B2 (en) Punching method for high silicon steel sheet
JPH0925543A (en) Nitriding steel sheet excellent in formability and its press formed body
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
JP2005264222A (en) High density compacting method for metal powder
JP3100417B2 (en) Manufacturing method of stainless steel for coins
JPH0925513A (en) Production of nitriding steel sheet excellent in formability
JP2006075867A (en) Member for casting
JP4547656B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727