JPH0790363A - Production of machine structural part excellent in mechanical strength - Google Patents

Production of machine structural part excellent in mechanical strength

Info

Publication number
JPH0790363A
JPH0790363A JP23369393A JP23369393A JPH0790363A JP H0790363 A JPH0790363 A JP H0790363A JP 23369393 A JP23369393 A JP 23369393A JP 23369393 A JP23369393 A JP 23369393A JP H0790363 A JPH0790363 A JP H0790363A
Authority
JP
Japan
Prior art keywords
steel
nitriding
treatment
induction hardening
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23369393A
Other languages
Japanese (ja)
Other versions
JP3381738B2 (en
Inventor
Tatsumi Urita
田 龍 実 瓜
Sadayuki Nakamura
村 貞 行 中
Yoichi Watanabe
辺 陽 一 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23369393A priority Critical patent/JP3381738B2/en
Publication of JPH0790363A publication Critical patent/JPH0790363A/en
Application granted granted Critical
Publication of JP3381738B2 publication Critical patent/JP3381738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a machine structural part further improved in mechanical properties such as bearing strength, bending fatigue strength and twisting fatigue strength. CONSTITUTION:A steel contg., by weight, 0.35 to 0.65% C, 0.03 to 1.50% Si, 0.3 to 1.0% Mn and 0.1 to 3.0% Cr, furthermore contg., at need, one or >=two kinds among 0.01 to 1.5% Al, 0.05 to 0.5% V and 0.05 to 0.5% Mo, similarly, 0.5 to 2.0% Ni, similarly, one or two kinds of 0.005 to 0.05% Ti and 0.01 to 0.10% Nb and, similarly, one or >=two kinds among 0.02 to 0.40% S, 0.01 to 0.50% Pb, 0.0003 to 0.010% Ca, 0.005 to 0.10% Te and 0.01 to 0.50% Bi, and the balance Fe with impuritiets is subjected to nitriding treatment at the Ac1 transformation point or above of the steel to <=950 deg.C, is cooled by air cooling or by using a refrigerant and is thereafter subjected to induction hardening.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面圧強度,曲げ疲労強
度,ねじり疲労強度等の機械的強度に優れた機械構造部
品を得るのに利用される機械構造部品の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a mechanical structural part used for obtaining a mechanical structural part having excellent mechanical strength such as surface pressure strength, bending fatigue strength, and torsional fatigue strength. .

【0002】[0002]

【従来の技術】従来、機械構造部品の面圧強度,曲げ疲
労強度,ねじり疲労強度等の機械的強度を向上させるた
めに、鋼に対して表面硬化処理を行うことがよく実施さ
れており、浸炭,窒化,高周波焼入れなどの表面硬化処
理がよく採用されている(なお、この種の鋼に対する表
面硬化処理に関しては、例えば、「第3版 鉄鋼便覧第
VI巻 二次加工・表面処理・熱処理・溶接」 昭和5
7年5月31日発行社団法人 日本鉄鋼協会編 第56
2頁〜第600頁『14.表面硬化』に詳細な説明がな
されている。)。
2. Description of the Related Art Conventionally, in order to improve mechanical strength such as surface pressure strength, bending fatigue strength and torsional fatigue strength of machine structural parts, it is often practiced to subject steel to surface hardening treatment. Surface hardening treatments such as carburizing, nitriding, and induction hardening are often adopted. (For surface hardening treatments for this type of steel, see, for example, "3rd Edition Iron and Steel Handbook, Volume VI Secondary Processing, Surface Treatment, and Heat Treatment."・ Welding ”Showa 5
May 31, 1995 Published by The Iron and Steel Institute of Japan, 56th edition
Pages 2 to 600, “14. Surface hardening ”for a detailed explanation. ).

【0003】このような表面硬化処理において、例え
ば、C含有量を0.13〜0.23%と低くしたはだ焼
鋼を用いて浸炭や浸炭窒化処理を施すことによって、耐
摩耗性や疲労強度を向上させた機械構造部品を得ること
が良く行われているが、このほか、窒化処理(例えば、
タフトライド処理,ガス軟窒化処理,イオン窒化処理)
や高周波焼入れなども良く行われている。
In such a surface hardening treatment, for example, by using carburizing or carbonitriding treatment using a case-hardening steel having a C content as low as 0.13 to 0.23%, wear resistance and fatigue are improved. It is common to obtain mechanical structural parts with improved strength, but in addition to this, nitriding treatment (for example,
(Tufftride treatment, gas soft nitriding treatment, ion nitriding treatment)
Also induction hardening is often done.

【0004】また、最近では、窒化処理後に高周波焼入
れする複合処理が施されるようになった。
Recently, a composite treatment of induction hardening after the nitriding treatment has been performed.

【0005】この場合、窒化時に拡散する窒素はもとよ
り、鋼に含有する炭素とともに高周波焼入れに寄与す
る。そして、これによって得られるマルテンサイトは、
優れた焼もどし軟化抵抗性と亀裂発生抵抗性を示し、転
動寿命等の機械的性質を著しく向上させる。
In this case, not only nitrogen diffused during nitriding but also carbon contained in steel contributes to induction hardening. And the martensite obtained by this is
It exhibits excellent temper softening resistance and cracking resistance, and significantly improves mechanical properties such as rolling life.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の窒化
処理の場合には、熱処理時の歪みを極力低減するため
に、Ac変態点未満の温度である590℃未満で行わ
れているが、この場合、低温処理のために3〜10時間
の長時間処理を必要としていた。そして、590℃以上
(Ac変態点以上)の場合には、変態にともなう膨張
・収縮が発生するため、窒化処理の最大の利点である低
歪みの効果が消失するとして採用されていなかった。
By the way, in the case of the conventional nitriding treatment, in order to reduce the strain during the heat treatment as much as possible, the nitriding treatment is performed at a temperature lower than the Ac 1 transformation point, which is lower than 590 ° C. In this case, long-time treatment of 3 to 10 hours was required for low temperature treatment. In the case of 590 ° C. or higher (Ac 1 transformation point or higher), expansion / contraction occurs due to transformation, so the effect of low strain, which is the greatest advantage of the nitriding treatment, disappears, and it was not adopted.

【0007】また、高周波焼入れのみの場合は表面硬さ
が低く転動寿命が著しく短いと共に焼もどし軟化抵抗も
低いという問題点があって、窒素と炭素を含有したオー
ステナイトを急冷して得られるマルテンサイトのもつ優
れた焼もどし軟化抵抗性や亀裂発生抵抗性を短時間処理
によってより一層活かすことができるようにすることが
課題であった。
Further, in the case of only induction hardening, there is a problem that the surface hardness is low, the rolling life is remarkably short, and the tempering softening resistance is also low. The challenge was to make it possible to further utilize the excellent tempering softening resistance and cracking resistance of the site by a short-time treatment.

【0008】[0008]

【発明の目的】本発明は、上述した従来の課題にかんが
みてなされたものであって、窒素と炭素を含有したオー
ステナイトを急冷して得られるマルテンサイトのもつ優
れた焼もどし軟化抵抗性や亀裂発生抵抗性を短時間処理
によってより一層活かすことが可能であり、面圧強度
(耐ピッチング疲労特性),曲げ疲労強度,ねじり疲労
強度等の機械的強度により一層優れた機械構造部品を得
ることを目的としている。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has excellent resistance to temper softening and cracking of martensite obtained by rapidly cooling austenite containing nitrogen and carbon. It is possible to make better use of the generated resistance by a short-time treatment, and to obtain mechanical structural parts that are more excellent in mechanical strength such as surface pressure strength (pitting fatigue resistance), bending fatigue strength, and torsional fatigue strength. Has an aim.

【0009】[0009]

【課題を解決するための手段】本発明に係わる機械構造
部品の製造方法は、重量%で、C:0.35〜0.65
%、Si:0.03〜1.50%、Mn:0.3〜1.
0%、Cr:0.1〜3.0%を含み、場合によっては
さらに、Al:0.01〜1.5%,V:0.05〜
0.5%,Mo:0.05〜0.5%のうちの1種また
は2種以上、同じく、Ni:0.5〜2.0%、同じ
く、Ti:0.005〜0.05%,Nb:0.01〜
0.10%の1種または2種、同じく、S:0.02〜
0.40%,Pb:0.01〜0.50%,Ca:0.
0003〜0.010%,Te:0.005〜0.10
%,Bi:0.01〜0.50%のうちの1種または2
種以上を含み、残部Feおよび不純物よりなる鋼に対
し、鋼のAc変態点以上でかつ950℃以下の温度で
窒化処理を行い、空冷ないしは冷媒にて冷却した後、窒
化層がオーステナイト化する条件で高周波焼入れを行う
構成としたことを特徴としている。
The method of manufacturing a mechanical structural component according to the present invention is, by weight%, C: 0.35 to 0.65.
%, Si: 0.03 to 1.50%, Mn: 0.3 to 1.
0:%, Cr: 0.1-3.0%, and in some cases, Al: 0.01-1.5%, V: 0.05-
One or more of 0.5% and Mo: 0.05 to 0.5%, Ni: 0.5 to 2.0%, and Ti: 0.005 to 0.05% , Nb: 0.01 to
0.10% of 1 type or 2 types, similarly, S: 0.02
0.40%, Pb: 0.01 to 0.50%, Ca: 0.
0003-0.010%, Te: 0.005-0.10
%, Bi: 0.01 to 0.50%, 1 or 2
A steel containing at least seeds and the balance Fe and impurities is subjected to a nitriding treatment at a temperature not lower than the Ac 1 transformation point of the steel and not higher than 950 ° C., and after cooling with air or a refrigerant, the nitrided layer becomes austenite. The feature is that the induction hardening is performed under the conditions.

【0010】次に、本発明に係わる機械構造部品の製造
方法において適用される鋼の化学成分組成(重量%)の
限定理由について説明する。
Next, the reasons for limiting the chemical composition (% by weight) of steel applied in the method of manufacturing a mechanical structural part according to the present invention will be described.

【0011】Cは機械構造部品の強度を決定する基本的
な元素であるが、含有量が少なすぎると強度の確保が十
分にできなくなるので、0.35%以上としている。し
かし、C含有量が多すぎると靭性の劣化を招くことがあ
るので0.65%以下としている。
C is a basic element that determines the strength of mechanical structural parts, but if the content is too small, the strength cannot be secured sufficiently, so C is set to 0.35% or more. However, if the C content is too large, the toughness may be deteriorated, so the content is made 0.65% or less.

【0012】Siは鋼溶製時において脱酸剤として有用
であると共に、焼もどし軟化抵抗性を向上して、転動寿
命を向上させるのに有用な元素であり、このような作用
を得るために0.03%以上としている。しかし、Si
含有量が多すぎると加工性や靭性の劣化を招くこととな
るので1.50%以下としている。
Si is an element which is useful as a deoxidizing agent during the melting of steel, and is also useful for improving the resistance to temper softening and improving the rolling life. And 0.03% or more. But Si
If the content is too large, workability and toughness are deteriorated, so the content is made 1.50% or less.

【0013】Mnは鋼溶製時において脱酸剤および脱硫
剤として作用すると共に、高周波焼入れ性の向上に有用
な元素であり、このような作用を得るために0.3%以
上としている。しかし、Mn含有量が多すぎると靭性の
劣化を招くので1.0%以下としている。
Mn is an element that acts as a deoxidizing agent and a desulfurizing agent during the melting of steel, and is useful for improving induction hardenability. To obtain such an action, Mn is set to 0.3% or more. However, if the Mn content is too high, the toughness is deteriorated, so the content is made 1.0% or less.

【0014】Crは窒化特性の向上、とくに、窒化深さ
の増大に有用であると共に、高周波焼入れ性の向上にも
有用な元素であり、このような作用を得るために0.1
%以上としている。しかし、Cr含有量を多くしても窒
化特性向上の効果が飽和するので3.0%以下としてい
る。
Cr is an element useful for improving the nitriding property, particularly for increasing the nitriding depth, and also for improving the induction hardenability.
% And above. However, even if the Cr content is increased, the effect of improving the nitriding characteristics is saturated, so the content is made 3.0% or less.

【0015】Al,V,Moはいずれも窒化特性の向上
に有用な元素であり、Alは特に表面硬さの向上に有用
な元素であり、Vは特に窒化深さの向上に有用であると
共に心部硬さの向上にも有用な元素であり、Moは特に
窒化深さの向上および高周波焼入れ性の向上にも有用な
元素であることから、Alについては0.01%以上、
Vについては0.05%以上、Moについては0.05
%以上のうちの1種または2種以上を場合によっては含
有させることもできる。しかし、Al含有量が多すぎて
も窒化特性向上の効果が飽和することから1.5%以下
とし、V含有量が多すぎても窒化特性向上の効果が飽和
することから0.5以下とし、Mo含有量が多すぎても
焼入れ性向上の効果が飽和すると共に被削性を劣化させ
るので0.5%以下とするのが良い。
All of Al, V and Mo are elements useful for improving nitriding characteristics, Al is an element particularly useful for improving surface hardness, and V is particularly useful for improving nitriding depth. Since it is an element that is also useful for improving the core hardness, and Mo is an element that is particularly useful for improving the nitriding depth and the induction hardenability, 0.01% or more for Al,
0.05% or more for V, 0.05 for Mo
One or two or more of% or more may be optionally contained. However, if the Al content is too large, the effect of improving the nitriding characteristics is saturated, so it is set to 1.5% or less, and if the V content is too large, the effect of improving the nitriding characteristics is saturated, so it is set to 0.5 or less. If the Mo content is too high, the effect of improving the hardenability is saturated and the machinability is deteriorated, so 0.5% or less is preferable.

【0016】Niは高周波焼入れ性の向上ならびに靭性
の向上に寄与する元素であることから、場合によっては
0.5%以上を含有させることもできる。しかし、Ni
含有量が多すぎると焼入れ性の向上効果が飽和すると共
に被削性を劣化させることとなるので2.0%以下とす
るのが良い。
Since Ni is an element that contributes to the improvement of the induction hardenability and the toughness, 0.5% or more may be contained in some cases. However, Ni
If the content is too large, the effect of improving the hardenability is saturated and the machinability is deteriorated. Therefore, the content is preferably 2.0% or less.

【0017】Ti,Nbは結晶粒の微細化および窒化特
性の向上に有用な元素であるので、Tiについては0.
005%以上、Nbについては0.01%以上を場合に
よっては含有させることもできる。しかし、Ti,Nb
含有量が多すぎると靭性を低下させることとなるので、
Tiについては0.05%以下、Nbについては0.1
0%以下とするのが良い。
Since Ti and Nb are elements useful for refining the crystal grains and improving the nitriding characteristics, the Ti content is 0.
Depending on the case, 005% or more and 0.01% or more of Nb may be contained. However, Ti, Nb
If the content is too large, the toughness will decrease, so
0.05% or less for Ti, 0.1 for Nb
It is better to be 0% or less.

【0018】S,Pb,Ca,Te,Biはいずれも被
削性の向上に寄与する元素であるので、被削性に優れて
いることが要求される機械構造部品の場合にはこれらの
1種または2種以上を添加するのも良く、この場合に、
Sについては0.02%以上,Pbについては0.01
%以上、Caについては0.0003%以上、Teにつ
いては0.005%以上、Biについては0.01%以
上を適宜添加することもできる。しかし、これらの含有
量が多すぎると強度(特に、ローラーピッチング強度)
を低下させると共に縦(圧延)方向の靭性を劣化させる
こととなるので、Sについては0.40%以下、Pbに
ついては0.50%以下、Caについては0.010%
以下、Teについては0.10%以下、Biについては
0.50%以下とするのが良い。
Since S, Pb, Ca, Te, and Bi are all elements that contribute to the improvement of machinability, in the case of mechanical structural parts which are required to have excellent machinability, these 1 It is also possible to add seeds or two or more kinds. In this case,
0.02% or more for S, 0.01 for Pb
%, Ca may be 0.0003% or more, Te may be 0.005% or more, and Bi may be 0.01% or more. However, if these contents are too high, strength (especially roller pitting strength)
As well as decreasing the toughness in the longitudinal (rolling) direction, S is 0.40% or less, Pb is 0.50% or less, and Ca is 0.010%.
Hereinafter, Te is preferably 0.10% or less and Bi is preferably 0.50% or less.

【0019】本発明においては、上記組成の鋼に対し
て、鋼のAc変態点以上でかつ950℃以下の温度で
窒化処理を行い、空冷ないしは冷媒にて冷却した後、高
周波焼入れを行うようにしており、窒化+高周波焼入れ
によって通常の炭素鋼を高周波焼入れして得られるマル
テンサイトと異なるマルテンサイトを得ることによっ
て、面圧疲労強度(耐ピッチング疲労特性)を向上させ
るようにしている。
In the present invention, the steel having the above composition is subjected to a nitriding treatment at a temperature not lower than the Ac 1 transformation point of the steel and not higher than 950 ° C., cooled by air or a refrigerant, and then induction hardened. The surface pressure fatigue strength (pitting fatigue resistance) is improved by obtaining martensite different from the martensite obtained by induction hardening ordinary carbon steel by nitriding and induction hardening.

【0020】この場合、窒素と炭素を含有したオーステ
ナイトを冷媒により急冷して得られるマルテンサイト
は、炭素のみからなるオーステナイトを急冷して得られ
るマルテンサイトに比べて、焼もどし軟化抵抗性に優れ
ていると共に亀裂発生抵抗性にも優れているため、窒化
+高周波焼入れの複合熱処理を施すことにより、面圧疲
労強度および曲げ疲労強度,ねじり疲労強度が著しく向
上した機械構造部品を得ることができる。
In this case, martensite obtained by quenching austenite containing nitrogen and carbon with a refrigerant is superior in temper softening resistance to martensite obtained by quenching austenite consisting of carbon only. In addition to having excellent cracking resistance, it is possible to obtain a mechanical structural component with significantly improved surface pressure fatigue strength, bending fatigue strength, and torsional fatigue strength by performing a combined heat treatment of nitriding and induction hardening.

【0021】窒化温度については、鋼のAc変態点以
上でかつ950℃以下であるとしている。これは、窒化
温度がAc変態点以上(例えば、590℃以上)で迅
速な窒化が可能となり、窒化時間の大幅な短縮が可能と
なるためであり、Ac変態点以下では、窒化処理時に
NがCr,A■,V等との窒化物やFeN(γ相),
FeN(ε相)の形で鋼中に存在し、母相中には最大
で0.1%程度しか固溶できないが、Ac変態点以上
では2.35%程度まで固溶するので、窒化処理時間後
の高周波焼入れの際にN+Cのマルテンサイトとして利
用するN量を多くすることができると共に窒化処理時間
を大幅に短縮することが可能となる。
The nitriding temperature is said to be not lower than the Ac 1 transformation point of steel and not higher than 950 ° C. This is more nitriding temperature Ac 1 transformation point (e.g., 590 ° C. or higher) enables rapid nitriding is because the it is possible to greatly shorten the nitriding time, below Ac 1 transformation point at the time of nitriding treatment N is a nitride of Cr, A ■, V, etc., or FeN 4 (γ phase),
It exists in steel in the form of FeN 2 (ε phase) and can dissolve only in the parent phase at a maximum of about 0.1%, but at the Ac 1 transformation point or higher, it dissolves up to about 2.35%. It is possible to increase the amount of N used as N + C martensite during the induction hardening after the nitriding treatment time and to shorten the nitriding treatment time significantly.

【0022】しかし、950℃を超えるとNHの分圧
を高めて浸炭が主流となるので、950℃以下としてい
る。
However, if the temperature exceeds 950 ° C., the partial pressure of NH 3 is increased and carburization becomes the main stream, so the temperature is set to 950 ° C. or less.

【0023】そして、このような軟窒化処理としては、
ガス窒化処理を用いることができ、そのほか、タフライ
ド処理やイオン窒化処理等の窒化処理を用いることがで
きる。
And as such soft nitriding treatment,
Gas nitriding treatment can be used, and in addition, nitriding treatment such as tufting treatment and ion nitriding treatment can be used.

【0024】そして、上記Ac変態点以上950℃以
下での窒化処理のあとに、高周波焼入れ処理を行うが、
高周波焼入れは短時間加熱であるため、窒素の拡散は高
周波焼入れ時にはほとんどおこらない。そのため、高周
波焼入れ前に適正な窒素の拡散層のパターンを得ておく
必要がある。また、窒化をAc変態点未満(例えば、
590℃未満)で実施した場合は拡散深さは非常に浅
く、長時間処理が必要である。ところが、Ac変態点
以上(例えば、590℃以上)の場合、短時間で窒素の
拡散が深いパターンを得ることが可能であるため、適正
な窒素の拡散層のパターンを制御しやすい。
Then, after the nitriding treatment at the Ac 1 transformation point or more and 950 ° C. or less, the induction hardening treatment is performed.
Since induction hardening is a short-time heating, nitrogen diffusion hardly occurs during induction hardening. Therefore, it is necessary to obtain an appropriate pattern of the nitrogen diffusion layer before induction hardening. Moreover, nitriding is performed at a temperature lower than the Ac 1 transformation point (for example,
When performed at a temperature lower than 590 ° C.), the diffusion depth is very shallow, and long-time treatment is required. However, when the Ac 1 transformation point or higher (for example, 590 ° C. or higher), it is possible to obtain a deep nitrogen diffusion pattern in a short time, and thus it is easy to control an appropriate nitrogen diffusion layer pattern.

【0025】さらに、高周波焼入れによる表面の残留応
力が、面圧疲労強度および曲げ疲労強度,ねじり疲労強
度の向上にも寄与する。
Further, the residual stress on the surface due to induction hardening also contributes to the improvement of surface pressure fatigue strength, bending fatigue strength and torsional fatigue strength.

【0026】ところで、通常の窒化処理は、熱処理時の
歪みを極力低減するために、Ac変態点未満の温度で
ある590℃未満で行われる。そして、Ac変態点以
上(590℃以上)の場合、変態にともなう膨張・収縮
が発生するため、窒化処理の最大の利点である低歪みの
効果が消失する。しかしながら、本発明においては、窒
化処理後に高周波焼入れして変態点を超えるので、窒化
処理後に低歪みである必要は必ずしもないこととなる。
又、高温処理であるほど窒素の拡散速度が大きくなり、
窒化時間が大幅に短縮できる利点がある。
By the way, the usual nitriding treatment is carried out at a temperature below 590 ° C., which is a temperature below the Ac 1 transformation point, in order to reduce strain during heat treatment as much as possible. When the Ac 1 transformation point or higher (590 ° C. or higher), expansion / contraction occurs due to transformation, and the effect of low strain, which is the greatest advantage of the nitriding treatment, disappears. However, in the present invention, since induction hardening is performed after the nitriding treatment to exceed the transformation point, it is not always necessary that the strain be low after the nitriding treatment.
Also, the higher the temperature, the higher the diffusion rate of nitrogen,
There is an advantage that the nitriding time can be significantly shortened.

【0027】[0027]

【発明の作用】本発明に係わる機械的強度に優れた機械
構造部品の製造方法では、重量%で、C:0.35〜
0.65%、Si:0.03〜1.50%、Mn:0.
3〜1.0%、Cr:0.1〜3.0%を含み、場合に
よってはさらに、Al:0.01〜1.5%,V:0.
05〜0.5%,Mo:0.05〜0.5%のうちの1
種または2種以上、同じく、Ni:0.5〜2.0%、
同じく、Ti:0.005〜0.05%,Nb:0.0
1〜0.10%の1種または2種、同じく、S:0.0
2〜0.40%,Pb:0.01〜0.50%,Ca:
0.0003〜0.010%,Te:0.005〜0.
10%,Bi:0.01〜0.50%のうちの1種また
は2種以上を含み、残部Feおよび不純物よりなる鋼に
対し、鋼のAc変態点以上でかつ950℃以下の温度
で窒化処理を行い、空冷ないしは冷媒にて冷却した後、
特に好ましくは窒化層がオーステナイト化する条件で高
周波焼入れを行うようにしているので、表層部分には窒
素と炭素を含有したオーステナイトを急冷して得られる
窒素+炭素マルテンサイトが形成されている機械構造部
品となり、焼もどし軟化抵抗性や亀裂発生抵抗性がより
一層良好なものとなって、面圧強度(耐ピッチング疲労
特性),曲げ疲労強度ならびにねじり疲労強度等の機械
的特性により一層優れた機械構造部品となる。
According to the method of manufacturing a mechanical structural component having excellent mechanical strength of the present invention, C: 0.35% by weight.
0.65%, Si: 0.03 to 1.50%, Mn: 0.
3 to 1.0%, Cr: 0.1 to 3.0%, and in some cases, Al: 0.01 to 1.5%, V: 0.
05-0.5%, Mo: 1 of 0.05-0.5%
Kind or two or more kinds, similarly, Ni: 0.5 to 2.0%,
Similarly, Ti: 0.005 to 0.05%, Nb: 0.0
1 to 0.10% of 1 type or 2 types, similarly, S: 0.0
2 to 0.40%, Pb: 0.01 to 0.50%, Ca:
0.0003 to 0.010%, Te: 0.005 to 0.
10%, Bi: 0.01 to 0.50% of one or two or more of the steel, and the balance Fe and impurities with respect to steel, at a temperature of Ac 1 transformation point or more and 950 ° C. or less of the steel. After nitriding and cooling with air or refrigerant,
Particularly preferably, induction hardening is carried out under the condition that the nitrided layer becomes austenite. Therefore, nitrogen + carbon martensite obtained by rapidly cooling austenite containing nitrogen and carbon is formed in the surface layer mechanical structure. It becomes a part and has even better resistance to temper softening and cracking, and mechanical properties such as surface pressure strength (pitting fatigue resistance), bending fatigue strength and torsional fatigue strength that are even better. It becomes a structural part.

【0028】[0028]

【実施例】表1および表2に示す化学成分の鋼を溶製し
たのち直径32mmに鍛造し、焼ならしを施したあと、
図1に示すように、D=26mm,D=22mm,
=28mm,L=51mm,L=130mmの
ローラーピッチング試験片1を作製すると共に、図2に
示すように、D=8mm,D=15mm,L=5
0mm,L=80mm,L=210mm,R=30
mmの小野式回転曲げ試験片2を作製し、これを供試材
とした。
EXAMPLES Steels having the chemical compositions shown in Tables 1 and 2 were melted, forged to a diameter of 32 mm, and after normalizing,
As shown in FIG. 1, D 1 = 26 mm, D 2 = 22 mm,
A roller pitching test piece 1 having L 1 = 28 mm, L 2 = 51 mm, L 3 = 130 mm was prepared, and as shown in FIG. 2, D 5 = 8 mm, D 6 = 15 mm, L 5 = 5.
0 mm, L 6 = 80 mm, L 7 = 210 mm, R = 30
An Ono-type rotary bending test piece 2 having a size of mm was produced and used as a test material.

【0029】そして、比較例d−4を除く各供試材に対
して表5さらにローラピッチング試験片1については表
3および表4の「ガス窒化温度」,「処理時間」に示す
条件ならびに発明例D,比較例d−3の小野式回転曲げ
試験片2については図3に示すように450〜1000
℃×2時間の条件によるガス窒化処理を行うことによっ
て、ローラーピッチング試験片1については表3および
表4の「窒化後の表面硬さ」,「窒化層深さ」の各欄に
示す値をもつ窒化層を得た。
For each of the test materials except Comparative Example d-4, Table 5 and for the roller pitching test piece 1, the conditions and inventions shown in "Gas nitriding temperature" and "Treatment time" in Tables 3 and 4 Regarding the Ono-type rotary bending test piece 2 of Example D and Comparative Example d-3, as shown in FIG.
By performing the gas nitriding treatment under the condition of ° C x 2 hours, the values shown in the columns of "surface hardness after nitriding" and "nitriding layer depth" of Table 3 and Table 4 were obtained for the roller pitching test piece 1. A nitriding layer was obtained.

【0030】続いて、窒化処理後の各供試材のうち、比
較例d−3を除く各供試材に対して表6(ローラーピッ
チング試験片1と小野式回転曲げ試験片2とで高周波焼
入れ条件を異ならせている。)に示す条件により高周波
焼入れを行うことによって、ローラーピッチング試験片
1については表3および表4の「高周波焼入れ後の表面
硬さ」,「高周波焼入れ後の窒化深さ」,「高周波焼入
れ後の硬化層深さ」の各欄に示す値をもつ硬化層を得る
と共に、小野式回転曲げ試験片2については図3に示す
高周波焼入れ後の窒化深さをもつ硬化層を得た。
Subsequently, among the test materials after the nitriding treatment, with respect to the test materials other than Comparative Example d-3, Table 6 (high frequency was used for the roller pitting test piece 1 and the Ono-type rotary bending test piece 2). The induction hardening is performed under the conditions shown in (4), and the roller pitching test piece 1 has a "surface hardness after induction hardening" and a "nitriding depth after induction hardening" in Table 3 and Table 4 by performing induction hardening. "," And "hardened layer depth after induction hardening" are obtained, and the Ono-type rotary bending test piece 2 is hardened with the nitriding depth after induction hardening shown in FIG. Layers were obtained.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】次に、各ローラーピッチング試験片1に対
して、 小ローラー(試験片):直径26mm 大ローラー(相手材):直径130mm 滑り率 :40% 回転数 :1580rpm の条件でローラーピッチング試験を行ったところ、同じ
く、表3および表4の「ピッチング寿命」の欄に示す結
果が得られた。
Next, for each roller pitching test piece 1, a roller pitching test was carried out under the conditions of small roller (test piece): diameter 26 mm, large roller (counterpart material): diameter 130 mm, slip ratio: 40%, rotation speed: 1580 rpm. When carried out, similarly, the results shown in the columns of "pitching life" in Tables 3 and 4 were obtained.

【0038】この結果、本発明例A〜Lではいずれもピ
ッチング寿命が10回を超えており、優れた面圧疲労
強度(耐ピッチング疲労強度)を有するものとなってい
た。
As a result, in each of Examples A to L of the present invention, the pitching life was more than 10 7 times, and had excellent surface pressure fatigue strength (pitting fatigue strength).

【0039】これに対して、窒化処理時間が低い比較例
d−1の場合、窒化処理温度が高い比較例d−2の場
合、窒化処理のみ行い高周波焼入れ処理を行わない比較
例d−3の場合、窒化処理を行わず高周波焼入れ処理の
みを行う比較例d−4の場合は、いずれもピッチング寿
命が短く、面圧疲労強度が低いものとなっていた。
On the other hand, in the case of Comparative Example d-1 in which the nitriding treatment time is short, in the case of Comparative Example d-2 in which the nitriding treatment temperature is high, in Comparative Example d-3 in which only the nitriding treatment is performed and the induction hardening treatment is not performed. In the case of Comparative Example d-4 in which the nitriding treatment was not performed and only the induction hardening treatment was performed, the pitching life was short and the contact pressure fatigue strength was low.

【0040】他方、本発明例Dおよび比較例d−3,d
−4の鋼種よりなる小野式回転曲げ試験片2に対して、
回転数:3500rpmの条件で小野式回転曲げ疲労試
験を行ったところ、図4に示すS−N線図が得られた。
On the other hand, the invention sample D and the comparative samples d-3 and d
For Ono-type rotary bending test piece 2 made of -4 steel type,
When the Ono-type rotary bending fatigue test was performed under the condition of the number of revolutions: 3500 rpm, the SN diagram shown in FIG. 4 was obtained.

【0041】この結果、本発明例Dでは優れた曲げ疲労
強度を有するものとなっていたのに対して、比較例d−
3,d−4の場合は、曲げ疲労強度に劣るものとなって
いた。
As a result, the invention sample D had excellent bending fatigue strength, while the comparative sample d-
In the case of 3 and d-4, the bending fatigue strength was inferior.

【0042】[0042]

【発明の効果】本発明に係わる機械構造部品の製造方法
では、特定成分の鋼に対し鋼のAc変態点以上でかつ
950℃以下の温度で窒化処理を行い、空冷ないしは冷
媒にて冷却した後、高周波焼入れを行うようにしたか
ら、窒素と炭素を含有したオーステナイトを急冷して得
られるマルテンサイトのもつ優れた焼もどし軟化抵抗性
や亀裂発生抵抗性をより一層活用することが可能とな
り、面圧強度(耐ピッチング疲労強度),曲げ疲労強
度,ねじり疲労強度等の機械的特性に優れた機械構造部
品を提供することが可能であるという著しく優れた効果
がもたらされる。
INDUSTRIAL APPLICABILITY In the method for manufacturing a mechanical structural component according to the present invention, a steel having a specific composition is subjected to a nitriding treatment at a temperature not lower than the Ac 1 transformation point of the steel and not higher than 950 ° C. and cooled with air or a refrigerant. After that, since induction hardening is performed, it is possible to further utilize the excellent temper softening resistance and cracking resistance of martensite obtained by rapidly cooling austenite containing nitrogen and carbon, It is possible to provide a mechanical structural component having excellent mechanical properties such as surface pressure strength (pitting fatigue strength), bending fatigue strength, and torsional fatigue strength, which is a remarkably excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】ローラーピッチング試験片の形状を示す説明図
である。
FIG. 1 is an explanatory view showing the shape of a roller pitching test piece.

【図2】小野式回転曲げ試験片の形状を示す説明図であ
る。
FIG. 2 is an explanatory view showing the shape of an Ono-type rotary bending test piece.

【図3】ガス窒化処理温度による高周波焼入れ後の窒化
深さへの影響を例示するグラフである。
FIG. 3 is a graph illustrating the influence of gas nitriding temperature on the nitriding depth after induction hardening.

【図4】発明例D鋼,比較例d−3,d−4鋼を用いた
小野式回転曲げ疲労試験片のS−N線図を例示するグラ
フである。
FIG. 4 is a graph illustrating an SN diagram of an Ono-type rotary bending fatigue test piece using Inventive Example D steel and Comparative Examples d-3 and d-4 steel.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.35〜0.65%、
Si:0.03〜1.50%、Mn:0.3〜1.0
%、Cr:0.1〜3.0%、残部Feおよび不純物よ
りなる鋼に対し、鋼のAc変態点以上でかつ950℃
以下の温度で窒化処理を行い、空冷ないしは冷媒にて冷
却した後、高周波焼入れを行うことを特徴とする機械的
強度に優れた機械構造部品の製造方法。
1. C: 0.35 to 0.65% by weight,
Si: 0.03 to 1.50%, Mn: 0.3 to 1.0
%, Cr: 0.1 to 3.0%, balance Fe and impurities with respect to steel, the Ac 1 transformation point of the steel or higher and 950 ° C.
A method for producing a mechanical structural component having excellent mechanical strength, which comprises performing nitriding treatment at the following temperature, cooling with air or a refrigerant, and then performing induction hardening.
【請求項2】 鋼中に、Al:0.01〜1.5%,
V:0.05〜0.5%,Mo:0.05〜0.5%の
うちの1種または2種以上を含有する請求項1に記載の
機械的強度に優れた機械構造部品の製造方法。
2. In the steel, Al: 0.01 to 1.5%,
The production of a mechanical structural component excellent in mechanical strength according to claim 1, which contains one or more of V: 0.05 to 0.5% and Mo: 0.05 to 0.5%. Method.
【請求項3】 鋼中に、Ni:0.5〜2.0%を含有
する請求項1または2に記載の機械的強度に優れた機械
構造部品の製造方法。
3. The method for producing a mechanical structural component excellent in mechanical strength according to claim 1, wherein the steel contains Ni: 0.5 to 2.0%.
【請求項4】 鋼中に、Ti:0.005〜0.05
%,Nb:0.01〜0.10%のうちの1種または2
種を含有する請求項1ないし3のいずれかに記載の機械
的強度に優れた機械構造部品の製造方法。
4. Ti: 0.005 to 0.05 in steel
%, Nb: 1 to 2 out of 0.01 to 0.10% or 2
The method for producing a mechanical structural component having excellent mechanical strength according to claim 1, further comprising a seed.
【請求項5】 鋼中に、S:0.02〜0.40%,P
b:0.01〜0.50%,Ca:0.0003〜0.
010%,Te:0.005〜0.10%,Bi:0.
01〜0.50%のうちの1種または2種以上を含有す
る請求項1ないし4のいずれかに記載の機械的強度に優
れた機械構造部品の製造方法。
5. S: 0.02 to 0.40%, P in steel
b: 0.01 to 0.50%, Ca: 0.0003 to 0.
010%, Te: 0.005 to 0.10%, Bi: 0.
The method for producing a mechanical structural component excellent in mechanical strength according to any one of claims 1 to 4, containing one or more of 01 to 0.50%.
JP23369393A 1993-09-20 1993-09-20 Manufacturing method of mechanical structural parts with excellent mechanical strength Expired - Fee Related JP3381738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23369393A JP3381738B2 (en) 1993-09-20 1993-09-20 Manufacturing method of mechanical structural parts with excellent mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23369393A JP3381738B2 (en) 1993-09-20 1993-09-20 Manufacturing method of mechanical structural parts with excellent mechanical strength

Publications (2)

Publication Number Publication Date
JPH0790363A true JPH0790363A (en) 1995-04-04
JP3381738B2 JP3381738B2 (en) 2003-03-04

Family

ID=16959071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23369393A Expired - Fee Related JP3381738B2 (en) 1993-09-20 1993-09-20 Manufacturing method of mechanical structural parts with excellent mechanical strength

Country Status (1)

Country Link
JP (1) JP3381738B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034389A (en) * 2000-07-28 2002-02-05 Mitsubishi Steel Mfg Co Ltd Tool for collecting fishes and shellfishes
US6562151B2 (en) * 2000-06-22 2003-05-13 Nsk Ltd. Rolling shaft made by high-frequency quenching
JP2007038250A (en) * 2005-08-02 2007-02-15 Honda Motor Co Ltd Die for forging and producing method therefor
WO2010070958A1 (en) 2008-12-19 2010-06-24 新日本製鐵株式会社 Hardfacing steel for machine structure, and steel component for machine structure
WO2010082685A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
JP2010280929A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Steel material to be used for application subjected to nitriding treatment and induction hardening treatment
WO2012056785A1 (en) 2010-10-27 2012-05-03 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
JP2015229780A (en) * 2014-06-03 2015-12-21 山陽特殊製鋼株式会社 Steel for nitriding excellent in nitriding property
JP2017171951A (en) * 2016-03-18 2017-09-28 新日鐵住金株式会社 Steel component and production method thereof
JP2019173047A (en) * 2018-03-26 2019-10-10 日鉄日新製鋼株式会社 Steel for nitriding quenching treatment, component for nitriding quenching, and manufacturing method therefor
JP2022028931A (en) * 2018-03-26 2022-02-16 日本製鉄株式会社 Steel for nitriding-quenching, nitriding-quenched component and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208940A (en) 2007-02-27 2008-09-11 Ntn Corp Constant velocity universal joint component and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562151B2 (en) * 2000-06-22 2003-05-13 Nsk Ltd. Rolling shaft made by high-frequency quenching
JP2002034389A (en) * 2000-07-28 2002-02-05 Mitsubishi Steel Mfg Co Ltd Tool for collecting fishes and shellfishes
JP2007038250A (en) * 2005-08-02 2007-02-15 Honda Motor Co Ltd Die for forging and producing method therefor
WO2010070958A1 (en) 2008-12-19 2010-06-24 新日本製鐵株式会社 Hardfacing steel for machine structure, and steel component for machine structure
US9156231B2 (en) 2008-12-19 2015-10-13 Nippon Steel & Sumitomo Metal Corporation Steel for machine structure use for surface hardening and steel part for machine structure use
US9777343B2 (en) 2009-01-16 2017-10-03 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use and part for machine structural use
WO2010082685A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
JP4800444B2 (en) * 2009-01-16 2011-10-26 新日本製鐵株式会社 Steel for machine structure for surface hardening and parts for machine structure
US20110274578A1 (en) * 2009-01-16 2011-11-10 Atsushi Mizuno Steel for surface hardening for machine structural use and part for machine structural use
KR101332933B1 (en) * 2009-01-16 2013-11-26 신닛테츠스미킨 카부시키카이샤 Steel for surface hardening for machine structural use, and component for machine structural use
US8802005B2 (en) * 2009-01-16 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use and part for machine structural use
JP2010280929A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Steel material to be used for application subjected to nitriding treatment and induction hardening treatment
WO2012056785A1 (en) 2010-10-27 2012-05-03 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
JP2015229780A (en) * 2014-06-03 2015-12-21 山陽特殊製鋼株式会社 Steel for nitriding excellent in nitriding property
JP2017171951A (en) * 2016-03-18 2017-09-28 新日鐵住金株式会社 Steel component and production method thereof
JP2019173047A (en) * 2018-03-26 2019-10-10 日鉄日新製鋼株式会社 Steel for nitriding quenching treatment, component for nitriding quenching, and manufacturing method therefor
JP2022028931A (en) * 2018-03-26 2022-02-16 日本製鉄株式会社 Steel for nitriding-quenching, nitriding-quenched component and method for manufacturing the same

Also Published As

Publication number Publication date
JP3381738B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
JP5872863B2 (en) Gear having excellent pitting resistance and method for producing the same
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP3405468B2 (en) Manufacturing method of mechanical structural parts
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JP6225965B2 (en) Soft nitriding steel and parts, and methods for producing them
JP4970811B2 (en) High surface pressure parts and manufacturing method thereof
JP4291941B2 (en) Soft nitriding steel with excellent bending fatigue strength
JP3184411B2 (en) Low distortion type carburized steel for gears
JP6477904B2 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JPH0971841A (en) Steel for soft-nitriding
JP2005325398A (en) High-strength gear and manufacturing method therefor
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JPH07188895A (en) Manufacture of parts for machine structure use
JP3267164B2 (en) Method for producing steel for nitriding and nitrided steel products
JPH07157842A (en) Steel for soft-nitriding
US6391124B1 (en) Non-heat treated, soft-nitrided steel parts
JPH06346142A (en) Production of machine structural parts excellent in bearing fatigue strength
JP3883782B2 (en) Case-hardened steel with excellent pitting resistance
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JP2004300550A (en) High-strength case hardening steel
JPH05279794A (en) Soft-nitriding steel
JP2002194492A (en) High hardness parts
JPH09111408A (en) Low strain type carburized and quenched steel stock for gear

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091220

LAPS Cancellation because of no payment of annual fees