JPH0688049B2 - Manufacturing method of seamless pipe with excellent inner surface smoothness - Google Patents

Manufacturing method of seamless pipe with excellent inner surface smoothness

Info

Publication number
JPH0688049B2
JPH0688049B2 JP27933087A JP27933087A JPH0688049B2 JP H0688049 B2 JPH0688049 B2 JP H0688049B2 JP 27933087 A JP27933087 A JP 27933087A JP 27933087 A JP27933087 A JP 27933087A JP H0688049 B2 JPH0688049 B2 JP H0688049B2
Authority
JP
Japan
Prior art keywords
pipe
surface smoothness
cold
seamless pipe
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27933087A
Other languages
Japanese (ja)
Other versions
JPH01122608A (en
Inventor
晃 遠山
雄介 南
武海 山田
広保 滝沢
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP27933087A priority Critical patent/JPH0688049B2/en
Publication of JPH01122608A publication Critical patent/JPH01122608A/en
Publication of JPH0688049B2 publication Critical patent/JPH0688049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造に用いられているクリーンルーム
内の配管、超高真空機器に用いられている配管等、管内
面が超平滑であることを要求される継目無管の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is that the inner surface of a pipe, such as a pipe in a clean room used for semiconductor manufacturing, a pipe used for ultra-high vacuum equipment, is ultra-smooth. The present invention relates to a method for producing a seamless pipe which is required.

〔従来の技術〕[Conventional technology]

半導体製造にクリーンルームが広く用いられている。こ
のクリーンルームの清浄度の要求は、半導体の集積規模
の増大等に対応して最近富に高まる傾向にあり、問題と
なる微粒子(パーテイクル)の大きさも既に0.1μm以
下になつている。特にクリーンルームの超クリーン化の
ポイントは原料ガスをユースポイントまで供給する配管
の内面が高度な平滑性を有する点である。すなわち、配
管の内面に疵があるとパーテイクルが付着していたり、
ガスが停留するデツド・ゾーンとなり、パーテイクル発
生の原因となる。このため従来では、この種の配管には
管内面の平滑度が良好なステンレス製の精密細管が用い
られており、特に半導体関係のクリーンルーム用の配管
についてはRmax≦1μmの内面平滑度を得るため、管内
面は、第3図に示す従来のクリーンルーム用鋼管の製造
工程中内面研磨工程で電解研磨処理が施されている。
Clean rooms are widely used in semiconductor manufacturing. The demand for cleanliness of this clean room tends to increase abundantly in response to an increase in the scale of integration of semiconductors, etc., and the size of the problematic fine particles (particles) has already become 0.1 μm or less. In particular, the point of making the clean room ultra-clean is that the inner surface of the pipe that supplies the raw material gas to the use point has a high degree of smoothness. In other words, if there is a flaw on the inner surface of the pipe, particles will adhere,
It becomes a dead zone where the gas stays, causing particles to form. For this reason, in the past, precision thin tubes made of stainless steel with good smoothness on the inner surface of pipes have been used for this kind of piping, and in particular for semiconductor-related clean room piping, in order to obtain an inner surface smoothness of Rmax ≤ 1 μm. The inner surface of the pipe is electrolytically polished in the inner surface polishing process during the manufacturing process of the conventional steel pipe for clean rooms shown in FIG.

このようなクリーンルーム用鋼管の製造工程中特に仕上
抽伸工程ではプラグ抽伸又はバー抽伸が行なわれている
(そのうち管内面の平滑度を高める場合はバー抽伸が採
用される)が、両抽伸法とも管の軸方向に力がかかる伸
管であり特にバー抽伸の場合は一回の加工率が高くなる
(最大50〜55%)。
During the manufacturing process of such steel pipes for clean rooms, especially in the finish drawing process, plug drawing or bar drawing is performed (bar drawing is used to increase the smoothness of the inner surface of the pipe). In the case of a drawn tube that is subjected to a force in the axial direction of, especially in the case of bar drawing, the processing rate per time is high (up to 50-55%).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

鋼管を抽伸するのに一回の加工率を高くとる場合や、繰
り返し抽伸するのに中間熱処理による軟化が不充分な場
合は、鋼中の非金属介在物と母材との界面に割れを生じ
る。
When a high working rate is used for drawing a steel pipe, or when softening due to intermediate heat treatment is insufficient for drawing repeatedly, cracks occur at the interface between the non-metallic inclusions in the steel and the base metal. .

この場合、最終電解研磨後の管内面表層に存在する非金
属介在物は母材との界面が離れているため、配管施工時
に曲げ加工を行つた際に脱落しパーテイクルの原因とな
る。
In this case, since the non-metallic inclusions existing on the surface layer of the inner surface of the pipe after the final electrolytic polishing are separated from the interface with the base material, they fall off when bending is performed at the time of pipe construction and cause particles.

さらに脱落の有無にかかわらず、非金属介在物の周囲が
ピンホールになり、内部流体が停留するデツド・ゾーン
となる。管内部の非金属介在物周囲にも微小な空洞が生
じるため材料自体の含んでいるガス成分の滞り場にな
る。そのためガス配管系からの放出ガスを除去するため
のガス抜き作業に長時間を要することになる。
In addition, regardless of whether or not it has fallen off, the periphery of the non-metallic inclusion becomes a pinhole, which forms a dead zone in which the internal fluid remains. Since minute cavities also occur around the non-metallic inclusions inside the pipe, they serve as a stagnant place for the gas components contained in the material itself. Therefore, it takes a long time to perform the degassing work for removing the gas released from the gas piping system.

本発明は、従来技術の以上の様な問題を解決するためな
されたもので、上記の割れ発生の原因を追究し、押出素
管から最終製品寸法までの冷間加工の工程において、そ
の加工法に工夫を加えることにより、非金属介在物と母
材との界面に生じる微小な亀裂の発生を防止し、管内面
平滑度がRmax≦1μmとなる継目無管を製造せんとする
ものである。
The present invention has been made in order to solve the above problems of the prior art, and investigates the cause of the above-mentioned cracking, and in the process of cold working from the extruded raw pipe to the final product size, its working method is used. With the addition of a device, it is possible to prevent the generation of minute cracks occurring at the interface between the non-metallic inclusions and the base material, and to manufacture a seamless pipe having a smoothness on the inner surface of the pipe of Rmax ≦ 1 μm.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は、熱間押出し継目無素管に冷間加工を
施し、内面平滑度Rmax≦1μmの継目無管を製造するに
際し、前記素管を一回の減面率が50%以下の圧延法によ
り冷間加工することを基本特徴としている。
Therefore, according to the present invention, a hot-extruded seamless tube is subjected to cold working to produce a seamless tube having an inner surface smoothness Rmax ≦ 1 μm. The basic feature is cold working by the method.

また第2発明は、熱間押出し継目無素管に冷間加工を施
し、内面平滑度Rmax≦1μmの継目無管を製造するに際
し、コールドピルガミルを用いて一回の減面率が50%以
下となる範囲で前記素管を圧延し、更に減面率5〜20%
の抽伸法により冷間加工するものである。
The second invention is that a cold-extruded seamless pipe is subjected to cold working to produce a seamless pipe having an inner surface smoothness of Rmax ≤ 1 μm, and a reduction rate of 50 is obtained by using a cold pilga mill. % To 20% or less and further reduce the area by 5 to 20%
Cold working is carried out by the drawing method.

以下、本発明法を詳細に説明する。Hereinafter, the method of the present invention will be described in detail.

前述の如く、従来の工程(第3図)により製造された精
密鋼管の母材中に存在する非金属介在物と母材との界面
には微小亀裂が生じている。これは押出素管から最終製
品寸法までの冷間加工の工程にて抽伸法を繰り返し用い
ること、若しくは、一回の加工度が20%を超える抽伸を
行うことによる。
As described above, microcracks are generated at the interface between the base material and the non-metallic inclusions present in the base material of the precision steel pipe manufactured by the conventional process (FIG. 3). This is because the drawing method is repeatedly used in the step of cold working from the extruded raw pipe to the final product size, or the drawing is performed at a single working rate of more than 20%.

従つて、押出素管から最終製品寸法までの冷間加工を圧
延法を用いて行うこと、若しくは圧延法に加えて加工度
を制限した抽伸法を組み合せて行うこと、更にはこれら
に内面機械研削法を併用することにより鋼中の非金属介
在物と母材との界面に亀裂が生じない鋼管を製造でき
る。
Therefore, cold working from the extruded raw pipe to the final product size should be carried out by using the rolling method, or by combining the rolling method with the drawing method with a limited working degree, and further by internal mechanical grinding. By using this method together, it is possible to manufacture a steel pipe in which cracks do not occur at the interface between the non-metallic inclusions in the steel and the base material.

本発明による製造方法の工程を第1図に示す。製鋼から
押出素管までの製造工程は従来のままで変更の必要がな
い。押出素管を用いて冷間加工により最終製品寸法まで
製管するが、この場合の冷間加工として第1に冷間圧延
法のみを用いるのである。冷間圧延機として、マンネス
マン式コールドピルガミル(略称CP)とか、ソ連式コー
ルドピルガミル(略称HPT)及びスリーロール圧延ミル
を用いる。これらの冷間圧延法の特徴は圧延加工のため
材料にかかる引張応力が少ないところにある。即ち、冷
間抽伸法においては鋼中の非金属介在物と母材との界面
に引張応力が働くが、加工度を高くとると界面の接合力
を上回る引張応力が働くことにより、非金属介在物と地
鉄との界面に亀裂が生じることになる。これに対し冷間
圧延法ではこの引張応力が充分に少ないので非金属介在
物と母材との界面の亀裂が生じないのである。
The steps of the manufacturing method according to the present invention are shown in FIG. The manufacturing process from steelmaking to extruded raw pipe is the same as before and does not need to be changed. The extruded raw pipe is cold-worked to make the final product, but the cold-working in this case is the cold-rolling method. As the cold rolling mill, a Mannesmann type cold pilga mill (abbreviated as CP), a Soviet type cold pilga mill (abbreviated as HPT), and a three-roll rolling mill are used. The feature of these cold rolling methods is that the tensile stress applied to the material due to rolling is small. That is, in the cold drawing method, tensile stress acts on the interface between the non-metallic inclusions in the steel and the base metal, but when the workability is high, the tensile stress exceeding the joining force at the interface acts, resulting in non-metallic inclusions. A crack will occur at the interface between the object and the iron. On the other hand, in the cold rolling method, the tensile stress is sufficiently small so that cracks do not occur at the interface between the non-metallic inclusions and the base material.

押出素管を用いて行う第一回目の冷間圧延には、生産能
率の点から減面率を大きくとることが有利である。従来
の圧延機で例えばステンレス鋼を冷間圧延する場合、減
面率は最大75%程度である。しかし50%を超える減面率
で冷間圧延すると圧延途中で管内面にしわが発生し、こ
れがそのまま圧延されるため管内面肌が荒れやすくな
る。この肌荒れは最終製品寸法まで冷間圧延しても取り
除かれず、電解研磨作業による最終仕上げに長時間を要
することになる。そこでこの肌荒れを防止するために各
冷間圧延工程での一回の減面率は最大50%までとする。
In the first cold rolling performed using the extruded raw pipe, it is advantageous to take a large area reduction rate from the viewpoint of production efficiency. When cold-rolling stainless steel with a conventional rolling mill, for example, the reduction rate is about 75% at maximum. However, when cold-rolling with a surface reduction rate of more than 50%, wrinkles are generated on the inner surface of the pipe during rolling, and this is rolled as it is, so that the inner surface of the pipe is likely to become rough. This rough surface is not removed even by cold rolling to the final product size, and a long time is required for the final finishing by the electrolytic polishing work. Therefore, in order to prevent this rough surface, the maximum reduction rate per cold rolling process is 50%.

一方、コールドピルガミルを用いて冷間圧延を行う場
合、圧延はロールスタンドが往復運動し、かつ回転しな
がら圧延する方式のため、管が1往復による圧延により
一定量前進することになる。このため軸方向に一定量ご
とに微小な段が生じる。この微小な段は管内面機械研削
工程で取り除くことができ、また低減面率の圧延ならば
問題にならない程度である。この場合の機械研削は、例
えばエメリー研磨、バフ研磨でよい。従つて、最終仕上
圧延を40%以下の減面率で行うことにより良好な内面を
得る。また低減面率圧延には3ロール圧延を用いること
が作業性から望ましい。
On the other hand, when cold rolling is performed using a cold pilger mill, rolling is a system in which a roll stand reciprocates and rolling is performed while rotating, so that the pipe advances a certain amount by rolling once. For this reason, minute steps are generated in the axial direction at regular intervals. This minute step can be removed by a mechanical grinding process on the inner surface of the pipe, and it is not a problem in rolling with a reduced surface ratio. Mechanical grinding in this case may be emery polishing or buff polishing, for example. Therefore, a good inner surface can be obtained by performing the final finish rolling at a reduction rate of 40% or less. Further, it is desirable from the workability to use three-roll rolling for the reduction surface area rolling.

ところで、前述のコールドピルガミルにより生じる微小
な段を取り除くには、冷間抽伸を行うのが最も手軽い方
法である。従つて、押出素管を用いて冷間加工により最
終製品寸法まで製管する場合の第2の方法として、冷間
圧延法に加えて加工度を制限した冷間抽伸法を組み合せ
て行う方法を用いるのがよい。即ち、コールドピルガミ
ルを用いて一回の減面率が50%以下となる範囲で素管を
圧延し、更に減面率5〜20%の抽伸法により冷間加工を
行う構成である。冷間抽伸法でも20%以下の加工度なら
ば、非金属介在物と母材との間に亀裂は生じない。また
コールドピルガミルにより生じる微小な段も、5〜20%
程度の冷間抽伸により除去することができる。尚、繰り
返し抽伸を行う場合は熱処理により母材を充分に軟化さ
せ前工程での冷間加工の影響を取り除いておく必要があ
る。
By the way, the cold drawing is the easiest method to remove the minute steps generated by the cold pill gamil. Therefore, as a second method for producing a final product size by cold working using an extruded raw pipe, a method of performing a combination of a cold drawing method and a cold drawing method with a limited workability is used. Good to use. That is, a cold pilger mill is used to roll a blank tube in a range in which the area reduction rate is 50% or less, and cold working is performed by a drawing method with an area reduction rate of 5 to 20%. Even with the cold drawing method, cracks do not occur between the non-metallic inclusions and the base material if the workability is 20% or less. In addition, the minute steps generated by cold pill gamil are 5-20%.
It can be removed by cold drawing to some extent. When repeatedly drawing, it is necessary to sufficiently soften the base material by heat treatment to eliminate the effect of cold working in the previous step.

対称とする内面平滑度Rmax≦1μmの継目無管として
は、例えばクリーンルーム用として、半導体製造用ガス
供給配管、オージエ電子分光分析機器・X線光電子分光
分析機器等の超高真空機器配管として使用される。オー
ステナイト系ステンレス鋼全般・純ニツケル・純チタン
による管が考えられる。
As a seamless pipe with symmetrical inner surface smoothness Rmax ≤ 1 μm, it is used, for example, for gas supply pipes for semiconductor manufacturing, ultra-high vacuum equipment pipes such as Auger electron spectroscopic analysis equipment and X-ray photoelectron spectroscopic analysis equipment. It Austenitic stainless steel, pure nickel, and pure titanium tubes are possible.

〔実 施 例〕〔Example〕

以下本発明の具体的実施例につき、説明する。 Specific examples of the present invention will be described below.

下記第1表に示す組成のSUS 316L鋼を溶製した後、造
塊、圧延後ビレツトとし、熱間押出により外径89.1mm、
肉厚9.0mmの押出素管とした。
After SUS316L steel having the composition shown in Table 1 below is melted, ingots and rolled into billets, and hot extrusion causes an outer diameter of 89.1 mm,
An extruded raw tube having a wall thickness of 9.0 mm was used.

この押出素管を用い、次の第2表に示す冷間加工工程に
より外径6.35〜12.7mm、肉厚0.89〜1.25mmの管とした。
その後内面を電解研磨加工により仕上げた。
Using this extruded raw pipe, a pipe having an outer diameter of 6.35 to 12.7 mm and a wall thickness of 0.89 to 1.25 mm was obtained by the cold working process shown in Table 2 below.
After that, the inner surface was finished by electrolytic polishing.

これらの精密細管の内表面粗さ測定結果を下記第3表に
示す。
The results of measuring the inner surface roughness of these precision thin tubes are shown in Table 3 below.

粗さ測定条件:カツトオフ値 0.8mm 測定長さ 2.5mm Rmax:最大高さ Ra:中心線平均粗さ Rz:十点平均粗さ いずれもRmax<0.8μmであり良好である。更に同表に
は内表面を走査電顕により1000倍で観察し非金属介在物
と地鉄との界面の亀裂の有無を調査した結果についても
示されている。この電顕観察結果では、本発明による製
造方法により製管した管には亀裂は認められなかつたの
に対し、従来方法により製管した管にはすべて亀裂が認
められた。第2図はこの亀裂の例を示す金属組織の電顕
写真である。
Roughness measurement condition: Cutoff value 0.8mm Measurement length 2.5mm Rmax: Maximum height Ra: Center line average roughness Rz: Ten-point average roughness Rmax <0.8 μm, which is good. Furthermore, the same table also shows the results of observing the inner surface with a scanning electron microscope at a magnification of 1000 times and examining the presence or absence of cracks at the interface between the nonmetallic inclusions and the base metal. According to the results of the electron microscope observation, no crack was observed in the pipe manufactured by the manufacturing method according to the present invention, whereas cracks were recognized in all the pipe manufactured by the conventional method. FIG. 2 is an electron micrograph of a metal structure showing an example of this crack.

これらの管に曲げ半径5Rという曲げ加工を与えたのち、
発生したパーテイクルの数を調査した。その結果を次の
第4表に示す。
After giving these tubes a bending radius of 5R,
The number of particles generated was investigated. The results are shown in Table 4 below.

パーテイクル測定条件: 使用ガス:N2(0.05μmフイルター通過) 管内流速:3〜8m/sec 曲げ部:5R曲げ1ケ所 アウトガス測定条件: 使用ガス:He(99.9999%以上の純度) 加熱温度:300℃ 放置時間:24時間 本発明による製造方法により製管した管では、この程度
の曲げ加工では0.1μm以上のパーテイクルが発生して
いない。一方、従来方法により製管した管では、非金属
介在物と地鉄との界面の亀裂に存在していたと考えられ
るパーテイクルが軽度の曲げ加工でも剥離したため、0.
1μm以上のパーテイクルがカウントされた。
Particle measurement conditions: Gas used: N 2 (0.05 μm filter passed) Pipe flow velocity: 3 to 8 m / sec Bend: 5R 1 bend Outgas measurement conditions: Gas used: He (purity of 99.9999% or more) Heating temperature: 300 ° C Leaving time: 24 hours In the pipe manufactured by the manufacturing method according to the present invention, particles of 0.1 μm or more are not generated in the bending process of this degree. On the other hand, in the pipe manufactured by the conventional method, the particles, which are considered to have existed in the crack at the interface between the non-metallic inclusions and the base steel, peeled off even in the mild bending process.
Particles of 1 μm or more were counted.

次に、これらの管を300℃に加熱して管内部を減圧し、2
4時間放置後、高純度Heガスにてパージを行い、高純度H
eガス中のN2,CO2,H2の分圧変化を調査した。結果を上記
第4表に示す。本発明法により製管した管は、従来方法
により製管した管に比べアウトガス性能が著しく優れた
結果を示した。
Next, heat these tubes to 300 ° C to reduce the pressure inside the tubes, and
After leaving for 4 hours, purge with high purity He gas to obtain high purity H
The partial pressure changes of N 2 , CO 2 and H 2 in e gas were investigated. The results are shown in Table 4 above. The tube produced by the method of the present invention showed significantly better outgas performance than the tube produced by the conventional method.

〔発明の効果〕〔The invention's effect〕

本発明による製造方法によれば、超高清浄度を有するク
リーンルーム内の配管等として管内面平滑度がRmax≦1
μmであり、内表面の非金属介在物と母材との界面が密
着している高性能管が得られる。この鋼管をクリーンル
ーム内の配管、即ち半導体製造用高純度ガスの供給配管
に用いることによつて、パーテイクルの発生がなく、ガ
ス等の停留するデツドゾーンも存在せず、更に、ガス抜
き作業が容易となる等極めて好適な配管を得ることがで
きる。
According to the manufacturing method of the present invention, the inner surface smoothness of the pipe is Rmax ≦ 1 as a pipe in a clean room having an ultrahigh cleanliness.
μm, and a high-performance tube in which the interface between the non-metallic inclusions on the inner surface and the base material is in close contact can be obtained. By using this steel pipe as a pipe in a clean room, that is, a high-purity gas supply pipe for semiconductor manufacturing, there is no generation of particles, there is no dead zone for gas, etc. It is possible to obtain extremely suitable piping.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による製造工程を示すフローチヤート
図、第2図は本発明の実施例と共に従来法を実施した時
に得られた金属組織の電顕写真、第3図は従来のクリー
ンルーム用鋼管の製造工程を示すフローチヤート図であ
る。
FIG. 1 is a flow chart showing the manufacturing process according to the present invention, FIG. 2 is an electron micrograph of a metal structure obtained when a conventional method is carried out together with the embodiment of the present invention, and FIG. 3 is a conventional steel pipe for a clean room. It is a flow chart showing the manufacturing process of.

フロントページの続き (72)発明者 山田 武海 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 滝沢 広保 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (56)参考文献 「わが国における最近の鋼管製造技術の 進歩」日本鉄鋼協会発行(昭49−7−20) P.315〜318Front Page Continuation (72) Inventor Takemi Yamada 1-2 1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Hiroyasu Takizawa 1-2 1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe Incorporated (56) References “Recent Advances in Steel Pipe Manufacturing Technology in Japan” Published by The Iron and Steel Institute of Japan (Sho 49-7-20) 315 ~ 318

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】熱間押出し継目無素管に冷間加工を施し、
内面平滑度Rmax≦1μmの継目無管を製造するに際し、
前記素管を一回の減面率が50%以下の圧延法により冷間
加工することを特徴とする内面平滑性に優れた継目無管
の製造方法。
1. A hot-extruded seamless pipe is cold-worked,
When manufacturing seamless pipes with inner surface smoothness Rmax ≤ 1 μm,
A method for producing a seamless pipe having excellent inner surface smoothness, characterized in that the raw pipe is cold worked once by a rolling method with a surface reduction rate of 50% or less.
【請求項2】特許請求の範囲第1項記載の内面平滑性に
優れた継目無管の製造方法において、コールドピルガミ
ルを用いて前記素管の圧延が行われた場合に、最終仕上
圧延については減面率40%以下で行うことを特徴とする
特許請求の範囲第1項記載の内面平滑性に優れた継目無
管の製造方法。
2. A method for producing a seamless pipe having excellent inner surface smoothness according to claim 1, wherein when the raw pipe is rolled using a cold pilga mill, final finish rolling is performed. The method for producing a seamless pipe having excellent inner surface smoothness according to claim 1, characterized in that the area reduction rate is 40% or less.
【請求項3】特許請求の範囲第2項記載の内面平滑性に
優れた継目無管の製造方法において、その最終仕上圧延
につき、3ロール圧延を用いて行うことを特徴とする特
許請求の範囲第2項記載の内面平滑性に優れた継目無管
の製造方法。
3. The method for producing a seamless pipe having excellent inner surface smoothness according to claim 2, wherein the final finish rolling is performed by using three-roll rolling. A method for producing a seamless pipe having excellent inner surface smoothness according to item 2.
【請求項4】熱間押出し継目無素管に冷間加工を施し、
内面平滑度Rmax≦1μmの継目無管を製造するに際し、
コールドピルガミルを用いて一回の減面率が50%以下と
なる範囲で前記素管を圧延し、更に減面率5〜20%の抽
伸法により冷間加工することを特徴とする内面平滑性に
優れた継目無管の製造方法。
4. A hot-extruded seamless pipe is subjected to cold working,
When manufacturing seamless pipes with inner surface smoothness Rmax ≤ 1 μm,
The inner surface is characterized by rolling the blank pipe in a range of 50% or less in one reduction area using a cold pilgam mill and further cold working by a drawing method with a reduction rate of 5 to 20%. A method for producing a seamless pipe with excellent smoothness.
【請求項5】特許請求の範囲第4項記載の内面平滑性に
優れた継目無管の製造方法において、最終仕上圧延につ
いては減面率40%以下で行うことを特徴とする特許請求
の範囲第4項記載の内面平滑性に優れた継目無管の製造
方法。
5. The method for producing a seamless pipe having excellent inner surface smoothness according to claim 4, wherein final finishing rolling is performed at a surface reduction rate of 40% or less. The method for producing a seamless pipe having excellent inner surface smoothness according to item 4.
【請求項6】特許請求の範囲第5項記載の内面平滑性に
優れた継目無管の製造方法において、その最終仕上圧延
につき、3ロール圧延を用いて行うことを特徴とする特
許請求の範囲第5項記載の内面平滑性に優れた継目無管
の製造方法。
6. The method for producing a seamless pipe having excellent inner surface smoothness according to claim 5, wherein the final finish rolling is carried out by using three-roll rolling. A method for producing a seamless pipe having excellent inner surface smoothness as described in item 5.
JP27933087A 1987-11-06 1987-11-06 Manufacturing method of seamless pipe with excellent inner surface smoothness Expired - Fee Related JPH0688049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27933087A JPH0688049B2 (en) 1987-11-06 1987-11-06 Manufacturing method of seamless pipe with excellent inner surface smoothness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27933087A JPH0688049B2 (en) 1987-11-06 1987-11-06 Manufacturing method of seamless pipe with excellent inner surface smoothness

Publications (2)

Publication Number Publication Date
JPH01122608A JPH01122608A (en) 1989-05-15
JPH0688049B2 true JPH0688049B2 (en) 1994-11-09

Family

ID=17609674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27933087A Expired - Fee Related JPH0688049B2 (en) 1987-11-06 1987-11-06 Manufacturing method of seamless pipe with excellent inner surface smoothness

Country Status (1)

Country Link
JP (1) JPH0688049B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683890A1 (en) * 1991-11-14 1993-05-21 Air Liquide VERY HIGH PURITY NITROGEN DISPENSING INSTALLATION AND METHOD OF IMPLEMENTING IT.
AR042932A1 (en) * 2003-01-31 2005-07-06 Sumitomo Metal Ind SEAMLESS STEEL TUBE FOR TRANSMISSION TREE AND PROCEDURE FOR MANUFACTURING
JP4980111B2 (en) * 2007-03-28 2012-07-18 日本金属株式会社 Pure nickel pipe manufacturing method and pure nickel pipe
DE102015122297A1 (en) * 2015-12-18 2017-06-22 Sandvik Materials Technology Deutschland Gmbh Method for producing a high-pressure pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「わが国における最近の鋼管製造技術の進歩」日本鉄鋼協会発行(昭49−7−20)P.315〜318

Also Published As

Publication number Publication date
JPH01122608A (en) 1989-05-15

Similar Documents

Publication Publication Date Title
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
CN102909237B (en) A kind of preparation method of TA18 thick-wall tube
JP2003311317A (en) Method for manufacturing seamless tube
CN101934302A (en) Method for preparing seamless titanium alloy tube for aircraft engine
CN101176882A (en) Process technique of high-strength titanium alloy pipes
CN112845654B (en) Preparation method of large-size titanium and titanium alloy seamless pipe
CN107537876A (en) A kind of production method of large-caliber thin-walled titanium seamless tubes
WO2024087681A1 (en) Method for improving flattening performance of titanium alloy seamless tube
CN108842098B (en) Processing technology of titanium alloy pipe
JP5333401B2 (en) Metal double pipe manufacturing method
JPH0688049B2 (en) Manufacturing method of seamless pipe with excellent inner surface smoothness
CN113976659A (en) Method for manufacturing metal pipe based on external field auxiliary additive
CN112044978B (en) Preparation method of high-temperature pressure-resistant titanium alloy small-specification thick-wall pipe
JP3242521B2 (en) Manufacturing method of titanium alloy ring
JP4900385B2 (en) High alloy rolling mandrel bar, surface treatment method and manufacturing method thereof, and method of operating seamless steel pipe manufacturing apparatus
CN111889535A (en) Preparation method of zirconium alloy bar
JP2004211115A (en) Method for producing copper pipe
CN112877656A (en) Zirconium tube target and production method thereof
JP2812898B2 (en) Method for manufacturing clad plate with excellent formability
CN111842532A (en) Zirconium alloy pipe preparation method and zirconium alloy pipe prepared based on method
CN115654225B (en) Small-caliber 6xxx series aluminum alloy pipe and preparation process thereof
CN117867308B (en) High-strength TA18 seamless titanium alloy and production method of large-caliber thin tube thereof
CN117399899A (en) Preparation method of zirconium-niobium alloy pipe for large-caliber nuclear industry
JPH0390212A (en) Method for hot-extruding close-packed hexagonal system metal
WO2023272609A1 (en) High-precision seamless pipe having special-shaped hexagonal cross-section with circle inside for use in nuclear power and manufacturing method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees