JPH0790466B2 - Grinding wheel - Google Patents

Grinding wheel

Info

Publication number
JPH0790466B2
JPH0790466B2 JP3130700A JP13070091A JPH0790466B2 JP H0790466 B2 JPH0790466 B2 JP H0790466B2 JP 3130700 A JP3130700 A JP 3130700A JP 13070091 A JP13070091 A JP 13070091A JP H0790466 B2 JPH0790466 B2 JP H0790466B2
Authority
JP
Japan
Prior art keywords
base metal
grindstone
grinding
grinding wheel
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3130700A
Other languages
Japanese (ja)
Other versions
JPH04294978A (en
Inventor
克雄 佐川
茂雄 高島
弘 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IBARAKI PREFECTURAL GOVERNMENT
Original Assignee
IBARAKI PREFECTURAL GOVERNMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IBARAKI PREFECTURAL GOVERNMENT filed Critical IBARAKI PREFECTURAL GOVERNMENT
Priority to JP3130700A priority Critical patent/JPH0790466B2/en
Publication of JPH04294978A publication Critical patent/JPH04294978A/en
Publication of JPH0790466B2 publication Critical patent/JPH0790466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、工作機械に装着され
て回転、往復運動し被加工物を加工する研削盤、ホーニ
ング盤、旋盤、ドリル盤、フライス盤、切断装置および
孔明け装置等の回転あるいは直線運動をする研削砥石に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to rotation of a grinder, a honing machine, a lathe, a drilling machine, a milling machine, a cutting device, a drilling device, etc. mounted on a machine tool to rotate and reciprocate to machine a workpiece. Alternatively, it relates to a grinding wheel that makes a linear motion.

【0002】[0002]

【従来の技術】ファインセラミックスは、自動車エンジ
ン、ターボチャージャを始めとする自動車部品、工作機
械の主軸、ハウジング等の機械部品、IC基板、切削工
具あるいは各種電子部品等に多く使用されている。
2. Description of the Related Art Fine ceramics are widely used in automobile engines, automobile parts such as turbochargers, machine tool spindles, machine parts such as housings, IC substrates, cutting tools and various electronic parts.

【0003】 一般にファインセラミックスを研削する
ための研削砥石は、ダイヤモンドやCBNのような砥粒
を直接台金の外周部に電着したり、砥粒をレジノイド、
ビトリファイド、メタルなどの結合材を用いて焼成した
砥石層として台金の外周部に取り付けている。この台金
は、砥粒層を必要な形状に保つための台またはスペーサ
の役割をもつもので、この役割から、一般的に台金は、
比強度が高い、密度が小さい、加工性が高い、弾性変形
が小さい(高弾性率)、振動の減衰率が大きい、低熱膨
張性であるなどの諸性質を有することが望まれる。
来、この台金にはAl合金やFe合金(切断用のみ)
使われているが、Al合金あるいはFe合金の線熱膨張
率αは、Al合金がα=2.5〜3.0×10−5
℃、Fe合金がα=1.0〜1.5×10−5/℃で、
熱膨張率が大きいため、連続使用中に研削熱により砥石
の寸法、形状が変化し、被加工物の寸法、形状精度に悪
影響を与える。
Generally, a grinding wheel for grinding fine ceramics is such that abrasive grains such as diamond and CBN are directly electrodeposited on the outer peripheral portion of the base metal, or the abrasive grains are resinoid,
It is attached to the outer periphery of the base metal as a grindstone layer fired using a binder such as vitrified metal. This base
Is a table or spacer to keep the abrasive layer in the required shape.
From this role, the base metal is generally
High specific strength, low density, high workability, elastic deformation
Small (high elastic modulus), large vibration damping rate, low thermal expansion
It is desired to have various properties such as tonicity. Conventionally, an Al alloy or an Fe alloy (only for cutting) has been used for this base metal, but the linear thermal expansion coefficient α of the Al alloy or the Fe alloy is α = 2.5 to 3.0 × for the Al alloy. 10 -5 /
℃, Fe alloy α = 1.0 ~ 1.5 × 10 -5 / ℃,
Since the coefficient of thermal expansion is large, the size and shape of the grindstone change due to grinding heat during continuous use, which adversely affects the size and shape accuracy of the workpiece.

【0004】例えば直径φ=300mmの既存の実用標
準砥石は、実用研削条件下で使用した場合、一般に外周
部で70℃となリ砥石中心部で室温となる。従って、理
論計算からすると、砥石は半径方向に20〜30μm熱
変位をする。この値がそのまま切り込み量になるわけで
はないが、通常はその約30%(6〜10μm)が余分
な切り込み量となって現れる。そのため、被加工物の寸
法形状にその分量の誤差を生ずることになる。また、砥
石自身にも熱膨張による劣化が生じ砥石寿命が短くな
る。
For example, an existing practical standard grindstone having a diameter of φ = 300 mm, when used under practical grinding conditions, generally has a room temperature of 70 ° C. at the outer peripheral portion and a central portion of the re-grinding stone. Therefore, according to theoretical calculation, the grindstone is thermally displaced by 20 to 30 μm in the radial direction. Although this value does not directly become the cut amount, about 30% (6 to 10 μm) thereof usually appears as an extra cut amount. Therefore, an error of that amount occurs in the size and shape of the workpiece. Further, the grindstone itself deteriorates due to thermal expansion, and the life of the grindstone is shortened.

【0005】[0005]

【発明が解決しようとする課題】ファインセラミックス
等の硬脆材料は、寸法、形状に高精度を要求される高価
な構造または機能部材に多く使用されるため、一般に正
味形状に近い状態に焼成形されて供給され、最終的に外
表面は鏡面仕上げとするのが一般的である。そのため、
その加工精度は、ナノメータ(nm)オーダとなる場合
が多い。特にSi、GaAs、ガラス、Si、A
、ZrO,SiC等の半導体、電子、光学部
品は、nmからサブナノメータ(1nm以下)の精度が
求められている。
Hard and brittle materials such as fine ceramics are generally used for expensive structures or functional members that require high precision in size and shape, and thus are generally fired in a state close to the net shape. Generally, the outer surface is mirror finished. for that reason,
The processing accuracy is often on the order of nanometer (nm). Especially Si, GaAs, glass, Si 3 N 4 , A
For semiconductors such as l 2 O 3 , ZrO 2 , and SiC, electronic components, and optical components, accuracy of nm to sub-nanometer (1 nm or less) is required.

【0006】しかし、上記精度に仕上げる加工用の砥石
が見当たらないのが実状である。これは従来の砥石は、
連続使用による研削熱により、寸法、形状に変化を生
じ、被加工物の寸法、形状精度を低下させるためであ
る。特にセラミックス加工時の研削点温度は、実用条件
で700〜900℃になるため、従来の砥石では満足で
きる高加工精度を得ることができない。
However, it is the actual situation that no grindstone for processing for finishing to the above-mentioned accuracy is found. This is a conventional whetstone
This is because the size and shape of the workpiece are changed by the grinding heat due to continuous use, and the size and shape accuracy of the workpiece is reduced. In particular, since the grinding point temperature during ceramics processing is 700 to 900 ° C. under practical conditions, it is not possible to obtain a sufficiently high processing accuracy with conventional grinding wheels.

【0007】 この発明は、前記事情に着目してなされ
たもので、その目的とするところは、簡単な構成であり
ながら、研削中における砥石の熱変形、即ち台金の熱変
形による砥粒層への熱影響を軽減し、研削加工寸法精度
を向上し、砥石寿命を長期化することができ、しかも
素材を材料として用いるだけで簡単に製造することが
きる研削砥石を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is, even with a simple structure, thermal deformation of a grindstone during grinding, that is, thermal deformation of a base metal.
It is possible to reduce the heat effect of the shape on the abrasive grain layer, improve the dimensional accuracy of the grinding process, and prolong the life of the grindstone . Moreover, it is possible to easily manufacture by using a new material. > It is to provide a grinding wheel.

【0008】[0008]

【課題を解決するための手段及び作用】この発明は、前
記目的を達成するために、台金の所定の外周部に砥粒ま
たは砥石層を付着してなる研削砥石において、前記台金
を、重量基準でNi;20〜30%、C;1〜6%、C
o;3〜7%、Mn;0〜1%、Cu;0〜1%、C
r;0〜1%、残Feを主成分とする線熱膨張率α=
0.5〜3×10−6/℃のNi−Co鋳鉄合金によっ
て形成し、この台金の所定の外周部に砥粒または砥石層
を付着したことにある。
Means for Solving the Problems In order to achieve the above object, the present invention provides a grinding whetstone having an abrasive grain or a whetstone layer attached to a predetermined outer peripheral portion of the base metal, wherein the base metal is Ni: 20-30%, C: 1-6%, C by weight
o; 3 to 7%, Mn; 0 to 1%, Cu; 0 to 1%, C
r; 0 to 1%, linear thermal expansion coefficient α = mainly composed of residual Fe
It is formed of a Ni—Co cast iron alloy of 0.5 to 3 × 10 −6 / ° C., and an abrasive grain or a whetstone layer is attached to a predetermined outer peripheral portion of this base metal.

【0009】硬脆材料のうち特にセラミックス工作物の
寸法、形状精度を向上するためには、研削熱による砥石
の寸法、形状変形をできるだけ小さくする必要がある。
つまり、砥石の熱変形によるセラミックスの過研削によ
り、正味形状に近い寸法状態で供給された焼成セラミッ
クスが研削仕上げで一瞬のうちに不良品になることを防
止する必要がある。
Among the hard and brittle materials, in order to improve the size and shape accuracy of a ceramic work, it is necessary to minimize the size and shape deformation of the grindstone due to the grinding heat.
That is, it is necessary to prevent the fired ceramics supplied in a dimension close to the net shape from becoming defective as a result of grinding and finishing due to over-grinding of the ceramics due to thermal deformation of the grindstone.

【0010】 研削砥石は、砥粒を直接台金に電着によ
り付着したものはもとより、砥石層を台金に付着したも
のも、砥石全体において台金の占める割合が非常に大き
い。例えば、砥石層を台金の外周部に付着させた研削砥
石の場合、砥石層は0.1〜3mm厚であるのに対して
砥石台金は直径φ=100〜600mmが一般的なサイ
ズとなる。そのため台金の熱変形が砥石の寸法、形状変
化に非常に大きな影響を及ぼすことがわかった。そこ
で、本発明者らは、研究の結果、砥石の台金として、剛
性および吸振性が高く、しかも線熱膨張率αの低い化学
成分をもち、且つ台金に望まれる他の前記諸性質をも具
備した鋳鉄合金を用いることを見い出し、この発明を完
成するに至った。
In the grinding wheel, not only those in which the abrasive grains are directly attached to the base metal by electrodeposition but also those in which the grindstone layer is attached to the base metal have a very large proportion of the base metal in the whole grindstone. For example, in the case of a grinding wheel in which a whetstone layer is attached to the outer periphery of a base metal, the whetstone layer has a thickness of 0.1 to 3 mm, whereas the whetstone base metal has a diameter φ of 100 to 600 mm as a general size. Become. Therefore, it was found that the thermal deformation of the base metal had a great influence on the size and shape change of the grindstone. Accordingly, the present inventors have found the study, as base metal of the grinding wheel, high rigidity and vibration absorption properties, moreover Chi also low chemical components of linear thermal expansion coefficient alpha, and other of the properties desired in the metal base Stuff
The inventors have found that a cast iron alloy is used, and completed the present invention.

【0011】重量基準でNi;20〜30%、C;1〜
6%、Co;3〜7%、Mn;0〜1%、Cu;0〜1
%、Cr;0〜1%、残Feを主成分とするNi−Co
鋳鉄合金は、実験の結果によれば、線熱膨張率α=0.
5〜3.0×10−6/℃(−50〜300℃)で、従
来の研削砥石の台金に用いられているAl合金やFe合
金に比較して、a値が極めて低い。たとえば、重量基準
でNi≒26%、C≒2%、Co≒5%、Mn≒1%、
Cu<1%、Cr<1%、残不純分を含むFeからなる
鋳鉄合金の線熱膨張率αはα≒1.6×10−6/℃で
ある。このa値は、上記成分組成の範囲内であれば、F
eが不可避的不純物を含んでいても変らない。そして、
上記成分の鋳鉄合金によって台金を形成した研削砥石
は、台金の外周部に砥粒を直接付着した砥石であって
も、また砥粒を結合材で焼結した砥石層を付着した砥石
であっても、実用的な研削条件下で、熱変形が0.5〜
1.0μm程度以下に軽減する。
On a weight basis, Ni: 20-30%, C: 1-
6%, Co; 3 to 7%, Mn; 0 to 1%, Cu; 0-1
%, Cr; 0 to 1%, Ni—Co containing Fe as the main component
According to the result of the experiment, the cast iron alloy has a coefficient of linear thermal expansion α = 0.
It is 5 to 3.0 × 10 −6 / ° C. (−50 to 300 ° C.) and has an extremely low a value as compared with Al alloys and Fe alloys used for the base metal of conventional grinding wheels. For example, Ni≈26%, C≈2%, Co≈5%, Mn≈1%, and
The coefficient of linear thermal expansion α of the cast iron alloy made of Fe containing Cu <1%, Cr <1% and residual impurities is α≈1.6 × 10 −6 / ° C. If the a value is within the range of the above component composition, it is F
It does not change even if e contains unavoidable impurities. And
Grinding whetstone that formed the base metal by the cast iron alloy of the above components, even if it is a whetstone with abrasive grains directly attached to the outer peripheral portion of the base metal, also with a whetstone layer with a whetstone layer obtained by sintering the abrasive grains with a binder. However, under practical grinding conditions, thermal deformation is 0.5-
Reduce to about 1.0 μm or less.

【0012】しかも、従来の研削砥石の台金の大部分を
占めるAl合金の剛性を示す弾性率EはE=70.3G
Paであるのに対して、上記成分の鋳鉄合金からなる台
金の弾性率はE=130GPaである。従って、鉄鋼の
E=200GPaよりは低いが、研削砥石の台金として
充分な剛性をも有する。
Moreover, the elastic modulus E showing the rigidity of the Al alloy, which occupies most of the base metal of the conventional grinding wheel, is E = 70.3G.
While Pa, the elastic modulus of the base metal made of the cast iron alloy having the above components is E = 130 GPa. Therefore, although it is lower than E = 200 GPa of steel, it has sufficient rigidity as a base metal for a grinding wheel.

【0013】この発明において用いる砥粒は、ダイヤモ
ンド砥粒、CBN砥粒等一般的に砥粒として用いられて
いるものであれば、いかなるものであってもよい。ま
た、砥粒は上記成分の鋳鉄合金で形成した台金に、電着
等により直接付着してもよいし、結合材で焼結し砥石層
として付着してもよい。
The abrasive grains used in the present invention may be any as long as they are commonly used as abrasive grains such as diamond abrasive grains and CBN abrasive grains. Further, the abrasive grains may be directly attached to the base metal formed of the cast iron alloy of the above components by electrodeposition or the like, or may be sintered with a binder and attached as a grindstone layer.

【0014】台金の外周部に砥粒を結合材を用いて焼結
した砥石層を付着した研削砥石の場合、結合材として
は、青銅、Ag、Co、Cu、Fe、Ni、Sn、W
c、Znあるいはこれらの合金等の金属、ベークライ
ト、エポキシ、ポリウレタン、フェノール、ポリアミ
ド、PVA等のレジノイド、長石や粘土等のビトリファ
イドのうちの1種または2種以上を用いることができ
る。また、結合材として、台金と同じ上記成分の鋳鉄合
金の粉末を用い、またはこの鋳鉄合金粉末を他の結合材
に混合して用いることもでき、この場合には結合材の熱
膨張による影響を軽減することができる。
In the case of a grinding wheel in which a grindstone layer obtained by sintering abrasive grains using a binding material is attached to the outer periphery of a base metal, the binding material may be bronze, Ag, Co, Cu, Fe, Ni, Sn, W.
One or more of metals such as c and Zn or alloys thereof, bakelite, epoxy, polyurethane, phenol, polyamide, resinoids such as PVA, and vitrified materials such as feldspar and clay can be used. Further, as the binder, it is also possible to use the powder of the cast iron alloy having the same components as the base metal, or to mix the cast iron alloy powder with another binder, and in this case, the effect of the thermal expansion of the binder. Can be reduced.

【0015】砥粒と結合材は真空、水素または3H
等の雰囲気下で焼結するのが好ましい。その際、用
いる砥粒および結合材の種類等に応じ、最適の焼結温度
および圧力を選択する。
Abrasive grains and binder are vacuum, hydrogen or 3H 2 +
It is preferable to sinter under an atmosphere such as N 2 . At that time, the optimum sintering temperature and pressure are selected according to the types of abrasive grains and binder used.

【0016】[0016]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1は研削砥石の第1の実施例を示し、1は台
金である。台金1は例えば外径がφ160、内径がφ1
27および厚みが24.5mmのリング部2と、このリ
ング部2の外周面に一体に設けられリング部2を含む外
径がφ210、厚みが1.5mmの鍔部3とから構成さ
れている。そして、台金1の鍔部3の外周部には砥粒層
4が付着されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a grinding wheel, and 1 is a base metal. The base metal 1 has, for example, an outer diameter of 160 and an inner diameter of 1
27 and a ring portion 2 having a thickness of 24.5 mm, and a collar portion 3 integrally provided on the outer peripheral surface of the ring portion 2 and having an outer diameter of 210 including the ring portion 2 and a thickness of 1.5 mm. . An abrasive grain layer 4 is attached to the outer peripheral portion of the collar 3 of the base metal 1.

【0017】前記台金1は、重量基準でNi;20〜3
0%、C;1〜6%、Co;3〜7%、Mn;0〜1
%、Cu;0〜1%、Cr;0〜1%、残Feを主成分
とする線熱膨張率α=0.5〜3×10−6/℃(−5
0〜300℃)のNi−Co鋳鉄合金によって形成され
ている。
The base metal 1 is made of Ni on a weight basis; 20 to 3
0%, C; 1-6%, Co; 3-7%, Mn; 0-1
%, Cu; 0 to 1%, Cr; 0 to 1%, and a coefficient of linear thermal expansion having residual Fe as a main component α = 0.5 to 3 × 10 −6 / ° C. (−5
(0 to 300 ° C.) Ni-Co cast iron alloy.

【0018】前記砥粒層4は、#140のダイヤモンド
砥粒を電着により台金1の鍔部3に直接付着したもので
あるが、CBN砥粒であってもよい。
The abrasive grain layer 4 is formed by directly adhering # 140 diamond abrasive grains to the collar portion 3 of the base metal 1 by electrodeposition, but may be CBN abrasive grains.

【0019】[0019]

【表1】 [Table 1]

【0020】表1は、上記第1の実施例の研削砥石(以
下「開発砥石」という)を用い、反復して4回、砥石周
速Vs=1800m/min、テーブル速度Vw=10
m/min、砥石切込み量d=10μmとし、窒化珪素
をプランジ研削として合計120μm切り込み実験をし
たとき(スパークアウト2回)の実質切取り量を示した
ものである。比較のため市販のメタルボンド砥石(SD
140J75 φ300 B=10mm。台金1はAl
合金で、Cu:Sn=6:4の割合の混合微粉末にW
C;0.4Wt%、TiB2;0.3Wt%、Ni;
0.2Wt%を添加した結合材で#140のダイヤモン
ド砥粒を焼成して台金の外周部に付着したもの。以下
「比較砥石」という。)で同一の実験をしたときのデー
タをも示す。表1から明らかなとおり、反復実験回数4
回平均で、切り取り量は開発砥石で119/120=
0.99、比較砥石で110.3/120=0.92で
あり、従って切り残し量は、開発砥石(第1の実施例の
砥石)で1%、比較砥石(市販のメタルボンド砥石)で
8%であった。
Table 1 shows that the grinding wheel of the first embodiment (hereinafter referred to as "development wheel") is repeatedly used four times, the wheel peripheral speed Vs = 1800 m / min, and the table speed Vw = 10.
m / min, grindstone cutting amount d = 10 μm, and a substantial cutting amount when a cutting experiment of 120 μm in total was performed using plunge grinding with silicon nitride (two sparkouts). For comparison, a commercially available metal bond grindstone (SD
140J75 φ300 B = 10 mm. Base metal 1 is Al
Alloyed with Cu: Sn = 6: 4 mixed fine powder with W
C; 0.4 Wt%, TiB2; 0.3 Wt%, Ni;
Binders added with 0.2 wt% of # 140 diamond abrasive grains that are fired and adhered to the outer periphery of the base metal. Hereinafter referred to as "comparison grindstone". ) Also shows the data when the same experiment is performed. As is clear from Table 1, the number of repeated experiments was 4
On average, the cutting amount is 119/120 with the developed grindstone.
0.99, 110.3 / 120 = 0.92 for the comparative grindstone, so the uncut amount is 1% for the developed grindstone (grindstone of the first embodiment) and for the comparative grindstone (commercially available metal bond grindstone). It was 8%.

【0021】上記実験の結果から、高温にさらされてい
る比較砥石は、高熱源部が研削液で研削中に冷却される
ため、大きな収縮膨張を繰り返し、その結果大きな切り
残し量となるが、この発明の研削砥石、つまり開発砥石
では加熱冷却に対して変形量が少なく、そのため比較砥
石に対し寸法形状精度が8倍も向上したことが認められ
る。
From the results of the above experiment, in the comparative grindstone exposed to high temperature, since the high heat source portion is cooled by the grinding liquid during grinding, large shrinkage and expansion are repeated, resulting in a large uncut amount. It is recognized that the grinding wheel of the present invention, that is, the developed wheel, has a small amount of deformation with respect to heating and cooling, and therefore the dimensional accuracy is improved eight times as compared with the comparative wheel.

【0022】図2は研削砥石の第2の実施例を示し、5
は台金である。台金5は外径がφ210mm、厚みが1
0mmの円板状であり、その外周部に厚さ3mmの砥石
層6が付着されている。
FIG. 2 shows a second embodiment of the grinding wheel, 5
Is the base metal. The base metal 5 has an outer diameter of 210 mm and a thickness of 1
It has a disk shape of 0 mm, and a grindstone layer 6 having a thickness of 3 mm is attached to the outer peripheral portion thereof.

【0023】前記台金5は、第1の実施例と同様に、重
量基準でNi;20〜30%、C;1〜6%、Co;3
〜7%、Mn;0〜1%、Cu;0〜1%、Cr;0〜
1%、残Feを主成分とする線熱膨張率α=0.5〜3
×10−6/℃(−50〜300℃)のNi−Co鋳鉄
合金で形成されている。
Similar to the first embodiment, the base metal 5 is Ni; 20 to 30%, C; 1 to 6%, Co; 3 on a weight basis.
~ 7%, Mn; 0-1%, Cu; 0-1%, Cr; 0
1%, coefficient of linear thermal expansion α = 0.5 to 3 mainly composed of residual Fe
× is formed by 10 -6 / Ni-Co iron alloy ℃ (-50~300 ℃).

【0024】また砥石層6は、粒度#140のダイヤモ
ンドを主体とする砥粒と、青銅80Wt%、Ni10W
t%および上記成分の鋳鉄合金粉末10Wt%を混合し
た結合材とからなり、この砥粒と結合材を高純度の真空
中で高温高圧下に焼結して形成されている。
The grindstone layer 6 is composed of abrasive grains mainly composed of diamond having a grain size of # 140, bronze 80 Wt% and Ni 10 W.
t% and a binder mixed with 10 Wt% of the cast iron alloy powder having the above components, and is formed by sintering the abrasive grains and the binder in a high-purity vacuum under high temperature and high pressure.

【0025】第2の実施例の研削砥石について、第1の
実施例につき前記したのと同じ実験をしたところ、第1
の実施例と同様な結果が得られた。
The same experiment as described above for the first embodiment was conducted on the grinding wheel of the second embodiment.
Results similar to those of the example were obtained.

【0026】さらに、結合材がフェノール70Wt%と
Fe30Wt%との混合物である以外は第2の実施例と
同様の研削砥石、および結合材が青銅70%、Ni10
Wt%、Fe20Wt%の混合物である以外は第2の実
施例と同様の研削砥石について、前記した第1の実施例
と同じ実験をしたところ、やはり第1の実施例と同様な
結果が得られた。
Further, a grinding wheel similar to that of the second embodiment except that the binder is a mixture of 70 wt% phenol and 30 wt% Fe, and the binder is 70% bronze and 10% Ni10.
When the same experiment as in the above-described first example was conducted on the same grinding wheel as in the second example except that it was a mixture of Wt% and Fe20Wt%, the same result as in the first example was obtained. It was

【0027】図3および4は、第1の実施例の研削砥石
(開発砥石)と前記市販のメタルボンド砥石(比較砥
石)を図3および図4に示す各加工条件により、それぞ
れ窒化珪素、炭化珪素、アルミナを研削したときの法線
及び接線研削抵抗を調べた実験の結果を示すものであ
る。上記実験の結果から、開発砥石の接線研削抵抗は比
較砥石と同じくらいであるが、開発砥石の法線研削抵抗
は比較砥石のそれの1/2〜1/5とかなり小さい値を
示し、開発砥石が比較砥石に比べ2〜5倍、熱変形によ
る法線研削抵抗の減少を見込めることがわかる。このこ
とは、この発明の研削砥石は、比較砥石のように、被加
工物を強く押し付け弾性変形を与えて研削しなくても8
倍も切り残しが少ないことを示すものである。つまり、
この発明の研削砥石においては、少ない砥石押し込み力
によって研削加工を進行することができ、その結果高い
寸法形状精度が円滑に得られる。
FIGS. 3 and 4 show a grinding wheel of the first embodiment (developing wheel) and the commercially available metal bond wheel (comparative wheel) under the respective processing conditions shown in FIGS. It shows the result of an experiment for examining the normal line and tangential grinding resistance when grinding silicon and alumina. From the results of the above experiment, the tangential grinding resistance of the developed grindstone is about the same as that of the comparative grindstone, but the normal grinding resistance of the developed grindstone is 1/2 to 1/5 of that of the comparative grindstone, which is a considerably small value. It can be seen that the grindstone is expected to have a reduction in normal grinding resistance due to thermal deformation of 2 to 5 times that of the comparative grindstone. This means that the grinding wheel of the present invention does not need to be strongly pressed against the workpiece to be elastically deformed, unlike the comparative wheel, so that 8
It shows that there is less unfolding left. That is,
In the grinding wheel of the present invention, the grinding process can be advanced with a small grinding wheel pushing force, and as a result, high dimensional accuracy can be obtained smoothly.

【0028】[0028]

【発明の効果】以上説明したように、この発明によれ
ば、研削熱による砥石の寸法、形状変化に起因する被加
工物の寸法、形状変化を軽減でき、2〜5倍も低く工作
物を押し付ける法線研削抵抗下で、かつ設計上の所望の
寸法形状精度を従来より極めて少ない切り残し量下で、
セラミックスを能率的に加工できる。特に、高温の研削
熱の生ずる過酷な研削条件におかれる場合には、この発
明は一層被加工物の熱変形防止の効果を発揮できる。ま
た、総形電着砥石を用いるプランジ研削の場合には、砥
石層が少ないので、より一層すぐれた性能を発揮できる
という効果がある。
As described above, according to the present invention, it is possible to reduce the size and shape change of the work piece due to the size and shape change of the grindstone due to the grinding heat, and to reduce the work piece by 2 to 5 times. Under normal grinding force of pressing and desired dimensional accuracy in design with much less uncut amount than before,
Ceramics can be processed efficiently. In particular, when exposed to severe grinding conditions where high-temperature grinding heat is generated, the present invention can further exert the effect of preventing thermal deformation of the workpiece. Further, in the case of plunge grinding using a form electrodeposition grindstone, there is an effect that even more excellent performance can be exhibited because the number of grindstone layers is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例に係わる研削砥石の縦
断側面図。
FIG. 1 is a vertical sectional side view of a grinding wheel according to a first embodiment of the present invention.

【図2】この発明の第2の実施例に係わる研削砥石の縦
断側面図。
FIG. 2 is a vertical sectional side view of a grinding wheel according to a second embodiment of the present invention.

【図3】この発明の実施例に係わる研削砥石(開発砥
石)と市販のメタルボンド砥石(比較砥石)との各セラ
ミックスに対する法線および接線研削抵抗を比較したグ
ラフ。
FIG. 3 is a graph comparing a normal line and a tangential grinding resistance with respect to respective ceramics of a grinding wheel (developing wheel) according to an embodiment of the present invention and a commercially available metal bond wheel (comparative wheel).

【図4】この発明の実施例に係わる研削砥石(開発砥
石)と市販のメタルボンド砥石(比較砥石)との各セラ
ミックスに対する法線および接線研削抵抗を比較したグ
ラフ。
FIG. 4 is a graph comparing the normal and tangential grinding resistances of respective ceramics of a grinding wheel (developing wheel) according to an embodiment of the present invention and a commercially available metal bond wheel (comparative wheel).

【符号の説明】[Explanation of symbols]

1、5・・・台金、 4.・・砥粒屑、 6・・・
砥石層。
1, 5 ... Base metal, 4. ..Abrasive particles, 6 ...
Whetstone layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 台金の所定の外周部に砥粒または砥石層
を付着してなる研削砥石において、前記台金を重量基準
でNi;20〜30%、C;1〜6%、Co;3〜7
%、Mn;0〜1%、Cu;0〜1%、Cr;0〜1
%、残Feを主成分とする線熱膨張率α=0.5〜3×
10−6/℃のNi−Co鋳鉄合金によって形成し、こ
の台金の所定の外周部に砥粒または砥石層を付着したこ
とを特徴とする研削砥石。
1. A grinding wheel in which abrasive grains or a grindstone layer is attached to a predetermined outer peripheral portion of a base metal, wherein the base metal is Ni; 20 to 30%, C; 1 to 6%, Co; 3-7
%, Mn; 0-1%, Cu; 0-1%, Cr; 0-1
%, Coefficient of linear thermal expansion α = 0.5 to 3 × containing residual Fe as a main component
A grinding wheel formed of a 10-6 / ° C Ni-Co cast iron alloy and having abrasive grains or a wheel layer adhered to a predetermined outer peripheral portion of the base metal.
【請求項2】 前記砥石層は、砥粒と、重量基準でN
i;20〜30%、C;1〜6%、Co;3〜7%、M
n;0〜1%、Cu;0〜1%、Cr;0〜1%、残F
eを主成分とする線熱膨張率α=0.5〜3×10−6
/℃のNi−Co鋳鉄合金粉末、前記鋳鉄合金粉末以外
の金属、レジノイド、ビトリファイドのうちの1種また
は2種以上を含む結合材とから形成されていることを特
徴とする請求項1記載の研削砥石。
2. The grindstone layer comprises abrasive grains and N by weight.
i; 20 to 30%, C; 1 to 6%, Co; 3 to 7%, M
n; 0 to 1%, Cu; 0 to 1%, Cr; 0 to 1%, balance F
coefficient of linear thermal expansion α = 0.5 to 3 × 10 −6 containing e as a main component
/ ° C Ni-Co cast iron alloy powder, a metal other than the cast iron alloy powder, a resinoid, and a binder containing one or more kinds of vitrified materials. Grinding wheel.
【請求項3】 前記砥石層は、砥粒と結合材とを真空、
水素、3H+N等の雰囲気下で焼結して形成したこ
とを特徴とする請求項1記載の研削砥石。
3. The grindstone layer is formed by vacuuming abrasive grains and a binder.
The grinding wheel according to claim 1, which is formed by sintering in an atmosphere of hydrogen, 3H 2 + N 2 or the like.
JP3130700A 1991-03-19 1991-03-19 Grinding wheel Expired - Lifetime JPH0790466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130700A JPH0790466B2 (en) 1991-03-19 1991-03-19 Grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130700A JPH0790466B2 (en) 1991-03-19 1991-03-19 Grinding wheel

Publications (2)

Publication Number Publication Date
JPH04294978A JPH04294978A (en) 1992-10-19
JPH0790466B2 true JPH0790466B2 (en) 1995-10-04

Family

ID=15040531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130700A Expired - Lifetime JPH0790466B2 (en) 1991-03-19 1991-03-19 Grinding wheel

Country Status (1)

Country Link
JP (1) JPH0790466B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231061A (en) * 2002-02-12 2003-08-19 Noritake Co Ltd Segment type grinding wheel
CN114247890A (en) * 2021-12-28 2022-03-29 赵玉石 Brazing diamond and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188275A (en) * 1988-01-25 1989-07-27 Hiroshi Eda Grinding stone

Also Published As

Publication number Publication date
JPH04294978A (en) 1992-10-19

Similar Documents

Publication Publication Date Title
EP2219824B1 (en) Abrasive processing of hard and/or brittle materials
KR100359401B1 (en) Abrasive Tools
EP2234760B1 (en) Multifunction abrasive tool with hybrid bond
US20100000159A1 (en) Abrasive Slicing Tool for Electronics Industry
JP4157082B2 (en) Method for manufacturing rigidly bonded thin whetstone
WO1999028087A1 (en) Porous grinding stone and method of production thereof
JP2006346857A (en) Polishing tool
EP0621327A1 (en) Abrasive material and method of removing material from a surface
JP6687231B2 (en) Polishing tool, method for manufacturing the same, and method for manufacturing an abrasive
JP2017170554A (en) Vitrified grindstone for low pressure lapping for lapping machine and polishing method using the same
JPH08257920A (en) Porous vitrified super abrasive grinding wheel and manufacture therefor
JP3050379B2 (en) Diamond wrap surface plate
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
JPH0790466B2 (en) Grinding wheel
JP2002137168A (en) Super abrasive tool
JP3513547B2 (en) Grinding stone for polishing single crystal diamond or diamond sintered body and polishing method thereof
JP2002160166A (en) Super abrasive grain tool
KR100522779B1 (en) Porous grinding stone and method of production thereof
JP2002144197A (en) Numerically controlled polishing method, and polished body obtained by the polishing method
JP2004181597A (en) Metal-bonded grinding wheel and its method of manufacture
KR100334430B1 (en) Tip manufacturing method of grinding wheel
JPH01188275A (en) Grinding stone
JP2003220563A (en) Vitrified bonded wheel
JP3213255B2 (en) Super abrasive whetstone
JPH03256674A (en) Base disc grinding stone