JPH0790272B2 - Method for manufacturing U-shaped tube made of stainless steel - Google Patents

Method for manufacturing U-shaped tube made of stainless steel

Info

Publication number
JPH0790272B2
JPH0790272B2 JP62143546A JP14354687A JPH0790272B2 JP H0790272 B2 JPH0790272 B2 JP H0790272B2 JP 62143546 A JP62143546 A JP 62143546A JP 14354687 A JP14354687 A JP 14354687A JP H0790272 B2 JPH0790272 B2 JP H0790272B2
Authority
JP
Japan
Prior art keywords
polishing
tube
surface roughness
pipe
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62143546A
Other languages
Japanese (ja)
Other versions
JPS63309325A (en
Inventor
一 安保
勝美 高橋
勝 久世
Original Assignee
日本酸素株式会社
株式会社フィッテング久世
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社, 株式会社フィッテング久世 filed Critical 日本酸素株式会社
Priority to JP62143546A priority Critical patent/JPH0790272B2/en
Publication of JPS63309325A publication Critical patent/JPS63309325A/en
Publication of JPH0790272B2 publication Critical patent/JPH0790272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造工業分野における高純度ガスの供給
機器に使用されるステンレススチール製U字管の製造方
法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a stainless steel U-shaped tube used for a high-purity gas supply device in the semiconductor manufacturing industry.

〔従来の技術〕[Conventional technology]

近年半導体製造工業の急速な発達に伴ない、この分野に
使用される高純度ガスの純度も非常に厳しい値が要求さ
れる様になって来ている。例えば高純度窒素中に含まれ
るダストパーテイクルの数は0.1μm以下程度のダスト
が1cu・ft中1個以下であることが半導体製造工場向高
純度窒素ガスの仕様の項目の一つとなっている。従って
この高純度窒素ガスの製造装置,供給機器にはあらゆる
個所にこの様なダストの侵入する余地の無い様にする対
策が施されている。
With the rapid development of the semiconductor manufacturing industry in recent years, the purity of the high-purity gas used in this field is required to be extremely strict. For example, one of the specifications of high-purity nitrogen gas for semiconductor manufacturing factories is that the number of dust particles contained in high-purity nitrogen is less than 0.1 μm and less than 1 in 1 cu · ft. . Therefore, this high-purity nitrogen gas production apparatus and supply equipment are provided with measures to prevent such dust from entering everywhere.

本発明も上記装置、特に蒸発器などに用いられる内面を
電解研磨により仕上げたU字管に関するものである。
The present invention also relates to the above-mentioned apparatus, and more particularly to a U-shaped tube whose inner surface used for an evaporator or the like is finished by electrolytic polishing.

高純度液化窒素を気化して高純度窒素ガスとする蒸発器
の蒸発管を連結するU字管は従来種々の製法により製造
されていたが、いずれもその内面の表面粗さが数μm乃
至数10μmであり、最近1μm以下という仕様を満足す
る表面粗さを有するU字管を製造するためには成型加工
後機械研磨または流動研磨を行った上に内面を電解研磨
しなければならず、繁雑な工程を必要としコスト高の要
因となっていた。例えば、従来のJIS規格により定めら
れた寸法の180°エルボ(直管部のないU字管)で内面
の最大表面粗さ1μm以下のもの(第1図参照)を製造
するには、次の様な工程により行っている。熱間押出継
目無ステンレススチールの素管を素材とし、これを所定
の治具および被覆剤,潤滑剤を使用して冷間引抜加工を
行い脱脂,酸洗等の処理を行って得られた段階で内面の
最大表面粗さは4.5μmであるが、これを熱処理加工に
よりU字型に成型し、次いで内面を機械研磨によるみか
けの最大表面粗さを1μm程度迄研磨した後、電解研磨
を行って最大表面粗さ1μm程度の180°エルボ1(U
字管)(第1図々示)が得られる。
U-shaped pipes that connect the evaporation pipes of evaporators that vaporize high-purity liquefied nitrogen into high-purity nitrogen gas have been manufactured by various conventional manufacturing methods, but the inner surface roughness of each of them is several μm to several μm. In order to manufacture a U-shaped tube having a surface roughness of 10 μm, which recently satisfies the specification of 1 μm or less, it is necessary to perform mechanical polishing or fluidized polishing after molding and then electrolytically polish the inner surface, which is complicated. It requires various processes and is a factor of high cost. For example, in order to manufacture an inner surface with a maximum surface roughness of 1 μm or less (see Fig. 1) using a 180 ° elbow (a U-shaped pipe without a straight pipe section) of the dimensions specified by the conventional JIS standard, It is performed by such a process. Hot-extrusion Seamless stainless steel tube made of raw material, cold-drawn using a specified jig, coating agent, and lubricant, and subjected to degreasing, pickling, etc. The maximum surface roughness of the inner surface is 4.5 μm, but this is molded into a U shape by heat treatment, and then the inner surface is mechanically polished to an apparent maximum surface roughness of about 1 μm, and then electrolytically polished. 180 ° elbow 1 (U with maximum surface roughness of 1 μm)
Character pipe) (shown in FIG. 1) is obtained.

しかし前記の如く最近は装置製作後の表面粗さにも厳し
い値が要求される様になっている。例えば第2図の蒸発
管2とU字管1との溶接部3は従来手溶接に依っていた
ため溶接裏ビードが可成り粗く生成しダストパーテイク
ルの付着床を提供する結果になっている。従って溶接部
の裏ビードの表面粗さが最小限になる様にパイプ専用溶
接機によって上記U字管1と蒸発管2の溶接を行えば良
いが、そのためには直管部の長いU字管4(JIS規格で
は返しベント)(第3図々示)を用いなければならな
い。そこで直管部を長くし内面を電解研磨したU字管を
製造しこれを使用することにより最終製品装置の内面の
溶接裏ビードを最小限にする試みがなされた。然るに上
記直管部の長いU字管を製造する場合前記製造工程中の
機械研磨の作業を行うことが困難である。即ち、機械研
磨は砥石または布を研磨材とする研磨機によりU字管内
面を研磨するのであるが、曲げR部の内側部は研磨が出
来ない(第4図,第5図非斜線部)。更に確実な研磨を
行なうには目視による確認が重要なチェックポイントで
あるが、上記同様曲げR部の内側部は確認が不可能であ
り、直管部が長くなる程その度合いが大きくなる。
However, as described above, recently, strict values are required for the surface roughness after the device is manufactured. For example, since the welding portion 3 between the evaporation pipe 2 and the U-shaped pipe 1 shown in FIG. 2 has conventionally been made by manual welding, a weld back bead is formed to be considerably rough, resulting in providing a bed for adhering dust particles. Therefore, the U-shaped pipe 1 and the evaporation pipe 2 may be welded by a dedicated pipe welding machine so that the surface roughness of the back bead of the welded portion is minimized. 4 (return vent in JIS standard) (shown in Fig. 3) must be used. Therefore, an attempt was made to minimize the weld back bead on the inner surface of the final product device by manufacturing a U-shaped tube having a long straight tube portion and electrolytically polished the inner surface and using it. However, when manufacturing a U-shaped pipe having a long straight pipe portion, it is difficult to perform mechanical polishing work in the manufacturing process. That is, the mechanical polishing is to polish the inner surface of the U-shaped tube by a polishing machine using a grindstone or cloth as an abrasive, but the inner portion of the bent R portion cannot be polished (non-shaded portions in FIGS. 4 and 5). . Although visual confirmation is an important check point for more reliable polishing, the inner portion of the bent R portion cannot be confirmed as described above, and the degree becomes larger as the straight pipe portion becomes longer.

また、機械研磨の代りに流動研磨による方法もある。流
動研磨は粘弾性の高分子媒体に砥粒をつつみ込んだ研磨
材を被加工物即ちU字管の中を何回か通すことによりそ
の表面を研磨する方法である。しかし通常流動研磨を行
う場合はその下地研磨として機械研磨によりある程度表
面粗度を上げておく必要がある。
There is also a method of fluidized polishing instead of mechanical polishing. Fluidized polishing is a method of polishing the surface of a work piece, that is, a U-shaped tube, by passing an abrasive material in which abrasive grains are encased in a viscoelastic polymer medium several times. However, when performing normal fluidized polishing, it is necessary to raise the surface roughness to some extent by mechanical polishing as the underlying polishing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記の如く直管部の長いU字管の管内面の表面粗度を上
げるため機械研磨を行うと、曲管部(R部)の内側部は
研磨が困難または不可能であり、更にこの部分は表面粗
さの確認が困難である。
As described above, when mechanical polishing is performed to increase the surface roughness of the inner surface of a U-shaped tube having a long straight section, it is difficult or impossible to polish the inner section of the curved section (R section). It is difficult to confirm the surface roughness.

また流動研磨による研磨は機械研磨による研磨の仕上げ
として行うのが通常であり、従って機械研磨による研磨
が不確実であれば意味が無い。流動研磨のみにより所定
の表面粗さを得るには粒度を調整した何種類もの研磨材
を準備してこれらを何度も通して研磨作業を行う必要が
あり、その砥粒の交換等で生産性が低くなり相当なコス
ト高になり実用上は困難がある。
Further, the polishing by the fluidized polishing is usually performed as the finishing of the polishing by the mechanical polishing, so that it is meaningless if the polishing by the mechanical polishing is uncertain. In order to obtain the desired surface roughness only by fluidized polishing, it is necessary to prepare several kinds of abrasives with adjusted grain size and pass these abrasives over and over to perform polishing work. Is low and the cost is considerably high, which is difficult for practical use.

従ってステンレススチール製の直管部の長いU字管の管
内面の最大表面粗さを1μm以下に仕上げる方法とし
て、機械研磨あるいは流動研磨による方法はいづれも実
用上は不都合があり他の方法の開発が求められていた。
Therefore, as a method of finishing the maximum surface roughness of the inner surface of a U-shaped tube with a long straight tube made of stainless steel to 1 μm or less, either mechanical polishing or fluidized polishing is inconvenient in practice, and other methods have been developed. Was required.

本発明は上記の様な直管部が長く且つ内面の電解研磨を
行うU字管の製造工程中作業が繁雑な機械研磨あるいは
流動研磨工程を無くし、内面の表面粗さが極めて小さい
値のステンレススチール製U字管を製造することを目的
とするものである。
The present invention eliminates the mechanical polishing or fluidized polishing step which is complicated in the manufacturing process of the U-shaped tube for performing the electrolytic polishing of the inner surface with the long straight tube portion as described above, and the stainless steel of which the surface roughness of the inner surface is extremely small. The purpose is to manufacture a steel U-tube.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はステンレススチール製素管を引抜加工して所定
の寸法にしたステンレススチール製管を光輝焼鈍する工
程を複数回くり返した後、曲げ加工を行なってU字型と
し内面を電解研磨して管内壁の最大表面粗さを0.3μm
乃至0.7μm程度とすることを特徴とするステンレスス
チール製U字管の製造方法である。
The present invention repeats the step of brightly annealing a stainless steel tube having a predetermined size by drawing a stainless steel raw tube, and then bending it to make a U-shape and electrolytically polishing the inner surface to form the inside of the tube. Maximum wall roughness of 0.3 μm
It is a method for manufacturing a U-shaped tube made of stainless steel, characterized in that the thickness is about 0.7 μm.

〔作用〕[Action]

直管部が長く且つ内面の電解研磨を行うU字管の製造工
程中、作業が繁雑でコスト高の要因となる機械研磨ある
いは流動研磨工程を無くし、引抜加工工程の残留応力を
消去する光輝焼鈍を行い、電解研磨を行うだけで管内面
の最大表面粗さを0.7μm以下0.3μm程度迄到達させる
ことが出来る。
Bright annealing that eliminates the residual stress in the drawing process by eliminating the mechanical polishing or fluidized polishing process, which is complicated and costly during the manufacturing process of the U-shaped tube that has a long straight pipe and electrolytically polishes the inner surface. Then, the maximum surface roughness of the inner surface of the tube can be reached to 0.7 μm or less to about 0.3 μm simply by performing electrolytic polishing.

〔実施例〕〔Example〕

実施例1 熱間押出継目無ステンレススチールの素管を素材とし、
これを所定の治具および被覆剤,潤滑剤を使用して冷間
引抜加工を行ない脱脂,酸洗等の処理を行った後、切断
・面取を行って所定寸法の原管を得る。この時の寸法取
りは製品仕様により適宜きめるか、直管部の長さを管径
の0.5〜5倍程度とする。該工程終了時の管内面の最大
表面粗さは4.5μm程度である。次いでこの原管を光輝
焼鈍を行って、冷間引抜工程で発生した残留応力を消去
する。この光輝焼鈍処理の条件は上記の原管を焼鈍炉に
入れ、所定組成,濃度の焼鈍ガス雰囲気中で1100℃±30
℃の温度条件で4分間保持した後、自然放冷による空冷
で冷却する。この冷間引抜及び光輝焼鈍の工程を複数回
繰り返す。次いで冷間曲げ加工によりU字型に成型す
る。この時の内面の最大表面粗さは約6μm程度であ
る。この成型後のU字管を電解研磨処理して内面仕上げ
を行うことにより管内面の最大表面粗さ0.7μm程度の
U字管が得られる。電解研磨処理は次の如き工程で行な
う。
Example 1 A hot-extruded seamless stainless steel element tube was used as a material,
This is subjected to cold drawing using a predetermined jig, coating agent and lubricant, degreasing, pickling, etc., followed by cutting and chamfering to obtain a raw pipe of a predetermined size. At this time, the size can be appropriately determined according to the product specifications, or the length of the straight pipe portion is set to about 0.5 to 5 times the pipe diameter. The maximum surface roughness of the inner surface of the pipe at the end of the process is about 4.5 μm. Then, this raw tube is subjected to bright annealing to eliminate the residual stress generated in the cold drawing step. The condition of this bright annealing treatment is to put the above-mentioned raw tube in an annealing furnace, and set it at 1100 ° C ± 30 in an annealing gas atmosphere of a predetermined composition and concentration.
After keeping the temperature condition of ℃ for 4 minutes, it is cooled by air cooling by natural cooling. The steps of cold drawing and bright annealing are repeated a plurality of times. Then, it is formed into a U shape by cold bending. The maximum surface roughness of the inner surface at this time is about 6 μm. By electropolishing the U-shaped tube after molding to finish the inner surface, a U-shaped tube having a maximum inner surface roughness of about 0.7 μm can be obtained. The electrolytic polishing process is performed in the following steps.

処理を行なう複数個のU字管を開口部を上にしてセット
し、該U字管中に極棒の偏心が生じない様に電極棒をセ
ッテイングする。開口部に送液管を接続し、電解液槽よ
り送液ポンプで送液循環させる。電圧・電流を所定の値
にセットし一定時間通電することにより電解研磨処理を
行う。この処理工程中は研磨液の温度,ガス発生の有無
等を注意深くチェックする。一定時間電解研磨処理を行
った後、電解液を抜きとり洗滌水を通して洗浄を行う。
この工程を終了したU字管の最大内面表面粗さは0.7μ
m以下になっているが、これを全数目視により、また抜
取検査で表面粗さ計により最大表面粗さをチェックして
所定の表面粗さが得られているもののみを製品とする。
A plurality of U-shaped tubes to be treated are set with their openings facing upward, and the electrode rods are set so that eccentricity of the pole rod does not occur in the U-shaped tubes. A liquid sending pipe is connected to the opening, and liquid is circulated from the electrolytic solution tank by a liquid sending pump. Electrolytic polishing is performed by setting voltage and current to predetermined values and energizing for a certain period of time. During this process, carefully check the temperature of the polishing liquid and whether gas is generated. After performing electrolytic polishing treatment for a certain period of time, the electrolytic solution is drained and rinsed with washing water.
The maximum inner surface roughness of the U-shaped tube after this process is 0.7μ
Although it is less than or equal to m, all the products are visually inspected, and the maximum surface roughness is checked by a surface roughness meter by a sampling inspection.

実施例2 熱間または冷間押出継目無ステンレススチールの素管を
素材とし、これを冷間引抜加工を行って脱脂,酸洗等の
処理を行い、所定寸法に切断して原管とする。これを常
法に従って大気焼鈍を行い、管内面の最大表面粗さ6μ
mが得られる。次いで再び冷間引抜を行い光輝焼鈍を行
う。この冷間引抜および光輝焼鈍工程を複数回繰り返し
行う。繰り返し回数の多い程、得られる管内面の最大表
面粗さの値は向上する。即ちこの回数を多くすることに
より光輝焼鈍後の最大表面粗さを3μm程度迄向上させ
得る。次いでU字型に曲げ加工を行うが、この時の最大
表面粗さは約4.5μmである。この成型後のU字管を電
解研磨処理して内面の最大表面粗さ0.3μm程度のU字
管が得られる。なお上記最初の工程において大気焼鈍を
行うのは、大気焼鈍の方が光輝焼鈍に比して特に組成を
調整した雰囲気ガスを不要とするため材料および手間両
面において処理操作が容易になり、処理費用の低減にな
るからである。本実施例では前記冷間引抜加工および大
気焼鈍工程は一回であるがこの工程を繰り返し行っても
良いことは勿論である。その場合は冷間引抜、光輝焼鈍
の工程の繰り返し回数は少くて良い。
Example 2 A hot or cold extruded seamless stainless steel element tube is used as a raw material, which is subjected to cold drawing processing, degreasing, pickling, etc., and cut into a predetermined size to obtain a raw tube. This is annealed in the air according to the usual method, and the maximum surface roughness of the inner surface of the pipe is 6μ.
m is obtained. Then, cold drawing is performed again and bright annealing is performed. The cold drawing and bright annealing steps are repeated a plurality of times. The greater the number of repetitions, the higher the value of the maximum surface roughness of the obtained inner surface of the pipe. That is, by increasing the number of times, the maximum surface roughness after bright annealing can be improved to about 3 μm. Next, a U-shape is bent, and the maximum surface roughness at this time is about 4.5 μm. The U-shaped tube after molding is subjected to electrolytic polishing treatment to obtain a U-shaped tube having a maximum inner surface roughness of about 0.3 μm. It should be noted that performing the atmospheric annealing in the first step is that the atmospheric annealing does not require an atmospheric gas having a particularly adjusted composition as compared to the bright annealing, so that the processing operation becomes easy in terms of both material and labor, and the processing cost This is because In this embodiment, the cold drawing process and the atmospheric annealing process are performed once, but it goes without saying that these processes may be repeated. In that case, the number of times of repeating the steps of cold drawing and bright annealing may be small.

〔発明の効果〕〔The invention's effect〕

本発明は以上の如く素管を引抜加工して所定の寸法にし
たステンレススチール製管を光輝焼鈍した後、曲げ加工
を行ってU字型とし、内面を電解研磨して管内壁の最大
表面粗さを0.7μm以下とすることを特徴とするステン
レススチール製U字管の製造方法であり、これにより管
内面の表面粗さを極めて小さい値にするために必要であ
った繁雑な機械研磨あるいは流動研磨の工程を無くし代
りに簡単な光輝焼鈍処理を行うことにより引抜加工工程
の次に必要な残留応力の消去と同時に管内面の粗面に電
解研磨の前処理が行われ、その後の電解研磨工程で最大
表面粗さ0.7μm以下が簡単に得られる様になった。従
って製造コストも従来の内面電解研磨を行ったステンレ
ススチールU字管に比して充分低減され、且つ機械研磨
あるいは流動研磨用の設備費も新設の場合は不要となっ
た。
According to the present invention, a stainless steel pipe having a predetermined size drawn as described above is bright-annealed, and then bent to a U shape, and the inner surface is electrolytically polished to obtain the maximum surface roughness of the inner wall of the pipe. Is 0.7 μm or less, which is a method for manufacturing a U-shaped pipe made of stainless steel, which requires complicated mechanical polishing or flow required to make the surface roughness of the inner surface of the pipe extremely small. By eliminating the polishing process and performing a simple bright annealing process, the residual stress required after the drawing process is eliminated and at the same time the rough surface of the inner surface of the pipe is pre-processed for electrolytic polishing. It became possible to easily obtain a maximum surface roughness of 0.7 μm or less. Therefore, the manufacturing cost is sufficiently reduced as compared with the conventional stainless steel U-shaped tube subjected to the inner surface electrolytic polishing, and the equipment cost for mechanical polishing or fluidized polishing becomes unnecessary in the case of new installation.

【図面の簡単な説明】[Brief description of drawings]

第1図は直管部のないU字管の正面図、第2図は第1図
に示すU字管を蒸発管に接続した状態を示す正面図、第
3図は直管部を有するU字管の正面図、第4図は第1図
に示すU字管の管内の機械研磨の状態を説明するための
図、第5図は第3図に示すU字管の管内の機械研磨の状
態を説明するための図である。 1,4……U字管、2……蒸発管、3……溶接部
FIG. 1 is a front view of a U-shaped pipe without a straight pipe portion, FIG. 2 is a front view showing a state in which the U-shaped pipe shown in FIG. 1 is connected to an evaporation pipe, and FIG. 3 is a U having a straight pipe portion. FIG. 4 is a front view of the U-shaped pipe, FIG. 4 is a view for explaining the state of mechanical polishing in the U-shaped pipe shown in FIG. 1, and FIG. 5 is a mechanical polishing state in the U-shaped pipe shown in FIG. It is a figure for explaining a state. 1,4 …… U-tube, 2 …… Evaporation pipe, 3 …… Welded part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−7085(JP,A) 特開 昭61−257420(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-50-7085 (JP, A) JP-A-61-257420 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ステンレススチール製素管を引抜加工して
所定の寸法にし光輝焼鈍を行う工程を複数回繰り返した
後、曲げ加工を行ってU字型とし、管内面を電解研磨に
より仕上げて、管内面粗さを0.7μm以下にすることを
特徴とするステンレススチール製U字管の製造方法。
1. A step of drawing a stainless steel raw tube to a predetermined size and performing bright annealing is repeated a plurality of times, then bending is performed to make a U-shape, and the inner surface of the tube is finished by electrolytic polishing. A method for manufacturing a U-shaped tube made of stainless steel, characterized in that the inner surface roughness of the tube is 0.7 μm or less.
JP62143546A 1987-06-09 1987-06-09 Method for manufacturing U-shaped tube made of stainless steel Expired - Lifetime JPH0790272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143546A JPH0790272B2 (en) 1987-06-09 1987-06-09 Method for manufacturing U-shaped tube made of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143546A JPH0790272B2 (en) 1987-06-09 1987-06-09 Method for manufacturing U-shaped tube made of stainless steel

Publications (2)

Publication Number Publication Date
JPS63309325A JPS63309325A (en) 1988-12-16
JPH0790272B2 true JPH0790272B2 (en) 1995-10-04

Family

ID=15341262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143546A Expired - Lifetime JPH0790272B2 (en) 1987-06-09 1987-06-09 Method for manufacturing U-shaped tube made of stainless steel

Country Status (1)

Country Link
JP (1) JPH0790272B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683890A1 (en) * 1991-11-14 1993-05-21 Air Liquide VERY HIGH PURITY NITROGEN DISPENSING INSTALLATION AND METHOD OF IMPLEMENTING IT.
CA2782192C (en) * 2009-12-21 2014-04-22 Sumitomo Metal Industries, Ltd. Blank tube for cold drawing and method for producing the same, and method for producing cold drawn tube
CN110899369A (en) * 2019-12-10 2020-03-24 昆山新莱洁净应用材料股份有限公司 Manufacturing method of elbow
CN111319146B (en) * 2020-04-17 2021-01-05 新沂市赛立科石英制品有限公司 Cutting device is used in processing of U type quartz capsule

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507085A (en) * 1973-05-21 1975-01-24
JPS61257420A (en) * 1985-05-08 1986-11-14 Nippon Steel Corp Production of steel foil having excellent workability and adhesiveness

Also Published As

Publication number Publication date
JPS63309325A (en) 1988-12-16

Similar Documents

Publication Publication Date Title
EP0459909B1 (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
CN110877186B (en) Manufacturing method of large-specification zirconium alloy thin-walled tube and large-specification zirconium alloy thin-walled tube
JPH09254145A (en) Manufacture of wire for wire saw and wire for wire saw
US3666580A (en) Chemical milling method and bath
JPS62149859A (en) Production of beta type titanium alloy wire
JPH0790272B2 (en) Method for manufacturing U-shaped tube made of stainless steel
US3516874A (en) Method of increasing the fatigue life of metal parts
JPH0957329A (en) Manufacture of steel pipe for diesel engine fuel injection pipe
US3803776A (en) Method for treating surfaces of zirconium alloy tubes
US4802930A (en) Air-annealing method for the production of seamless titanium alloy tubing
US3805459A (en) Method of reducing notch sensitivity in tubular products
Koppenaal et al. The effect of prior deformation on the strength and annealing of reverted austenite
JPH0810825A (en) Production of cold drawn wire rod of high carbon chromium bearing steel
CN112813336A (en) Method for processing SUS303 steel for automobile starting system
JP2002275666A (en) Descaling method for stainless steel strip and apparatus therefor
JPS6130217A (en) Manufacture of high-strength high-ductility titanium-alloy wire
CN110202087A (en) High strength steel ball processing technique
JP2705382B2 (en) Pretreatment of pickling of steel pipes for bearings
JPH1017963A (en) Shape memory alloy tube and its production
JPH0526852B2 (en)
JPH0688049B2 (en) Manufacturing method of seamless pipe with excellent inner surface smoothness
JP2623004B2 (en) Diffusion method of multi-alloy plating of steel wire for rubber reinforcement
CN116944252A (en) Two-roller cold rolling large-deformation processing technology for austenitic stainless steel pipe
JPS6372420A (en) Manufacture of beta type titanium alloy wire stock
CN117340037A (en) Method for producing 110 steel grade super dual-phase steel seamless steel tube by cold expansion and cold drawing combined process