JPH0788679B2 - Soil stabilizer addition control method for excavated soil reclaimer - Google Patents

Soil stabilizer addition control method for excavated soil reclaimer

Info

Publication number
JPH0788679B2
JPH0788679B2 JP1144402A JP14440289A JPH0788679B2 JP H0788679 B2 JPH0788679 B2 JP H0788679B2 JP 1144402 A JP1144402 A JP 1144402A JP 14440289 A JP14440289 A JP 14440289A JP H0788679 B2 JPH0788679 B2 JP H0788679B2
Authority
JP
Japan
Prior art keywords
soil
signal
excavated
excavated soil
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1144402A
Other languages
Japanese (ja)
Other versions
JPH038918A (en
Inventor
勇 坂尾
▲たかし▼ 定保
茂徳 長岡
隆 岡本
由章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Kawasaki Motors Ltd
Original Assignee
Tokyo Gas Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Kawasaki Jukogyo KK filed Critical Tokyo Gas Co Ltd
Priority to JP1144402A priority Critical patent/JPH0788679B2/en
Publication of JPH038918A publication Critical patent/JPH038918A/en
Publication of JPH0788679B2 publication Critical patent/JPH0788679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は掘削土再生装置に使用する土質安定剤の添加量
を低減させるようにした掘削土再生装置の土質安定剤添
加制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a soil stabilizer addition control method for an excavated soil reclaiming device, in which the amount of the soil stabilizer used in the excavated soil reclaiming device is reduced.

[従来の技術] ガス導管工事、上下水道工事、電気工事等における掘削
により発生する掘削土は、掘削によるこね返しを受ける
ため、必要な路床支持力を失い、最早、埋戻し材料とし
ては使用できなくなるので廃棄処分されていた。このた
め新たに良質の土砂を埋戻し用として使用するようにさ
れていた。
[Prior art] Excavated soil generated by excavation in gas pipeline construction, water supply and sewerage construction, electrical construction, etc. is subjected to scouring due to excavation, and as a result, it loses the necessary roadbed support capacity and is now used as a backfill material. It was no longer possible, so it was discarded. For this reason, high quality earth and sand has been newly used for backfilling.

そこで、掘削土を改良し再生処理して埋戻し用等に使用
できるようにした掘削土再生処理方法は、例えば、特開
昭57−121086号公報により開示されている。
Therefore, a method for reprocessing excavated soil in which excavated soil is improved and regenerated so that it can be used for backfilling or the like is disclosed in, for example, Japanese Patent Laid-Open No. 57-121086.

即ち、掘削土と回収助剤および土質安定剤とを配合し
て、同時に破砕予備混合し、次いで衝撃作用を与えて解
砕混合を行い、次いで篩分を行い、篩下を再生土として
埋戻し用に再生利用され、篩上は回収助剤として用いら
れている。
That is, the excavated soil, the recovery aid, and the soil stabilizer are blended and simultaneously crushed and premixed, then impacted to perform crushing and mixing, followed by sieving, and the bottom of the sieve is backfilled as reclaimed soil. It is reclaimed and used on the sieve as a recovery aid.

[発明が解決しようとする課題] しかしながら、上記従来の掘削土処理装置では、次のよ
うな技術上の問題があった。即ち、 掘削土を再生処理して得られる再生土は適切な水分値、
CBR値(路床支持力比)などの性質を備えていることが
要求され、掘削土の水分値をはじめ装置の運転パラメー
タに対応して、土質安定剤の配合を調整することによ
り、上記の所要性質となるように運転されているが、運
転ラインへの異物などの混入による操業の停止,再始動
を繰り返した場合や掘削土自体の水分値などの性質が不
規則であって高水分、高粘性を呈し、取扱いが困難であ
ることにも起因して、掘削土の性状を観察し、過去の操
業データと照合して水分値の測定や土質安定剤の配合を
行っていたが、上記の配合が適切になされないので、再
生土の品質が変動してしまい不安定であった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional excavated soil treatment apparatus has the following technical problems. That is, the regenerated soil obtained by regenerating the excavated soil has an appropriate moisture value,
It is required to have properties such as CBR value (roadbed bearing capacity ratio), and by adjusting the soil stabilizer composition according to the operating parameters of the equipment including the moisture value of excavated soil, It is operated with the required properties, but when the operation is repeatedly stopped and restarted due to the inclusion of foreign matter in the operation line, and the properties such as the water content of the excavated soil itself are irregular and high water content, Due to its high viscosity and difficulty in handling, the properties of the excavated soil were observed, and the moisture value was measured and the soil stabilizer was blended by collating with past operation data. Since the mixing ratio was not properly adjusted, the quality of the reclaimed soil fluctuated and was unstable.

また、土質安定剤の配合が不適切である場合には、例え
ば、土質安定剤の添加量が過剰なときは、再生土のCBR
値が過度に増大してしまい、再生土の品質過剰をもたら
すことになり、また、過少なときは、再生土のCBR値が
不足するとともに、前記の工程にしたがい、掘削土が配
合、破砕予備混合、解砕混合、篩分と移動しながら処理
されるさいに、解砕混合された材料は、漸次、塊状に成
長するようになり、上記材料が中間破砕されて回収助剤
となる過程における破砕性能をはじめとして、掘削土と
回収助剤および土質安定剤との破砕および予備混合過程
における破砕および予備混合性能、上記材料の衝撃によ
る解砕混合過程における解砕性能が低下し、さらに材料
の篩分過程における篩分効率が低下して、再生土の生産
能力の低下を招いてしまう。前述の事態を回避するため
に、土質安定剤を自動供給させる試みがなされるが、制
御対象が前述のごとく複雑な特性を呈し、外乱(金属検
出器や異物手選による不規則な操作停止など)も不規則
に加わること、応答の遅れが著しいこともあって、掘削
土の流量を検出し、土質安定剤の供給量を操作するよう
に制御しても所望する再生土の品質を得るように安定し
た制御を行うことが困難であった。
In addition, if the soil stabilizer is improperly mixed, for example, if the soil stabilizer is added in an excessive amount, the CBR of the regenerated soil may be changed.
If the amount is too low, the CBR value of the reclaimed soil will be insufficient, and the excavated soil will be mixed and the crushing reserve will be prepared according to the above process. During the process of mixing, crushing and mixing, moving while sieving, the crushed and mixed material gradually grows into a lump, and the material is crushed intermediately to become a recovery aid. In addition to the crushing performance, the crushing and premixing performance in the crushing and premixing process of excavated soil with the recovery aid and soil stabilizer, the crushing performance in the crushing and mixing process due to the impact of the above materials, and The sieving efficiency in the sieving process is reduced, and the production capacity of reclaimed soil is reduced. In order to avoid the above-mentioned situation, attempts are made to automatically supply soil stabilizers, but the controlled object exhibits complicated characteristics as described above, and disturbance (irregular operation stop due to metal detector or foreign material selection etc.) ) Is added irregularly and the response is significantly delayed, so that the desired regenerated soil quality can be obtained even if the flow rate of excavated soil is detected and the soil stabilizer supply amount is controlled. It was difficult to perform stable control.

このようにして、土質安定剤の最適添加が実現に不可能
であるので、前述の能力低下を招かない過剰添加で操業
される傾向が大であり、過剰添加に伴って掘削土再生処
理の経済性の低下をもたらすことになる。
In this way, since it is impossible to realize the optimum addition of soil stabilizers, there is a large tendency to operate with excessive addition that does not lead to the above-mentioned capacity deterioration. This will result in a decrease in sex.

本発明はこのような従来の問題を解決するものであり掘
削土が高水分、高粘性系土質の場合にも、土質安定剤の
添加量を低減させて最適となし、埋戻しに適する路床支
持力と締め固め性能とを有する良質な再生土が得られ、
かつ経済性を向上し得る優れた掘削土再生装置の土質安
定剤添加制御方法を提供することを目的とするものであ
る。
The present invention solves such a conventional problem. Even when the excavated soil has a high water content and a high-viscosity soil type, the addition amount of the soil stabilizer is reduced to be optimum, and the roadbed suitable for backfilling is achieved. A good quality reclaimed soil having bearing capacity and compaction performance can be obtained,
It is also an object of the present invention to provide an excellent soil stabilizer addition control method for an excavated soil reclaiming device, which can improve economy.

[課題を解決するための手段] 本発明は上記目的を達成するために、 掘削土と土質安定剤と回収助剤とを予備破砕混合する予
備破砕混合機と、前記予備破砕混合された材料を解砕混
合する解砕混合機と、前記解砕混合された材料を再生土
と回収助剤とに篩分けする篩分け機、を備える掘削土再
生装置の予備破砕混合機に供給される土質安定剤添加量
の制御方法であって、掘削土の水分値および再生土の水
分値に関する信号と、再生土の流量に関する信号にもと
づき、予備破砕混合機に供給される土質安定剤添加量を
制御するようにしたものであり、また、 前記掘削土の水分値および再生土の水分値の信号と、掘
削土と再生土の水分値比に応じて掘削土の水分値に対し
て発信する補正信号と、前記補正信号にもとづき発信す
る土質安定剤添加率に関する関数信号と、前記再生土の
流量信号と、を発信する過程と、前記関数信号と前記再
生土流量信号の乗算により発信する土質安定剤添加量制
御信号にもとづき、予備破砕混合機に供給される土質安
定剤添加量を制御するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a pre-crushing mixer for pre-crushing and mixing excavated soil, a soil stabilizer and a recovery aid, and the pre-crushed and mixed material. Soil quality supplied to the preliminary crushing mixer of the excavated soil reclaiming device, which comprises a crushing mixer for crushing and mixing, and a sieving machine for sieving the crushed and mixed material into reclaimed soil and a recovery aid. A method for controlling the amount of agent added, which controls the amount of soil stabilizer added to the pre-crushing mixer based on signals relating to the moisture value of excavated soil and the moisture value of reclaimed soil and the signal relating to the flow rate of reclaimed soil. In addition, the signal of the moisture value of the excavated soil and the moisture value of the reclaimed soil, and the correction signal transmitted to the moisture value of the excavated soil according to the moisture value ratio of the excavated soil and the reclaimed soil. , Addition of soil stabilizer based on the correction signal Based on the process of transmitting a function signal relating to the regenerated soil flow rate signal, and the soil stabilizer addition amount control signal transmitted by multiplying the function signal and the regenerated soil flow rate signal, and supplied to the preliminary crushing mixer. The amount of soil stabilizer added is controlled.

[作 用] 本発明は上記のような構成により次のような作用を有す
る。即ち、掘削土の水分値および再生土の水分値に関す
る信号がオンライン計測により得られ、再生土の流量信
号とともにデジタル信号に変換して演算処理を行い、土
質安定剤添加量を演算して制御するようにしているの
で、土質安定剤添加量の基準となる上記の水分量に関す
る情報を適確に把握することができて、最適添加による
安定した制御のもとで、所望する再生品の品質が得ら
れ、品質過剰をもたらすことを未然に防止することがで
き、さらに、土質安定剤の添加量を低減できて掘削土再
生処理の経済性の低下を回避することができる。
[Operation] The present invention having the above-described configuration has the following operations. That is, signals relating to the moisture value of excavated soil and the moisture value of reclaimed soil are obtained by online measurement, and converted into a digital signal together with the flow rate signal of reclaimed soil for arithmetic processing to calculate and control the soil stabilizer addition amount. As a result, it is possible to accurately grasp the above-mentioned information regarding the amount of water, which is the standard for the amount of soil stabilizer added, and under the stable control by optimal addition, the quality of the desired recycled product can be improved. It is possible to prevent the occurrence of excess quality, and it is possible to reduce the addition amount of the soil stabilizer, and to avoid the reduction in the economic efficiency of the excavated soil reclaiming treatment.

[実施例] 以下、本発明を、その実施例を示す図面にもとづいて詳
細に説明する。
[Examples] The present invention will be described in detail below with reference to the drawings illustrating the examples.

第1図は本発明方法の工程の一例を示す系統図である。FIG. 1 is a system diagram showing an example of steps of the method of the present invention.

予備破砕混合機1には掘削土13と土質安定剤14と回収助
剤18とが一緒に供給されて予備破砕混合される。
Excavated soil 13, soil stabilizer 14, and recovery aid 18 are supplied to the pre-crushing mixer 1 together for pre-crushing and mixing.

掘削土の土質としては、高含水比、高粘性系からなるも
のが多く、土質安定剤としては、例えば、セメント、生
石灰などが、また、回収助剤18は後述のごとく篩分け機
5の篩上を用いて中間破砕機7によって破砕したものが
用いられる。掘削土13の水分値は水分計11により計測さ
れ、水分計11としては赤外線水分計などが用いられて、
上記の水分値のアナログ信号22をオンラインにて発信し
ている。予備破砕混合されるにさいして、掘削土13と土
質安定剤14と回収助剤18とは掘削土の土質に応じた土質
安定性が得られるように配合される。土質安定剤14は計
量供給機8によって供給され、その添加量は主制御器24
の添加量制御信号25にもとづき制御盤10からの駆動装置
9への操作信号によって調整される。予備破砕混合機1
としては、例えば、ダブルロールクラッシャなどが好適
であり、供給された掘削土13と土質安定剤14と回収助剤
18とが相互に回転する一組のロール間に供給されて、ロ
ール間隙から排出されるまでの過程において、上記の材
料は圧潰され、相互に分散混合されるようになる。
The soil of the excavated soil is often composed of a high water content and high viscosity system, the soil stabilizer is, for example, cement or quicklime, and the recovery aid 18 is the sieve of the sieving machine 5 as described later. What is crushed by the intermediate crusher 7 using the above is used. The moisture value of the excavated soil 13 is measured by the moisture meter 11, and an infrared moisture meter or the like is used as the moisture meter 11.
The analog signal 22 of the above moisture value is transmitted online. When preliminarily crushed and mixed, the excavated soil 13, the soil stabilizer 14, and the recovery aid 18 are mixed so as to obtain soil stability according to the soil quality of the excavated soil. The soil stabilizer 14 is supplied by the metering feeder 8, and its addition amount is the main controller 24.
It is adjusted by an operation signal from the control panel 10 to the drive device 9 based on the addition amount control signal 25 of. Pre-crushing mixer 1
For example, a double roll crusher is suitable, and the supplied excavated soil 13, soil stabilizer 14 and recovery aid
The above materials are crushed and dispersed and mixed with each other in the process of being supplied between a pair of rolls which rotate with each other and being discharged from the roll gap.

上記の予備破砕混合された材料16は解砕混合機2によっ
て、機械的衝撃作用が加えられて解砕混合される。衝撃
による解砕混合機2としては、例えば、特公昭42−1186
1号公報、特開昭60−48151号公報に示されている。粘性
物質の解砕混合に特に適した衝撃式混合機などを使用す
ることが好適であり、回転打撃子による衝撃作用により
屈曲式解砕板の表面および屈曲式解砕板と回転打撃との
間の空間において、上記材料16は短時間で充分に解砕混
合される。次いで、解砕混合された材料17は、篩分け機
5によって篩下と篩上とに分離される。篩下は再生土19
として計量機4により計量されて流量信号20を発信して
搬送され埋戻し材料に用いられ、篩上は前記のごとく回
収助剤18として用いられる。
The above-mentioned pre-crushed and mixed material 16 is crushed and mixed by the crushing mixer 2 with a mechanical impact action. As the crushing mixer 2 by impact, for example, Japanese Patent Publication No. 42-1186
No. 1 and JP-A No. 60-48151. It is preferable to use an impact mixer that is particularly suitable for crushing and mixing viscous substances, and the impact of the rotary impactor causes the surface of the flexural crushing plate and between the flexing crushing plate and rotary impact In this space, the material 16 is sufficiently crushed and mixed in a short time. Next, the crushed and mixed material 17 is separated by the sieving machine 5 into an under-sieve and an over-sieve. Below the screen is recycled soil 19
Is used as a backfill material after being measured by the weighing machine 4 and transmitting a flow rate signal 20 to be conveyed, and used as a recovery aid 18 on the sieve as described above.

再生土19の水分値は水分計12により計測され、上記の水
分値のアナログ信号23をオンラインにて発信している。
The moisture value of the reclaimed soil 19 is measured by the moisture meter 12, and the above analog signal 23 of the moisture value is transmitted online.

また、多くの場合、掘削土13中には各種の金属片などが
混入されている。かかる場合には、掘削土13の再生処理
にさいし、再生装置などを損傷する恐れがあるので、金
属検出器を例えば、掘削土13の輸送手段と予備破砕混合
機1との間に配設し、金属検出器が掘削土13中の金属片
を検出した場合に、前記掘削土13の輸送手段の運転を停
止するようにしている。さらに、掘削土13中に塊状の非
金属物が混入されていることがあり、前述と同様に、再
生装置などを損傷させ円滑な運転を阻害する恐れがある
ので手選により選別するため、前記掘削土13の輸送手段
の運転を停止するようにしている。かくして、輸送手段
から予備破砕混合機1に至る掘削土13の移動は頻繁に中
断することを繰返して行われるので、流量の変動が著し
く、安定した土質安定剤添加量制御のために、掘削土13
側の流量の検出を行うことなく、再生土19の流量を検出
するようにしている。また、掘削土13の水分値および再
生土19の水分値に関する信号を用いて、両者の比較を行
い、粒度・形状・異物の影響・測定距離変動等による掘
削土13の水分値の測定誤差を補正しながら、前記制御を
行うようにしている。
Further, in many cases, various kinds of metal pieces are mixed in the excavated soil 13. In such a case, there is a risk of damaging the regenerator or the like during the reprocessing of the excavated soil 13, so a metal detector is installed between the transportation means of the excavated soil 13 and the pre-crushing mixer 1, for example. When the metal detector detects a metal piece in the excavated soil 13, the operation of the transportation means for the excavated soil 13 is stopped. Furthermore, there are cases where lumped non-metallic substances are mixed in the excavated soil 13, and like the above, there is a risk of damaging the regeneration device and the like and hindering smooth operation. The operation of the transportation means for excavated soil 13 is stopped. Thus, since the movement of the excavated soil 13 from the transportation means to the preliminary crushing mixer 1 is repeatedly repeated frequently, the fluctuation of the flow rate is remarkable, and the excavated soil is controlled in order to stably control the addition amount of the soil stabilizer. 13
The flow rate of the reclaimed soil 19 is detected without detecting the flow rate on the side. In addition, using the signals related to the water content of the excavated soil 13 and the water content of the reclaimed soil 19, the two are compared and the measurement error of the water content of the excavated soil 13 due to the particle size, shape, influence of foreign matter, measurement distance variation, etc. The above control is performed while making a correction.

前記掘削土13の輸送手段上における金属片や非金属物の
除去を行った後、掘削土13の輸送手段をはじめとする再
生装置の運転が再起動される。前記の場合における掘削
土13の水分値としては、一定時間(例えば5〜15分程
度)以内に再起動される場合には、再生土流量に対する
影響が無視できることから、運転停止時における水分値
のアナログ信号22が用いられ、また、一定時間(例え
ば、5〜15分程度)以降に再起動される場合には、再生
土流量に対する影響が大であるため、運転開始時と同様
に、計量供給機の定速設定器26の定速設定値信号42aが
用いられ、制御動作が継続して行われる。
After removing the metal pieces and non-metallic substances on the transportation means of the excavated soil 13, the operation of the regeneration device including the transportation means of the excavated soil 13 is restarted. As the moisture value of the excavated soil 13 in the above case, when restarted within a certain time (for example, about 5 to 15 minutes), the influence on the regenerated soil flow rate can be ignored, so If the analog signal 22 is used, and if it is restarted after a certain time (for example, about 5 to 15 minutes), the regenerated soil flow rate will be greatly affected. The constant speed set value signal 42a of the constant speed setter 26 of the machine is used to continue the control operation.

第2図は本発明方法の制御回路の一例を示すブロック図
であり、第2図を参照して制御動作を具体的に説明す
る。
FIG. 2 is a block diagram showing an example of the control circuit of the method of the present invention, and the control operation will be specifically described with reference to FIG.

第2図において、70は信号処理装置をしめす。水分計11
から発信された水分値のアナログ信号22は水分計コント
ロールユニット27を経て、電流電圧変換器28から信号処
理装置70に入力される。引き続き、A/D変換処理33を行
った後、フィルタ処理38をなし、瞬時に変化する水分値
の量信号を定められた時定数で安定化させて波形を変換
して出力している。次いで、検量線変換処理43では、水
分計11の電圧値と掘削土13の水分値との関係をしめす検
量線を使用して、掘削土13の水分値を表わす信号に変換
させている。
In FIG. 2, reference numeral 70 designates a signal processing device. Moisture meter 11
The analog signal 22 of the moisture value transmitted from the device passes through the moisture meter control unit 27 and is input from the current-voltage converter 28 to the signal processing device 70. Subsequently, after performing the A / D conversion process 33, the filter process 38 is performed to stabilize the amount signal of the moisture value which changes instantaneously at a predetermined time constant and convert the waveform to output. Next, in the calibration curve conversion process 43, a calibration curve showing the relationship between the voltage value of the moisture meter 11 and the moisture value of the excavated soil 13 is used to convert it into a signal representing the moisture value of the excavated soil 13.

次いで、むだ時間補償処理48が行われて、掘削土13が水
分計11の計測点から土質安定剤14との合流点までに到着
するための所要時間および土質安定剤14が計量供給機8
への操作信号が出力されてから上記の合流点までに到着
するまでの所要時間にもとづくむだ時間を利用して、0.
5秒毎の水分値データを蓄積積算し、平均値算出処理51
に導いて水分値の平均値の算出を行っている。
Next, a dead time compensation process 48 is performed, and the time required for the excavated soil 13 to reach from the measurement point of the moisture meter 11 to the confluence with the soil stabilizer 14 and the soil stabilizer 14 are measured by the metering device 8.
Using the dead time based on the time required to reach the confluence point after the operation signal is output to 0.
Moisture value data every 5 seconds is accumulated and integrated to calculate average value 51
The average value of water content is calculated based on the above.

49はリミッタ処理をしめし、掘削土13の感知信号を得る
ために、水分値が一定値以上であるか否かの判定をな
し、一定値以上である場合には計測点にて掘削土13が存
在していることを感知する。さらに、オフディレイ処理
50に導かれ、掘削土13の感知信号50aを得るために、水
分値が一定値以下であっても一定時間を経過するまで
は、計測点にて掘削土13が存在しているものとみなして
いる。
49 indicates the limiter processing, and in order to obtain the detection signal of the excavated soil 13, it is determined whether the moisture value is a certain value or more. If it is more than the certain value, the excavated soil 13 is measured at the measurement point. Sense that it exists. In addition, off-delay processing
In order to obtain the sensing signal 50a of the excavated soil 13 that is guided to 50, it is considered that the excavated soil 13 exists at the measuring point until a certain time elapses even if the moisture value is below a certain value. ing.

再生土19のための水分計12から発信されたアナログ信号
23は水分計コントロールユニット27を経て、電流電圧変
換器29から信号処理装置70に入力される。次にA/D変換
処理34を行った後、フィルタ処理39をなし、引続いて、
平均値算出処理45に導いて水分値の平均値が算出され
る。52は水分比補正処理をしめし、前記の掘削土13と再
生土19の水分値比を算出し、両者の水分値比に応じて、
掘削土13の水分値に対して補正処理を加え信号52aを出
力する。53は関数発生器をしめし、入力された上記の信
号52aに対応した土質安定剤14の添加率を算出して関数
信号53aを発信する。
Analog signal emitted from moisture meter 12 for recycled soil 19
23 is input from the current-voltage converter 29 to the signal processing device 70 via the moisture meter control unit 27. Next, after performing A / D conversion processing 34, filter processing 39 is performed, and subsequently,
The process goes to the average value calculation process 45 to calculate the average value of the water content. 52 indicates the water content correction process, calculates the water content ratio of the excavated soil 13 and the reclaimed soil 19, according to the water content ratio of both,
A correction process is applied to the moisture value of the excavated soil 13 to output a signal 52a. Reference numeral 53 indicates a function generator, which calculates the addition rate of the soil stabilizer 14 corresponding to the input signal 52a and transmits the function signal 53a.

再生土19の計量機4から発信されたアナログ流量信号20
は電流電圧変換器30から信号処理装置70に入力される。
次に、A/D変換処理35を行った後、フィルタ処理40をな
し、瞬時に変化する流量のデジタル信号を定められた時
定数で安定させて、平均値算出処理46に導いて流量の平
均値が算出され、出力信号は掘削土再生装置への流量信
号60として出力される。
Analog flow rate signal 20 sent from weighing machine 4 of recycled soil 19
Is input to the signal processing device 70 from the current-voltage converter 30.
Next, after performing the A / D conversion process 35, the filter process 40 is performed to stabilize the digital signal of the flow rate that changes instantaneously at a predetermined time constant, and the average value calculation process 46 is introduced to average the flow rate. The value is calculated and the output signal is output as the flow rate signal 60 to the excavated soil reclaiming device.

55は乗算器をしめし、前記の関数信号53aおよび再生土
流量信号60を入力して乗算処理を行い、土質安定剤14の
添加量が演算され、添加量信号55aが出力される。26は
土質安定剤14の計量供給機8の定速設定器をしめし、設
定信号は電流電圧変換器32から信号処理装置70に入力さ
れ、A/D変換処理37を行った後、フィルタ処理42をな
し、定速設定値信号42aが出力される。
Reference numeral 55 denotes a multiplier, which inputs the function signal 53a and the regenerated soil flow rate signal 60 to perform a multiplication process, the addition amount of the soil stabilizer 14 is calculated, and the addition amount signal 55a is output. Reference numeral 26 indicates a constant speed setting device of the metering device 8 of the soil stabilizer 14, and the setting signal is input from the current / voltage converter 32 to the signal processing device 70, and after performing A / D conversion processing 37, filter processing 42 The constant speed set value signal 42a is output.

67は水分計11計測点における輸送手段例えば、定量フィ
ーダの運転信号、68は上記に接続する輸送手段たとえ
ば、ベルトコンベヤの運転信号をそれぞれしめし、デジ
タル入力処理59に入力されて運転信号59aが出力され
る。56は切換処理をしめし、掘削土13の感知信号50a、
添加量信号55a、定速設定値信号42aおよび運転信号59a
を掘削土再生装置の運転条件に応じて運転モードを適
宜、切換選択し、D/A変換処理57を行った後、電流電流
変換器63から添加量制御信号25が制御盤10に入力されて
計量供給機8が操作される。
67 is a transportation means at the measuring point of the moisture meter 11, for example, an operation signal of the quantitative feeder, 68 is a transportation means connected to the above, for example, an operation signal of the belt conveyor, and is inputted to the digital input processing 59 to output the operation signal 59a. To be done. 56 indicates the switching process, and the detection signal 50a of the excavated soil 13
Addition amount signal 55a, constant speed set value signal 42a and operation signal 59a
The operating mode is appropriately switched and selected according to the operating conditions of the excavated soil reclaiming device, and after the D / A conversion process 57 is performed, the addition amount control signal 25 is input from the current / current converter 63 to the control panel 10. The metering and feeding machine 8 is operated.

例えば、運転モードを土質安定剤14を所定速度をもって
定速供給する場合は、定速設定器26の定速設定値信号42
aのもとで、切換処理56の切換選択を行って、引続き、
前述のごとく、計量供給機8が操作される。
For example, when the soil stabilizer 14 is supplied at a constant speed at a predetermined speed in the operation mode, the constant speed set value signal 42 of the constant speed setter 26 is supplied.
Under a, select the switching process 56 and continue to
As described above, the metering and feeding machine 8 is operated.

一方、再生土流量信号60は引出されてD/A変換処理58を
行った後、電流電圧変換器64から出力された信号64aは
再生土流量の記録用に発信される。
On the other hand, the regenerated soil flow rate signal 60 is extracted and subjected to the D / A conversion processing 58, and then the signal 64a output from the current-voltage converter 64 is transmitted for recording the regenerated soil flow rate.

また制御盤10からの信号65は電流電圧変換器66を経て信
号66aが発信され、土質安定剤流量の記録用に用いられ
ている。
The signal 65 from the control panel 10 is sent to the signal 66a via the current-voltage converter 66, and is used for recording the soil stabilizer flow rate.

第3図は本発明方法の制御回路における関数発生器53に
用いられる土質安定剤の添加率と掘削土の水分値との関
数関係をしめしている。ここに掘削土の水分値は含水比
をもってしめし、かつ、前述の如く、掘削土と再生土と
の水分値比に応じて補正したものである。
FIG. 3 shows the functional relationship between the addition rate of the soil stabilizer used in the function generator 53 in the control circuit of the method of the present invention and the moisture value of excavated soil. Here, the water content of the excavated soil is indicated by the water content ratio, and as described above, it is corrected according to the water content ratio between the excavated soil and the regenerated soil.

第4図は本発明方法の制御回路における検量線変換処理
43に用いられる水分計の感度と掘削土の水分値との関係
をしめしている。ここに感度とは赤外線の水分による特
性吸収の強度比を基準としたものをしめしている。
FIG. 4 is a calibration curve conversion process in the control circuit of the method of the present invention.
It shows the relationship between the sensitivity of the moisture meter used in 43 and the moisture value of excavated soil. Here, the sensitivity is based on the intensity ratio of characteristic absorption due to moisture of infrared rays.

第1表は本発明方法による掘削土の再生試験例をしめす
ものであり、水分値はいずれも含水比をもってしめして
いる。すなわち、少い土質安定剤の添加のもとで再生土
は水分値が少く、かつ、充分なCBRが得られている。
Table 1 shows an example of a regeneration test of excavated soil by the method of the present invention, and the water content is shown by the water content ratio. That is, the regenerated soil has a low water content and a sufficient CBR is obtained by adding a small amount of soil stabilizer.

第2表は従来技術による掘削土の再生試験例を本発明方
法と比較のためにしめしたものである。
Table 2 shows an example of regeneration test of excavated soil according to the prior art for comparison with the method of the present invention.

尚、本発明は上記実施例のみに限定されるものでなく、
本発明の要旨を逸脱しない範囲内において種々変更を加
え得ること、等は勿論である。
The present invention is not limited to the above embodiment,
It goes without saying that various changes can be made without departing from the scope of the present invention.

[発明の効果] 本発明は上記実施例より明らかなように、掘削土の再生
処理にあたり、掘削土および再生土の水分値の変動に対
応し、かつ、再生土流量の変動に対応して、土質安定剤
添加量を制御して供給するにさいし、掘削土および再生
土の水分値を検出して、両者の水分値比を算出して補正
を行うことにより、掘削土に対する水分値の測定誤差を
少く抑えることができるとともに、掘削土再生装置の系
統内でとくに量変動が少い再生土流量を検出してこの平
均化を行った流量値に対応して所要添加量の演算処理を
行い、得られた添加量制御信号にもとづき計量供給機の
添加量制御と結合するようにしているので、土質安定剤
添加制御の制御特性が改善され、安定した制御が行われ
て、所望する再生土の品質を得ることができ、また、土
質安定剤添加量を低減させて最適とし、掘削土再生装置
の経済性を向上することができる優れた効果を奏し得
る。
[Effects of the Invention] As is apparent from the above-described embodiments, the present invention responds to changes in the moisture value of excavated soil and reclaimed soil and to changes in the reclaimed soil flow rate in the reprocessing of excavated soil. When controlling and supplying the added amount of soil stabilizer, the moisture value of excavated soil and reclaimed soil is detected, and the moisture value ratio of both is calculated and corrected to make an error in measuring the moisture value for excavated soil. It is possible to suppress the amount to a small amount and detect the regenerated soil flow rate with a particularly small amount fluctuation in the system of the excavated soil reclaiming device, and perform the arithmetic processing of the required addition amount corresponding to the averaged flow rate value. Since it is combined with the addition amount control of the metering machine based on the obtained addition amount control signal, the control characteristics of the soil stabilizer addition control are improved, stable control is performed, and the desired regenerated soil You can get quality and also soil quality It is possible to achieve an excellent effect that the amount of the stabilizer added is reduced and optimized to improve the economical efficiency of the excavated soil reclaiming device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の工程を示す系統図、第2図は同制
御回路のブロック図、第3図は同制御回路における関数
発生器の説明図、第4図は同制御回路における検量線変
換処理の説明図である。 1……予備破砕混合機、2……解砕混合機 5……篩分け機、13……掘削土 14……土質安定剤、18……回収助剤 19……再生土
FIG. 1 is a system diagram showing steps of the method of the present invention, FIG. 2 is a block diagram of the control circuit, FIG. 3 is an explanatory view of a function generator in the control circuit, and FIG. 4 is a calibration curve in the control circuit. It is explanatory drawing of a conversion process. 1 …… Preliminary crushing mixer 2 …… Crushing mixer 5 …… Sieving machine, 13 …… Drilling soil 14 …… Soil stabilizer, 18 …… Recovery aid 19 …… Reclaimed soil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長岡 茂徳 千葉県八千代市上高野1780番地 川崎重工 業株式会社八千代工場内 (72)発明者 岡本 隆 千葉県八千代市上高野1780番地 川崎重工 業株式会社八千代工場内 (72)発明者 加藤 由章 千葉県八千代市上高野1780番地 川崎重工 業株式会社八千代工場内 (56)参考文献 特開 昭63−27613(JP,A) 特開 昭57−68416(JP,A) 特開 昭63−32016(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigenori Nagaoka 1780 Kamitakano, Yachiyo-shi, Chiba Kawasaki Heavy Industries, Ltd. Yachiyo factory (72) Inventor Takashi Okamoto 1780 Uetakano, Yachiyo-shi Kawasaki Heavy Industries, Ltd. Inside the Yachiyo Factory (72) Inventor Yoshiaki Kato 1780 Kamikono, Yachiyo City, Chiba Kawasaki Heavy Industries, Ltd. Inside the Yachiyo Factory (56) Reference JP-A-63-27613 (JP, A) JP-A-57-68416 ( JP, A) JP 63-32016 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】掘削土と土質安定剤と回収助剤とを予備破
砕混合する予備破砕混合機と、前記予備破砕混合された
材料を解砕混合する解砕混合機と、前記解砕混合された
材料を再生土と回収助剤とに篩分けする篩分け機、を備
える掘削土再生装置の予備破砕混合機に供給される土質
安定剤添加量の制御方法であって、掘削土の水分値およ
び再生土の水分値に関する信号と、再生土の流量に関す
る信号にもとづき、予備破砕混合機に供給される土質安
定剤添加量を制御することを特徴とする掘削土再生装置
の土質安定剤添加制御方法。
1. A pre-crushing mixer for pre-crushing and mixing excavated soil, a soil stabilizer and a recovery aid, a crushing mixer for crushing and mixing the pre-crushed and mixed materials, and the crushing and mixing A method for controlling the amount of soil stabilizer added to a preliminary crushing mixer of an excavated soil reclaiming device, which comprises a sieving machine for sieving the separated material into a reclaimed soil and a recovery aid, and a moisture value of the excavated soil. And soil stabilizer addition control of excavated soil reclaimer characterized by controlling the amount of soil stabilizer added to the pre-crushing mixer based on a signal relating to the moisture value of the reclaimed soil and a signal relating to the flow rate of the reclaimed soil. Method.
【請求項2】前記掘削土の水分値および再生土の水分値
の信号と、掘削土と再生土の水分値比に応じて掘削土の
水分値に対して発信する補正信号と、前記補正信号にも
とづき発信する土質安定剤添加率に関する関数信号と、
前記再生土の流量信号と、前記関数信号と前記再生土流
量信号の乗算により発信する土質安定剤添加量制御信号
にもとづき、予備破砕混合機に供給される土質安定剤添
加量を制御することを特徴とする請求項1記載の土質安
定剤添加制御方法。
2. A signal of the moisture value of the excavated soil and a moisture value of the reclaimed soil, a correction signal transmitted to the moisture value of the excavated soil according to the moisture value ratio of the excavated soil and the reclaimed soil, and the correction signal. Based on the function signal related to the soil stabilizer addition rate,
Based on a flow rate signal of the reclaimed soil, and a soil stabilizer addition amount control signal transmitted by multiplying the function signal and the regenerated soil flow rate signal, it is possible to control the addition amount of the soil stabilizer supplied to the preliminary crushing mixer. The method for controlling addition of a soil stabilizer according to claim 1, which is characterized in that.
JP1144402A 1989-06-07 1989-06-07 Soil stabilizer addition control method for excavated soil reclaimer Expired - Fee Related JPH0788679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1144402A JPH0788679B2 (en) 1989-06-07 1989-06-07 Soil stabilizer addition control method for excavated soil reclaimer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144402A JPH0788679B2 (en) 1989-06-07 1989-06-07 Soil stabilizer addition control method for excavated soil reclaimer

Publications (2)

Publication Number Publication Date
JPH038918A JPH038918A (en) 1991-01-16
JPH0788679B2 true JPH0788679B2 (en) 1995-09-27

Family

ID=15361335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144402A Expired - Fee Related JPH0788679B2 (en) 1989-06-07 1989-06-07 Soil stabilizer addition control method for excavated soil reclaimer

Country Status (1)

Country Link
JP (1) JPH0788679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825649B2 (en) * 2006-11-29 2011-11-30 格 大西 Treatment method of contaminated soil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768416A (en) * 1980-10-13 1982-04-26 Tokyo Gas Co Ltd Improvement of excavated soil for back-filling
JPS6327613A (en) * 1986-07-16 1988-02-05 Toho Gas Co Ltd Automatic controller for supply amount of soil improving agent
JPH0657938B2 (en) * 1986-07-25 1994-08-03 鹿島建設株式会社 Construction method of artificial rock

Also Published As

Publication number Publication date
JPH038918A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
JP3772306B2 (en) Soil improvement device
JPS645942B2 (en)
JPS60118249A (en) Method of crushing cereal
KR102273902B1 (en) Recycled aggregate production system with control function based on aggregate input speed and crushing speed, and recycled aggregate production method using the same
JPS63166443A (en) Two-step crushing method and device for brittle material
JPH0788679B2 (en) Soil stabilizer addition control method for excavated soil reclaimer
CN103439992B (en) In a kind of grinding process the blanking of ore grinding storehouse be obstructed control method and apparatus
JP5031664B2 (en) Self-propelled recycling machine and self-propelled conveyor device
JPH07116542A (en) Wet type sand producing equipment having function to control grain size of sand product and its control method
US3697003A (en) Grinding mill method and apparatus
CN103434859B (en) The control method of ore grinding storehouse blanking in a kind of grinding process and device
JP4448622B2 (en) Soil rotor rotation control device for soil improvement equipment
JP3976615B2 (en) Control device for soil quality improvement equipment
JP2003200079A (en) Method and apparatus for operating stone crushing plant
JPH07145580A (en) Pulper controller
JPH0615189A (en) Crushing device for sintering equipment
JP2016014097A (en) Production method of backfill, backfill and backfill production system
JPH0210702B2 (en)
JPS62258760A (en) Automatic operation control of beater
JPS5768210A (en) Slip detecting method and interstand tension controlling method and apparatus using sand detecting method
JP2001152483A (en) Mixing and improving machine for soil
Lottering, JM & Aldrich Online measurement of factors influencing the electrostatic separation of mineral sands
JPH0673975A (en) Material level detection method in crusher and device thereof
JP2006167646A (en) Concrete scrap regeneration facility
JPH07275726A (en) Method for controlling impact crusher and impact crusher

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees