JPH08257920A - Porous vitrified super abrasive grinding wheel and manufacture therefor - Google Patents

Porous vitrified super abrasive grinding wheel and manufacture therefor

Info

Publication number
JPH08257920A
JPH08257920A JP6572895A JP6572895A JPH08257920A JP H08257920 A JPH08257920 A JP H08257920A JP 6572895 A JP6572895 A JP 6572895A JP 6572895 A JP6572895 A JP 6572895A JP H08257920 A JPH08257920 A JP H08257920A
Authority
JP
Japan
Prior art keywords
superabrasive
melting point
wheel
metal oxide
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6572895A
Other languages
Japanese (ja)
Inventor
Hisamitsu Miyazaki
久光 宮崎
Shoichi Isahaya
正一 伊佐早
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KENSAKU TOISHI KK
Original Assignee
MITSUI KENSAKU TOISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KENSAKU TOISHI KK filed Critical MITSUI KENSAKU TOISHI KK
Priority to JP6572895A priority Critical patent/JPH08257920A/en
Publication of JPH08257920A publication Critical patent/JPH08257920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE: To provide a porous vitrified super abrasive grinding wheel which can attain much less increase in grinding resistance than a conventional porous vitrified super abrasive grinding wheel and maintain stable cutting quality over a long term. CONSTITUTION: This grinding wheel is provided with a super abrasives made up of diamond or cubic boron nitride, metallic oxide particles whose Mohs' hardness is 6 or more and less than 8 and melting point is 1,500 deg.C or more, such as chrominum oxide, iron oxide and cerium oxide, and low melting point glass powder. Adjacent super abrasives are jointed to each other by a sintered element of metallic oxide and low melting point glass powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイヤモンドあるいは
立方晶窒化硼素(CBN)粒子を超砥粒とし、これをガ
ラスのような結合剤すなわちビトリファイドボンドで固
めた有気孔型ビトリファイド超砥粒ホィールおよびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses diamond or cubic boron nitride (CBN) particles as superabrasive grains, which are hardened with a binder such as glass, that is, a vitrified bond, and a porous vitrified superabrasive grain wheel. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、ダイヤモンドやCBN等の超砥粒
をビトリファイドボンドで固めた有気孔型ビトリファイ
ド超砥粒ホィールは、焼成時の収縮を防止するために、
超砥粒の他に、ホィール中に骨材として存在する粒子、
例えばAl23,SiC等を混入することが行われてい
る(たとえば特開平1−38628号公報参照)。
2. Description of the Related Art Conventionally, a pore-type vitrified superabrasive wheel made of vitrified bond in which superabrasive grains such as diamond and CBN are hardened is used to prevent shrinkage during firing.
In addition to superabrasive grains, particles present as aggregate in the wheel,
For example, Al 2 O 3 , SiC or the like is mixed (for example, see Japanese Patent Laid-Open No. 1-386828).

【0003】この種の有気孔型ビトリファイド超砥粒ホ
ィールは、被研削物の種類や加工条件等に応じて最適な
集中度のものが選択される。一般に集中度は、高、中、
低の3つの区分に分類され、これは砥粒の容積率と表1
に示すような関係を有する。
This type of aerated vitrified superabrasive grain wheel is selected to have an optimum degree of concentration according to the type of the object to be ground and the processing conditions. Generally, the degree of concentration is high, medium,
It is classified into three categories of low, which is the volume ratio of abrasive grains and Table 1.
The relationship is as shown in.

【0004】[0004]

【表1】 高集中度の超砥粒ホィールでは、たとえば図4(A)に
模式的に示すように、隣接する超砥粒11間がガラス等
の結合材13で結合された構造をとるが、中集中度のも
のでは、たとえば図4(B)に模式的に示すように、隣
接する超砥粒11間に1個の骨材粒子12が位置し、こ
れらの粒子がガラス等の結合材13で結合された構造と
なる。また低集中度の場合には、図4(C)に模式的に
示すように、隣接する超砥粒11間に2個もしくはそれ
以上の骨材粒子12が介在した構造となる。
[Table 1] A high-concentration super-abrasive grain wheel has a structure in which adjacent super-abrasive grains 11 are bonded by a bonding material 13 such as glass as schematically shown in FIG. 4 (A). For example, as schematically shown in FIG. 4B, for example, one aggregate particle 12 is located between adjacent superabrasive grains 11, and these particles are bonded by a binder 13 such as glass. It has a different structure. Further, in the case of low concentration, as shown schematically in FIG. 4 (C), the structure is such that two or more aggregate particles 12 are interposed between the adjacent super abrasive grains 11.

【0005】すなわち超砥粒の容積率が低くなると、残
りの部分を超砥粒11ではない骨材粒子12で充填する
ことが必要である。
That is, when the volume ratio of superabrasive grains becomes low, it is necessary to fill the remaining portion with aggregate particles 12 which are not superabrasive grains 11.

【0006】[0006]

【発明が解決しようとする課題】ところが超砥粒ホィー
ルにおいて、Al23,SiC等の一般砥粒を骨材とし
て使用すると、研削作業中に被削材との摩擦によって研
削抵抗が増大し易くなる。この研削抵抗の増大のため、
まず結合剤の破損が発生し、次に大きな負荷に耐えられ
なくなり、まず一般砥粒の破砕、脱落が起こり、これに
より超砥粒を支える周辺組織が脆弱化する。従って超砥
粒の保持力が弱くなり、脱落が生じ、切れ刃数が減少す
る。
However, when general abrasive grains such as Al 2 O 3 and SiC are used as the aggregate in the superabrasive grain wheel, the grinding resistance increases due to friction with the work material during the grinding operation. It will be easier. Because of this increase in grinding resistance,
First, the binder is broken, and then the large load cannot be withstood. First, the general abrasive grains are crushed and fall off, which weakens the peripheral structure supporting the superabrasive grains. Therefore, the holding power of the superabrasive grains is weakened, the superabrasive grains are dropped, and the number of cutting edges is reduced.

【0007】この結果、超砥粒1個当たりの負荷が増大
し、超砥粒の脱落が頻繁に発生する現象が継続するた
め、研削の継続が永く続かなくなる。
As a result, the load per superabrasive grain increases, and the phenomenon in which the superabrasive grains frequently fall off continues, so that the grinding cannot be continued for a long time.

【0008】このような原因で超砥粒ホィールの切れ味
が低下した場合、通常ドレッシングにより切れ刃の調整
が行なわれ、切れ味の回復を図ることが行われるが、ド
レッシングは超砥粒ホィールの超砥粒層を削り取ること
であるので、超砥粒ホィール寿命が短くなる。
When the sharpness of the superabrasive grain wheel is deteriorated due to such a cause, the cutting edge is usually adjusted by dressing to recover the sharpness. Since the grain layer is scraped off, the life of the superabrasive wheel is shortened.

【0009】本発明の目的は、このような従来の有気孔
型ビトリファイド超砥粒ホィールの欠点をなくし、研削
抵抗の増大がきわめて少なく、長期間にわたって安定し
た切れ味を保持できる有気孔型ビトリファイド超砥粒ホ
ィールを提供することである。
An object of the present invention is to eliminate the drawbacks of the conventional pore-type vitrified superabrasive grain wheels, increase the grinding resistance very little, and maintain stable sharpness for a long period of time. It is to provide a grain wheel.

【0010】[0010]

【課題を解決するための手段】本発明によれば、ダイヤ
モンドまたは立方晶窒化硼素からなる超砥粒と、モース
硬度が6以上8未満、融点が1,500℃以上の金属酸
化物と、低融点ガラスとを含み、隣接する前記超砥粒相
互が、前記金属酸化物と前記低融点ガラスとの焼結物に
より結合されてなる有気孔型ビトリファイド超砥粒ホィ
ールが提供される。
According to the present invention, a super-abrasive grain composed of diamond or cubic boron nitride and a metal oxide having a Mohs hardness of 6 or more and less than 8 and a melting point of 1,500 ° C. or more are used. There is provided a porosity type vitrified superabrasive grain wheel comprising a melting point glass, and the adjacent superabrasive grains being bonded to each other by a sintered product of the metal oxide and the low melting point glass.

【0011】すなわち本発明は、金属酸化物とガラスと
の焼結によって生じた、強力な結合材で超砥粒を強固に
保持するため、研削過程において超砥粒の脱落が非常に
小さくなることに特徴がある。
That is, according to the present invention, since the superabrasive grains are firmly held by the strong binder produced by the sintering of the metal oxide and the glass, the loss of the superabrasive grains is extremely small in the grinding process. Is characterized by.

【0012】本発明は、75〜200の範囲の集中度に
適用されるが、好ましくは、集中度140以下、すなわ
ち超砥粒容積率が35%以下のとき、研削性能および加
工コストの点で最良な配合条件を示す有気孔型ビトリフ
ァイド超砥粒ホィールを提供することができる。
The present invention is applied to the concentration degree in the range of 75 to 200, but preferably when the concentration degree is 140 or less, that is, when the superabrasive grain volume ratio is 35% or less, in terms of grinding performance and processing cost. It is possible to provide a porous vitrified superabrasive wheel exhibiting the best blending conditions.

【0013】本発明者は、研削の基本である研削抵抗を
低く抑えるために、潤滑性のある研磨材を組織の中に添
加すると研削抵抗が増大しないことを見出した。
The present inventor has found that, in order to suppress the grinding resistance, which is the basis of grinding, to a low level, the grinding resistance is not increased by adding an abrasive material having lubricity to the structure.

【0014】さらに従来法の技術では、焼結体を安定さ
せることに主目的を置いたため、研削に寄与しない一般
砥粒を骨材として存在させることで焼結時の収縮を抑え
ていたが、本発明の超砥粒ホィールでは、骨材は存在せ
ず、添加された金属酸化物は、焼成時に低融点ガラス粉
末と焼成により一体化して、隣接する超砥粒を相互に強
固に結合する、ガラス中に結晶核を有する形態のセラミ
ックス結合材を構成する。
Further, in the conventional method, since the main purpose is to stabilize the sintered body, the general abrasive grains which do not contribute to the grinding are present as the aggregate to suppress the shrinkage at the time of sintering. In the superabrasive wheel of the present invention, the aggregate does not exist, the added metal oxide is integrated by firing with the low-melting glass powder at the time of firing, to firmly bond adjacent superabrasives to each other, A ceramic binder having a crystal nucleus in glass is formed.

【0015】本発明にしたがって構成された有気孔型ビ
トリファイド超砥粒ホィールの粒子構造は、図1(A)
に模式的に示すように、隣接する超砥粒1間には、図4
に示したような骨材粒子12は存在せず、各超砥粒1
は、隣接する超砥粒1に結合材3により直接結合されて
いる。また集中度が低くなっても、図1(B)に示すよ
うに、隣接する超砥粒1間の距離が大きくなり、これに
したがって結合材3が太くなり、かつその長さが増大す
るだけである。
The grain structure of the porous type vitrified superabrasive wheel constructed according to the present invention is shown in FIG. 1 (A).
As shown schematically in FIG.
There is no aggregate particle 12 as shown in FIG.
Are directly bonded to the adjacent superabrasive grains 1 by the bonding material 3. Even if the degree of concentration is low, as shown in FIG. 1 (B), the distance between adjacent superabrasive grains 1 is large, and accordingly, the bonding material 3 is thick and its length is increased. Is.

【0016】このような構造の有気孔型ビトリファイド
超砥粒ホィールは、ダイヤモンドまたは立方晶窒化硼素
からなる超砥粒と、モース硬度が6以上8未満、融点が
1,500℃以上の金属酸化物粒子と、低融点ガラス粉
末とを混合し、この混合物を所望の形状に成形したのち
焼成して、隣接する前記超砥粒相互を、前記金属酸化物
と前記低融点ガラス粉末との焼結物により結合すること
により有利に製造することができる。
The porous vitrified superabrasive wheel having such a structure comprises a superabrasive grain made of diamond or cubic boron nitride and a metal oxide having a Mohs hardness of 6 or more and less than 8 and a melting point of 1,500 ° C. or more. Particles and low melting point glass powder are mixed, the mixture is molded into a desired shape and then fired, and the adjacent superabrasive particles are mutually sintered, a sintered product of the metal oxide and the low melting point glass powder. It can be advantageously manufactured by coupling with.

【0017】本発明において、超砥粒としては、有気孔
型ビトリファイド超砥粒ホィールに一般に使用されてい
るもの、すなわち平均粒径3〜250μmのダイヤモン
ドまたは立方晶窒化硼素(CBN)を使用することがで
きる。超砥粒として使用されるダイヤモンドは、真比重
3.52、かさ比重1.8〜1.9であり、したがって
容積率は 容積率=(1.89〜1.9)/3.52=51〜54% が最大となる。容積率すなわち集中度が大きくなるにし
たがって超砥粒ホィールとしての性能、とくに耐用寿命
は上昇するが、超砥粒は高価であるため、コストも上昇
する。この関係は、集中度100の場合を1とした比率
で寿命と製品の概略コストを比較すると、たとえば表2
のようになる。
In the present invention, as the superabrasive grains, those generally used in the pore-type vitrified superabrasive grain wheels, that is, diamond having an average grain size of 3 to 250 μm or cubic boron nitride (CBN) is used. You can The diamond used as superabrasive grains has a true specific gravity of 3.52 and a bulk specific gravity of 1.8 to 1.9, and therefore the volume ratio is: volume ratio = (1.89-1.9) /3.52=51 The maximum is ~ 54%. As the volume ratio, that is, the degree of concentration, increases, the performance as a superabrasive grain wheel, especially the useful life, increases, but since the superabrasive grains are expensive, the cost also increases. This relationship is shown in Table 2 when the life and the approximate cost of the product are compared at a ratio of 1 when the concentration is 100.
become that way.

【0018】[0018]

【表2】 しかし本発明によれば、高集中度の超砥粒ホィールの耐
用寿命を高めるとともに、中集中度および低集中度の超
砥粒ホィールの耐用寿命を著しく高めることができる。
[Table 2] However, according to the present invention, it is possible to extend the service life of the super-abrasive grain wheel having a high concentration and to remarkably extend the service life of a super-abrasive grain wheel having a medium concentration and a low concentration.

【0019】本発明において、金属酸化物としては、酸
化クロム、酸化鉄または酸化セリウムが適している。こ
れらの材料と、一般に骨材として使用されている砥粒の
モース硬度および融点を下に示す。
In the present invention, chromium oxide, iron oxide or cerium oxide is suitable as the metal oxide. The Mohs hardness and melting point of these materials and the abrasive grains commonly used as an aggregate are shown below.

【0020】 上の表から明らかなように、酸化クロム、酸化鉄および
酸化セリウムは、モース硬度が6以上8未満で、かつ融
点が1,500℃以上という本発明の条件に適合する。
[0020] As is clear from the above table, chromium oxide, iron oxide and cerium oxide meet the conditions of the present invention that the Mohs hardness is 6 or more and less than 8 and the melting point is 1,500 ° C. or more.

【0021】このような金属酸化物の平均粒径は、10
μm以下であることが望ましい。この粒径の超砥粒は、
焼成時の加熱により低融点ガラスと反応して、例えば酸
化クロムの場合にはクロム珪酸塩化合物を生成し、ガラ
ス組成中に一部結晶核を有する強力な結合材を形成し、
単独の粒子としては存在しなくなる。
The average particle size of such a metal oxide is 10
It is desirable that the thickness is μm or less. Superabrasive grains of this grain size,
By reacting with the low-melting glass by heating during firing, for example, in the case of chromium oxide, a chromium silicate compound is generated, forming a strong binder having some crystal nuclei in the glass composition,
It no longer exists as a single particle.

【0022】この結合材は、弾性係数が高く、しかも超
砥粒との接着力がきわめて大きいため、きわめて強度の
大きい超砥粒ホィールを提供する。
Since this bonding material has a high elastic modulus and an extremely large adhesive force with the superabrasive grains, it provides a superabrasive grain wheel having extremely high strength.

【0023】金属酸化物と低融点ガラスとの比率は、
1:1.5〜2.5、好ましくは1:2である。1:
1.5未満の場合には、金属酸化物と低融点ガラスとの
反応により生成した結合材の融点(軟化点)が過度に低
下し、流動性が増大し、また焼成工程でガスが発生して
膨らみや変形を生じやすく、品質の安定性が図れないこ
とがある。また1:2.5を超えると、焼成時のガラス
との反応による融点の低下が起こり難くなり、製品が脆
くなるので注意を要する。
The ratio of metal oxide to low melting glass is
It is 1: 1.5 to 2.5, preferably 1: 2. 1:
If it is less than 1.5, the melting point (softening point) of the binder produced by the reaction between the metal oxide and the low melting point glass is excessively lowered, the fluidity is increased, and gas is generated in the firing step. Swelling and deformation are likely to occur, and the quality may not be stable. If it exceeds 1: 2.5, the melting point is less likely to decrease due to the reaction with the glass during firing, and the product becomes brittle, so caution is required.

【0024】金属酸化物は、容積率で8%〜25%の範
囲内で添加するのが望ましい。8%未満の場合には、結
合材の量が少ないので、成型後、および焼成後に脆くな
って形状保持が難しくなる。また25%を超えると、成
型時の加圧力を大きくする必要があるため、冷間では成
型が難しくなる。
The metal oxide is preferably added within the range of 8% to 25% by volume. If it is less than 8%, the amount of the binder is small, so that it becomes brittle after molding and firing, and it becomes difficult to maintain the shape. On the other hand, if it exceeds 25%, the pressing force at the time of molding needs to be increased, so that molding becomes difficult in the cold.

【0025】[0025]

【実施例】 (実施例1)下記の表3に示す材料を常法にしたがって
混合し、アルミニウムの基盤の外周面上に厚さ厚さ3m
mの研削層を形成することにより8種の超砥粒ホィール
を作製した。研削層の焼成は、電気炉内で、700℃に
5時間加熱することにより行った。
Example 1 The materials shown in Table 3 below were mixed according to a conventional method, and a thickness of 3 m was formed on the outer peripheral surface of an aluminum substrate.
Eight types of superabrasive wheels were produced by forming m grinding layers. The firing of the grinding layer was performed by heating at 700 ° C. for 5 hours in an electric furnace.

【0026】(比較例1)比較のために、表3に示す材
料を使用し、実施例1と同一条件で成形、焼成して2種
の超砥粒ホィールを作製した。
(Comparative Example 1) For comparison, the materials shown in Table 3 were used and molded and fired under the same conditions as in Example 1 to prepare two kinds of superabrasive wheels.

【0027】実施例1および比較例1でそれぞれ得られ
た各超砥粒ホィールについて、研削試験結果を行いその
結果をまとめて下記の表3に示す。
With respect to each superabrasive grain wheel obtained in Example 1 and Comparative Example 1, grinding test results were conducted, and the results are summarized in Table 3 below.

【0028】[0028]

【表3】 (注)DIA:ダイヤモンド(#170/200) 研削比=(被削材減少量)/(ホイール減少量) 研削試験は、下記の表4に示す条件で行なった。被削材
としてはジルコニア(ZrO2)を使用した。
[Table 3] (Note) DIA: Diamond (# 170/200) Grinding ratio = (Workpiece material reduction amount) / (Wheel reduction amount) The grinding test was performed under the conditions shown in Table 4 below. Zirconia (ZrO 2 ) was used as the work material.

【0029】[0029]

【表4】 また本発明実施例1の試料5および比較例1の試料2に
ついて、ロータリおよび単石ドレッサーを使用してドレ
ッシングを施し、その表面の断面プロファイルを測定し
た結果を図2(A)および(B)にそれぞれ示す。面粗
さの測定は、JIS B 0601−1982にしたが
って行った。測定の結果によれば、本発明試料5では、
Ra=0.16μm、Rmax=2.32、Rz=1.
44であるのに対して、従来試料2では、Ra=0.1
6μm、Rmax=6.00、Rz=1.96であり、
本発明の超砥粒ホィールは、従来のものと比較して、表
面の平滑度がきわめて良好であることが分かる。
[Table 4] Further, with respect to Sample 5 of the present invention Example 1 and Sample 2 of Comparative Example 1, dressing was performed using a rotary and a monolithic dresser, and the results of measuring the cross-sectional profile of the surface are shown in FIGS. 2 (A) and (B). Are shown respectively. The surface roughness was measured according to JIS B 0601-1982. According to the measurement result, in the sample 5 of the present invention,
Ra = 0.16 μm, Rmax = 2.32, Rz = 1.
44, whereas in the conventional sample 2, Ra = 0.1
6 μm, Rmax = 6.00, Rz = 1.96,
It can be seen that the superabrasive wheel of the present invention has extremely good surface smoothness as compared with the conventional one.

【0030】また実施例1および比較例1の各超砥粒ホ
ィールについて、研削時間と消費電流との関係を測定
し、その結果を図3に示す。なお比較例1の超砥粒ホィ
ールは、消費電流が7.5Ampに達する毎にドレッシン
グを行った。図2から明らかなように、比較例1の超砥
粒ホィールでは、約4時間の研削毎にドレッシングが必
要であったのに対して、実施例1の超砥粒ホィールで
は、10時間後でも消費電流の上昇は認められなかっ
た。
The relationship between the grinding time and the current consumption was measured for each of the superabrasive wheels of Example 1 and Comparative Example 1, and the results are shown in FIG. The superabrasive wheel of Comparative Example 1 was dressed every time the current consumption reached 7.5 Amp. As is clear from FIG. 2, in the superabrasive wheel of Comparative Example 1, dressing was required after every 4 hours of grinding, whereas in the superabrasive wheel of Example 1, even after 10 hours. No increase in current consumption was observed.

【0031】(実施例2)下記表5に示す材料を用い
て、実施例1と同様にして超砥粒ホィールを作製した。
Example 2 Using the materials shown in Table 5 below, a superabrasive grain wheel was prepared in the same manner as in Example 1.

【0032】(比較例2)比較のために、従来から使用
されている材料を使用し、実施例1と同一条件で成形、
焼成して超砥粒ホィールを作製した。
(Comparative Example 2) For comparison, molding was carried out under the same conditions as in Example 1, using the materials conventionally used.
A superabrasive wheel was produced by firing.

【0033】上記の実施例2および比較例2の超砥粒ホ
ィールについて、上記の表4の条件で研削試験結果を行
い、その結果を同じく表5に示す。被削材としては軸受
鋼(SUJ−2焼入)を使用した。
With respect to the superabrasive grain wheels of Example 2 and Comparative Example 2 described above, grinding test results were performed under the conditions of Table 4 above, and the results are also shown in Table 5. Bearing steel (SUJ-2 quenched) was used as the work material.

【0034】[0034]

【表5】 (注)CBN:CBN(#140/170) WA: ホワイトアランダム(#150) (実施例3)実施例1において、酸化クロムに代えてそ
れぞれ酸化鉄および酸化セリウムを使用した以外は同様
にして超砥粒ホィールを作製し、各超砥粒ホィールにつ
いて研削比および消費電流を測定した。
[Table 5] (Note) CBN: CBN (# 140/170) WA: White alundum (# 150) (Example 3) In the same manner as in Example 1, except that iron oxide and cerium oxide were used instead of chromium oxide, respectively. Superabrasive wheels were prepared, and the grinding ratio and current consumption were measured for each superabrasive wheel.

【0035】各超砥粒ホィールの研削試験結果を下記の
表6に示す。
The grinding test results for each superabrasive wheel are shown in Table 6 below.

【0036】[0036]

【表6】 (実施例4)実施例1において、酸化クロムとして平均
粒径の異なるものを使用した以外は同様にして超砥粒ホ
ィールを作製し、各超砥粒ホィールについて研削比およ
び消費電流を測定した。各超砥粒ホィールの研削試験結
果を下記の表7に示す。
[Table 6] Example 4 Superabrasive wheels were produced in the same manner as in Example 1 except that chromium oxides having different average particle diameters were used, and the grinding ratio and current consumption of each superabrasive wheel were measured. The grinding test results for each superabrasive wheel are shown in Table 7 below.

【0037】[0037]

【表7】 (実施例5)実施例1において、酸化クロムの容積率の
みが異なる4種の超砥粒ホィールを作製し、各超砥粒ホ
ィールについて研削比および消費電流を測定した。超砥
粒ホィールの研削試験結果を下記の表8に示す。
[Table 7] (Example 5) In Example 1, four types of superabrasive wheels differing only in the volume ratio of chromium oxide were prepared, and the grinding ratio and the current consumption were measured for each superabrasive wheel. The grinding test results of the superabrasive wheel are shown in Table 8 below.

【0038】[0038]

【表8】 (実施例6)実施例1において、融点の異なる低融点ガ
ラスを使用して3種の超砥粒ホィールを作製し、各超砥
粒ホィールについて研削比および消費電流を測定した。
なお焼成温度は700℃であった。超砥粒ホィールの研
削試験結果を下記の表8に示す。
[Table 8] (Example 6) In Example 1, three types of superabrasive wheels were produced using low melting glass having different melting points, and the grinding ratio and the current consumption were measured for each superabrasive wheel.
The firing temperature was 700 ° C. The grinding test results of the superabrasive wheel are shown in Table 8 below.

【0039】[0039]

【表9】 [Table 9]

【0040】[0040]

【発明の効果】以上に説明したように、本発明による有
気孔型ビトリファイド超砥粒ホィールは、超砥粒の性質
を最高に引き出すことが可能になり、従来の有気孔型ビ
トリファイド超砥粒ホィールに比し、ホィール寿命が向
上するばかりでなく、研削抵抗が小さく、かつ長時間一
定で増加しないため、ノンドレッシングで研削ができる
特長を持っている。そのため作業者にとって使い勝手が
良く、扱い易いホィールとなる。
As described above, the pore-type vitrified superabrasive wheel according to the present invention makes it possible to maximize the properties of the superabrasive grains, and the conventional pore-type vitrified superabrasive wheel is used. Compared with the above, not only the wheel life is improved, but also the grinding resistance is small and it does not increase constantly for a long time, so it has the feature that grinding can be performed without dressing. Therefore, the wheel is convenient and easy for the operator to handle.

【0041】また研削抵抗が小さいために、研削作業中
における被削材の温度上昇が低く、超砥粒ホィールの熱
膨張も小さく抑えられる。このため超砥粒ホィールの研
磨面と被削材との関係が一定に保たれ、研削寸法精度が
大幅に向上するという効果が得られる。
Further, since the grinding resistance is small, the temperature rise of the work material during the grinding operation is low, and the thermal expansion of the superabrasive wheel can be suppressed small. Therefore, the relationship between the polishing surface of the superabrasive grain wheel and the work material is kept constant, and the effect of significantly improving the grinding dimension accuracy can be obtained.

【0042】これらの効果を要約すると下記のようにな
る。
The following is a summary of these effects.

【0043】 高集中度の超砥粒ホィールの耐用寿命
が長くなるとともに、中集中度および低集中度の超砥粒
ホィールの耐用寿命が著しく長くなる。
The service life of the high-concentration superabrasive wheel is extended, and the service lives of the medium-concentration and low-concentration superabrasive wheels are significantly extended.

【0044】 ドレッシング抵抗が小さく、緻密な研
削面を創生する。
A dressing resistance is small and a fine ground surface is created.

【0045】 ホィール減耗が小さく、結果として研
削比が増大する。
Wheel wear is low, resulting in an increased grinding ratio.

【0046】 研削抵抗が小さく、安定した切れ味を
永く継続できる。
The grinding resistance is small, and stable sharpness can be continued for a long time.

【0047】 加工精度が優れ、後工程に要する時間
が短縮できる。
The processing accuracy is excellent, and the time required for the post-process can be shortened.

【0048】 緻密な研削面が得られる。A dense ground surface can be obtained.

【0049】 研削寸法精度が向上する。The grinding dimensional accuracy is improved.

【0050】従って多目的に対応できる画期的ホィール
となり、今後の高精密、高能率研削加工において大いに
貢献する。
Therefore, it becomes an epoch-making wheel which can be used for various purposes and greatly contributes to the future high precision and high efficiency grinding.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)および(B)は本発明による超砥粒ホィ
ールにおける超砥粒の結合状態を模式的に示す説明図。
1 (A) and 1 (B) are explanatory views schematically showing a superabrasive grain bonding state in a superabrasive grain wheel according to the present invention.

【図2】(A)は本発明の超砥粒ホィール、(B)は従
来の超砥粒ホィールのドレッシング後の表面粗さの断面
プロファイルを示すチャート。
FIG. 2A is a chart showing a cross-sectional profile of surface roughness after dressing of a superabrasive wheel of the present invention, and FIG. 2B is a conventional superabrasive wheel.

【図3】本発明の実施例1および比較例1における研削
時間と消費電流との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between grinding time and current consumption in Example 1 of the present invention and Comparative Example 1.

【図4】(A),(B),(C)は従来の超砥粒ホィー
ルにおける超砥粒の結合状態を模式的に示す説明図。
4 (A), (B), and (C) are explanatory views schematically showing the combined state of superabrasive grains in a conventional superabrasive grain wheel.

【符号の説明】[Explanation of symbols]

1 超砥粒 3 結合材 1 Super Abrasive 3 Binder

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンドまたは立方晶窒化硼素から
なる超砥粒と、モース硬度が6以上8未満、融点が1,
500℃以上の金属酸化物粒子と、低融点ガラス粉末と
を含み、隣接する前記超砥粒相互が、前記金属酸化物と
前記低融点ガラス粉末との焼結物により結合されてなる
有気孔型ビトリファイド超砥粒ホィール。
1. Superabrasive grains made of diamond or cubic boron nitride, having a Mohs hardness of 6 or more and less than 8 and a melting point of 1.
A porous type including metal oxide particles of 500 ° C. or higher and low melting point glass powder, and adjacent superabrasive grains are bonded by a sintered product of the metal oxide and the low melting point glass powder. Vitrified super abrasive wheel.
【請求項2】 前記金属酸化物粒子が、酸化クロム、酸
化鉄、酸化セリウムのいずれかである請求項1記載の有
気孔型ビトリファイド超砥粒ホィール。
2. The porous vitrified superabrasive wheel according to claim 1, wherein the metal oxide particles are any of chromium oxide, iron oxide and cerium oxide.
【請求項3】 前記金属酸化物粒子の平均粒径が10μ
m以下であり、容積率が8%〜25%である請求項1記
載の有気孔型ビトリファイド超砥粒ホィール。
3. The average particle size of the metal oxide particles is 10 μm.
The porous vitrified superabrasive wheel according to claim 1, which has a volume ratio of 8% to 25%.
【請求項4】 前記超砥粒の容積率が35%以下である
請求項1記載の有気孔型ビトリファイド超砥粒ホィー
ル。
4. The porous vitrified superabrasive wheel according to claim 1, wherein the volume ratio of the superabrasive grains is 35% or less.
【請求項5】 前記低融点ガラス粉末の軟化点が630
℃以下である請求項1記載の有気孔型ビトリファイド超
砥粒ホィール。
5. The softening point of the low melting point glass powder is 630.
The porous vitrified superabrasive wheel according to claim 1, which has a temperature of ℃ or less.
【請求項6】 ダイヤモンドまたは立方晶窒化硼素から
なる超砥粒と、モース硬度が6以上8未満、融点が1,
500℃以上の金属酸化物粒子と、低融点ガラス粉末と
を混合し、この混合物を所望の形状に成形したのち焼成
して、隣接する前記超砥粒相互を、前記金属酸化物と前
記低融点ガラス粉末との焼結物により結合することを特
徴とするビトリファイド超砥粒ホィールの製造方法。
6. A super-abrasive grain made of diamond or cubic boron nitride, having a Mohs hardness of 6 or more and less than 8 and a melting point of 1,
The metal oxide particles of 500 ° C. or higher and the low melting point glass powder are mixed, and the mixture is molded into a desired shape and then fired so that the adjacent superabrasive grains are separated from each other by the metal oxide and the low melting point. A method for producing a vitrified superabrasive wheel, which comprises bonding with a glass powder by a sintered product.
JP6572895A 1995-03-24 1995-03-24 Porous vitrified super abrasive grinding wheel and manufacture therefor Pending JPH08257920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6572895A JPH08257920A (en) 1995-03-24 1995-03-24 Porous vitrified super abrasive grinding wheel and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6572895A JPH08257920A (en) 1995-03-24 1995-03-24 Porous vitrified super abrasive grinding wheel and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH08257920A true JPH08257920A (en) 1996-10-08

Family

ID=13295379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6572895A Pending JPH08257920A (en) 1995-03-24 1995-03-24 Porous vitrified super abrasive grinding wheel and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH08257920A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130635A (en) * 2004-11-09 2006-05-25 Mizuho:Kk Vitrified superfinishing rubstone of composite abrasive grain
JP2007030110A (en) * 2005-07-28 2007-02-08 Honda Motor Co Ltd Vitrified grinding stone and its manufacturing method, and method for grinding cast iron workpiece using the same grinding tool
JP2010521323A (en) * 2007-03-13 2010-06-24 スリーエム イノベイティブ プロパティズ カンパニー Abrasive composition and articles formed from the composition
JP2013508185A (en) * 2009-10-27 2013-03-07 サンーゴバン アブレイシブズ,インコーポレイティド Glassy bond abrasive
EP2433749A3 (en) * 2010-09-27 2014-06-18 JTEKT Corporation Cubic boron nitride grinding wheel
US8771390B2 (en) 2008-06-23 2014-07-08 Saint-Gobain Abrasives, Inc. High porosity vitrified superabrasive products and method of preparation
US9138866B2 (en) 2009-10-27 2015-09-22 Saint-Gobain Abrasives, Inc. Resin bonded abrasive
CN105252427A (en) * 2015-09-18 2016-01-20 苏州国量量具科技有限公司 Hard grinding wheel and preparation method thereof
CN105252436A (en) * 2015-10-09 2016-01-20 芜湖市鸿坤汽车零部件有限公司 Cerium and silicon composite oxidization resin grinding wheel and preparation method thereof
CN105252430A (en) * 2015-10-09 2016-01-20 芜湖市鸿坤汽车零部件有限公司 Modified cerium oxide resin grinding wheel and preparation method thereof
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same
CN105364730A (en) * 2015-10-09 2016-03-02 芜湖市鸿坤汽车零部件有限公司 Anti-washout resin grinding wheel and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523383B2 (en) * 2004-11-09 2010-08-11 株式会社ミズホ Composite abrasive vitrified superfinishing wheel
JP2006130635A (en) * 2004-11-09 2006-05-25 Mizuho:Kk Vitrified superfinishing rubstone of composite abrasive grain
JP2007030110A (en) * 2005-07-28 2007-02-08 Honda Motor Co Ltd Vitrified grinding stone and its manufacturing method, and method for grinding cast iron workpiece using the same grinding tool
JP4562609B2 (en) * 2005-07-28 2010-10-13 本田技研工業株式会社 Vitrified grinding wheel, method of manufacturing the same, and cast iron workpiece grinding method using the same
JP2010521323A (en) * 2007-03-13 2010-06-24 スリーエム イノベイティブ プロパティズ カンパニー Abrasive composition and articles formed from the composition
US8771390B2 (en) 2008-06-23 2014-07-08 Saint-Gobain Abrasives, Inc. High porosity vitrified superabrasive products and method of preparation
US8784519B2 (en) 2009-10-27 2014-07-22 Saint-Gobain Abrasives, Inc. Vitrious bonded abbrasive
JP2013508185A (en) * 2009-10-27 2013-03-07 サンーゴバン アブレイシブズ,インコーポレイティド Glassy bond abrasive
US9138866B2 (en) 2009-10-27 2015-09-22 Saint-Gobain Abrasives, Inc. Resin bonded abrasive
EP2433749A3 (en) * 2010-09-27 2014-06-18 JTEKT Corporation Cubic boron nitride grinding wheel
US9149912B2 (en) 2010-09-27 2015-10-06 Jtekt Corporation Cubic boron nitride grinding wheel
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same
CN105252427A (en) * 2015-09-18 2016-01-20 苏州国量量具科技有限公司 Hard grinding wheel and preparation method thereof
CN105252427B (en) * 2015-09-18 2017-12-22 苏州国量量具科技有限公司 A kind of hard grinding wheel with and preparation method thereof
CN105252436A (en) * 2015-10-09 2016-01-20 芜湖市鸿坤汽车零部件有限公司 Cerium and silicon composite oxidization resin grinding wheel and preparation method thereof
CN105252430A (en) * 2015-10-09 2016-01-20 芜湖市鸿坤汽车零部件有限公司 Modified cerium oxide resin grinding wheel and preparation method thereof
CN105364730A (en) * 2015-10-09 2016-03-02 芜湖市鸿坤汽车零部件有限公司 Anti-washout resin grinding wheel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8894731B2 (en) Abrasive processing of hard and /or brittle materials
US6093092A (en) Abrasive tools
EP1066134B1 (en) Abrasive tools
JP3099965B2 (en) Alumina grinding wheel with improved corner retention
JPH10113875A (en) Super abrasive grain abrasive grindstone
JP3373797B2 (en) Resin-impregnated reinforced vitrified grinding wheel and method of manufacturing the same
JP2001246566A (en) Cutting grinding wheel, its manufacturing method and grinding method using it
KR20130038416A (en) High porosity vitrified superabrasive products and method of preparation
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JPH08257920A (en) Porous vitrified super abrasive grinding wheel and manufacture therefor
JP3542520B2 (en) Vitrified whetstone
JP3086667B2 (en) Super abrasive whetstone
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
JP2987485B2 (en) Superabrasive grindstone and method of manufacturing the same
JPH10128668A (en) Super-abrasive grain grinding wheel and its manufacture
JP2678288B2 (en) Superabrasive vitrified bond grindstone and manufacturing method
JP2975033B2 (en) Vitrified super abrasive whetstone
JPH07108462A (en) Vitrified bond grinding wheel with high grinding ratio
JPH11156727A (en) Sol-gel sintered alumina-based grinding wheel
JPH10113876A (en) Diamond grindstone, its manufacturing method and tool
JP3050371B2 (en) Superabrasive grindstone and method of manufacturing the same
JP2001198835A (en) Grinding wheel
JPH07108463A (en) Vitrified bond grinding wheel with high grinding ratio
JP2001009732A (en) Vitrified bond grinding wheel and manufacture therefor
JP2806481B2 (en) Plate-shaped cubic boron nitride oriented compact