JP3976615B2 - Control device for soil quality improvement equipment - Google Patents

Control device for soil quality improvement equipment Download PDF

Info

Publication number
JP3976615B2
JP3976615B2 JP2002142166A JP2002142166A JP3976615B2 JP 3976615 B2 JP3976615 B2 JP 3976615B2 JP 2002142166 A JP2002142166 A JP 2002142166A JP 2002142166 A JP2002142166 A JP 2002142166A JP 3976615 B2 JP3976615 B2 JP 3976615B2
Authority
JP
Japan
Prior art keywords
weight
soil
improved
improvement
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002142166A
Other languages
Japanese (ja)
Other versions
JP2003328389A (en
Inventor
安洋 鴨志田
泰弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2002142166A priority Critical patent/JP3976615B2/en
Publication of JP2003328389A publication Critical patent/JP2003328389A/en
Application granted granted Critical
Publication of JP3976615B2 publication Critical patent/JP3976615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、土質改良装置制御装置関する。
【0002】
【従来の技術】
道路に例えば管埋設用の溝を掘削し、このときの掘削土と改良材とを解砕、混合して製作した改良土を前記溝に埋め戻すことにより、前記掘削土を再利用する工法が多く採用されている。このような埋め戻しに用いる改良土は、その強度を保持するために、原料土(掘削土)と改良材との混合比を所定の一定値にすることが規定により要求されている。このために、この混合比を目標値として改良材の供給量を制御するものが提案されている。
【0003】
例えば特開平9−67830号公報には、改良材ホッパから回転速度に応じた量の改良材を供給する改良材フィーダで混合機へ改良材を供給し、また原料土ホッパから回転速度に応じた量の原料土を供給する原料土フィーダで混合機へ原料土を供給し、それぞれのフィーダの回転速度を供給量(容積)が所定値になるように制御して、目標の混合比を得るようにした土質改良機械の制御装置が記載されている。
【0004】
また特開2001−303546号公報には、改良土の重量を計測すると共に、改良材の供給容積及びその比重から改良材添加重量を求め、前記実測した改良土重量から前記求めた改良材添加重量を引くことにより原料土供給重量を求め、求めた原料土供給重量に応じて改良材の供給量を制御するようにした自走式土質改良機械が記載されている。
【0005】
【発明が解決しようとする課題】
原料土に対する改良材の混合比が通常、重量/容積(Kg/m3)又は重量/重量(Kg/Kg)で規定されているように、混合比における改良材の添加重量は重要な制御要素である。すなわち、混合に際して、改良材の添加重量を精度良く管理することが良質の改良土を製作する上で重要である。
ところが、通常、土質改良に用いられる石灰などの改良材は袋詰された粉状のものが多い。このため、袋詰の状態で運搬し、長期間保管している間に締め固まってしまい、袋内の改良材の比重が製作当初の仕様値よりも大きくなっている場合がある。このような場合、上記従来のような混合の制御では、混合比を精度良く制御できないことになる。
【0006】
すなわち、特開平9−67830号公報に記載の土質改良機械においては、改良材の比重は一定という条件の基で、改良材供給量(容積)を制御することにより、等価的に添加重量を管理しているため、上記のように改良材の比重が仕様値と異なっている場合には、混合比を精度良く管理できないという問題が生じる。また、実際の比重が仕様値よりも大きい場合には、容積で管理しているため規定添加重量よりも多めに改良材を供給することになるため、改良材の無駄な使用量が多くなり、改良土の製作コストが嵩むという問題もある。
【0007】
また、改良材の消費量の実績値(例えば、改良材袋の使用数から計算した量)と、上記のように容積管理により制御した結果での添加量の計算値(制御値)との差に基づいて、制御装置内での上記計算に用いる改良材比重の補正値をオペレータが入力するといった補正方法をとっているものも見られる。しかしながら、この方法ではオペレータがその都度補正しなければならないので、補正作業が煩わしい。
【0008】
また、特開2001−303546号公報に記載のものでは、改良土の重量は実測しているが、改良材の添加重量はその供給容積及びその比重から演算により求めているので、上記と同じく実際の比重と仕様値の比重との差異から生じる混合比の精度の低下が問題となっている。
【0009】
本発明は、上記の問題点に着目してなされたもので、締め固め等によって改良材の比重が変化しても、改良材と原料土との混合比の精度を向上できる土質改良装置制御装置を提供することを目的としている。
【0010】
【課題を解決するための手段、作用及び効果】
上記目的を達成するため、第1発明は、土質改良装置の制御装置において、改良材ホッパから改良材フィーダにより供給する改良材の重量を測定する改良材重量測定手段と、測定した改良材重量に基づき、改良材の供給量を制御する制御器と、原料土重量、原料土密度、原料土処理重量に対する改良材添加重量の比である重量添加率、原料土の含水比、改良材比重の値を入力して設定する操作部とを備え、前記制御器は、原料土の単位体積当たりの改良材添加重量を表す改良材添加重量比を、前記操作部により設定された原料土密度、重量添加率、原料土の含水比の値に基づき、数式「 V q × Vj × (1-j) 」により演算する演算部と、前記改良材重量測定手段により測定した実測改良材添加重量の積算値と、前記改良材フィーダの供給速度検出値から求めた改良材添加重量計算値の積算値とに基づき、数式「 Kv Va Vs 」により単位体積当たりの改良材重量を表す改良材比重の修正係数を演算する演算部と、前記改良材添加重量比前記修正係数と前記操作部により設定された改良材比重の初期値との乗算を基に、前記修正係数と前回までの改良材比重の演算値とに基づき数式「 Cn Kv × Cn-1 」により演算された改良材比重、及び前記操作部により設定された原料土重量と原料土密度に基づき、数式「( Wj × V )/( q × Cn )」により改良材添加速度目標値を求める演算部とを有し、前記改良材添加速度目標値に基づき前記改良材フィーダからの改良材供給量を制御する構成としている。
【0015】
第1発明によれば、改良材重量を実測し、この実測した改良材添加重量の積算値、改良材フィーダの供給速度検出値から求めた改良材添加重量計算値の積算値による除算に基づき、改良材比重の修正係数を演算し、改良材添加重量比と、前記修正係数により修正された改良材比重と、前記操作部により設定された原料土重量と原料土密度とに基づき、改良材添加速度目標値を求め、この改良材添加速度目標値に基づき改良材の供給量を制御するので、改良材の締め固めによる比重の変化があっても、原料土と改良材との混合比を精度良く制御できる。
【0016】
発明は、第発明において前記制御器は、改良材重量測定値の外乱が発生したときには、前記改良材比重の修正係数の更新を中止し、直前の修正係数を用いて制御する構成としている。
【0017】
発明によれば、例えばロードセルなどのような改良材重量測定手段を改良材ホッパの下部に設けて、改良材ホッパ自体の重量も含めた重量測定値に基づき改良材供給重量を測定している場合、該ホッパ内に改良材を投入したり、メンテナンス作業員が該ホッパに登ったり、又は車両の振動が発生した際、この時の重量測定値に変動が生じ、これが重量測定値の外乱となる。本発明によると、例えば改良材重量の測定値が所定の傾きよりも大きな傾きで変動したときなどには外乱と判断し、この外乱の影響を受けないように前記改良材比重の修正係数の更新を中止し、直前の修正係数を用いて制御するので、精度良く改良材の供給重量を制御できる。
【0018】
発明は、第2発明において、前記制御器は、前記改良材比重の修正係数の更新を中止している間は、オペレータに注意を促す警報や表示を行う構成としている。
【0019】
発明によれば、改良材重量測定値の外乱発生により改良材比重の修正係数の更新を中止している間は、警報や表示を行ってオペレータに注意を促すので、オペレータに改良材重量測定の外乱発生中であることを認識させることができる
【0020】
【発明の実施の形態】
以下に、本発明の実施形態について図面を参照して詳細に説明する。
図1は、発明に係る自走式土質改良機の側面図である。また、図2は改良材ホッパ取付部の正面図であり、図1のX視図である。これらの図において、自走式土質改良機1はクローラ式走行装置を有する下部走行体2を備え、下部走行体2の上部に基台3を取付けている。そして、該基台3の前後方向一側上部には原料土ホッパ5を備え、原料土ホッパ5の下方には原料土を搬送するコンベア等からなる原料土フィーダ8を配設している。また、基台3の略中央上部には混合機7が搭載されており、前記原料土フィーダ8の搬送下流側端部は前記混合機7の投入口に向けて配設されている。
【0021】
原料土ホッパ5と混合機7との間で、原料土フィーダ8の上方には、改良材を貯溜する改良材ホッパ6が設けられている。また、改良材ホッパ6の下部には図示しない回転フィーダの回転速度を制御することにより改良材供給量を制御可能とされた改良材フィーダ6bが配設され、さらに該改良材フィーダ6bの図示しない改良材排出口には改良材シュータ6aが設けられており、原料土フィーダ8で搬送される原料土に改良材シュータ6aを経由して改良材が供給されるようになっている。
【0022】
また、混合機7の下方には、改良土を搬出する搬出コンベア9が配設されており、該搬出コンベア9の下流側は基台3より前後方向他端側外方に向けて上向きに設けられている。そして、搬出コンベア9の中間部の所定区間には、該区間のコンベア上の改良土の重量を測定するコンベアスケール12が設けられている。
【0023】
図2に示すように、改良材ホッパ6の下部には改良材添加重量を測定するロードセル11が設けられており、改良材ホッパ6はロードセル11を介して基台3上に搭載されている。このロードセル11は、改良材ホッパ6及び改良材フィーダ6bの重量と該改良材ホッパ6及び改良材フィーダ6b内の改良材の重量とを測定している。
【0024】
図3は、本土質改良機の制御装置の構成ブロック図である。
本制御装置は、全体の制御シーケンス実行を司る制御器10を備えている。制御器10はコンピュータ等の高速演算装置を有しており、前記ロードセル11が所定時間毎に測定した重量値、及び前記コンベアスケール12が所定時間毎に測定した改良土重量値をそれぞれ入力し、これらの入力データに基づき後述の所定の演算処理を行ない、改良材フィーダ6bの回転数及び原料土フィーダ8の搬送速度を制御している。
【0025】
また、制御装置は操作部18を備えており、オペレータの操作によって操作部18から後述のような作業量(単位時間当りの原料土処理量)目標値、原料土比重、添加率(原料土処理重量に対する改良材添加重量の比)、原料土の含水比(単位重量の原料土に含まれる水の重量)、及び改良材比重(改良材比重の初期値)などの値が入力され、作業開始前に予め制御器10に設定される。
【0026】
流量制御弁13は2つの制御弁13a,13bを備えており、一方の第1制御弁13aは制御器10が後述の制御処理に基づき演算して求めた原料土フィーダ8の駆動油圧モータ14の流量指令を受けて、図示しない油圧ポンプから吐出された圧油を制御して前記流量指令に応じた流量を出力し、駆動油圧モータ14の回転数を制御している。また、他方の第2制御弁13bは、制御器10から改良材フィーダ6bの駆動油圧モータ15の流量指令を受けて、図示しない油圧ポンプから吐出された圧油を制御して前記流量指令に応じた流量を出力し、駆動油圧モータ15の回転数を制御している。
なお、上記では、原料土フィーダ8の搬送速度及び改良材フィーダ6bの回転数の制御を行う場合について記述したが、いずれか一方のみの制御でもよい。
【0027】
次に、図4に示す制御機能ブロック図に基づき、制御器10の演算処理手順を説明する。なお、図4で、各機能を表すブロック内にはオペレータにより設定されるデータ、又は演算により求められるそれぞれのデータ名等を記載している。
【0028】
オペレータは、予め原料土重量Wj、原料土密度q、重量添加率Vj、含水比j、原料土体積修正係数Kw、改良材比重C及び改良材比重修正係数Kvを制御器10に設定しておく。ここで、原料土重量Wjは目標作業量の時間当りの原料土重量Wj(単位:例えばt/H)であり、原料土密度qは単位体積当りの原料土重量(単位:例えばt/m)を表し、重量添加率Vjは単位重量の原料土に対する改良材の重量添加割合(単位:例えば%)を表し、また含水比jは単位重量の原料土内の水分の重量比(単位:例えば%)を表している。また、原料土体積修正係数Kwは、詳細は後述するように使用原料土重量の実績(実測値に略近い)と計算値とのずれに応じて目標作業量の原料土体積を修正するための係数で、その初期値は通常1に設定される。さらにまた、改良材比重Cは単位体積当りの改良材の重量(単位:例えばt/m)であり、改良材比重修正係数Kvは、目標改良材添加体積を演算するために用いる前記改良材比重Cを、改良材添加重量の実測値と計算値とのずれに応じて修正するための係数で、その初期値は通常1に設定される。
【0029】
制御器10は制御開始時に、まず、原料土体積演算部27で、前記設定された原料土重量Wj及び原料土密度qに基づき、目標作業量として、時間当り処理する原料土体積W(単位:例えばm/H)を数式「W=Wj/q」により求める。
【0030】
そして、制御時は、まず理論原料土体積演算部28で、この時間当り処理する原料土体積Wと、前記設定された原料土体積修正係数Kwとに基づき、時間当り処理する理論原料土体積W0を数式「W0=W/Kw」によって求める。
次に、原料土フィーダ目標速度演算部29で、前記求めた時間当りの理論原料土体積W0を満たす原料土フィーダ8の目標速度を演算し、これを速度指令Caとして出力する。そして、原料土フィーダ速度制御部30は、この速度指令Caと、原料土フィーダ8の速度センサ16からの速度フィードバック信号との偏差値に応じて前記流量制御弁13の第1制御弁13aの流量を制御し、原料土フィーダ8の駆動油圧モータ14の回転数を制御する。
【0031】
また、制御器10は制御開始時に、まず改良材添加重量比演算部32で、前記設定された原料土密度q、重量添加率Vj及び含水比jに基づき、単位体積当りの原料土から水分を除いた真の原料土に対する改良材の添加重量比V(単位:例えばkg/m)を、数式「V=q×Vj×(1−j)」によって求める。
【0032】
そして、制御時は、まず理論改良材添加体積比演算部34で、前記求めた真の原料土に対する改良材の添加重量比Vと、前記設定された改良材比重修正係数Kvによって修正された改良材比重Cn(=Cn-1×Kv、但しnは所定サーボ演算周期時間毎の演算回数を表す)に基づき、原料土に対する改良材添加体積を表す理論改良材添加体積比VL (単位:例えばリットル/m)を数式「VL =V/Cn」によって演算する。次に、改良材添加速度演算部35で、この求めた理論改良材添加体積比VL と、前記求めた時間当り処理する原料土体積Wとに基づき、時間当りに要する改良材添加速度Q(単位:例えばリットル/H)を数式「Q=W×VL 」によって演算し、これを改良材添加速度目標値として出力する。
【0033】
次に、改良材フィーダ目標速度演算部36で、上記改良材添加速度Qを満たす改良材フィーダ6bの駆動油圧モータ15の速度を求め、これを速度指令Cbとして出力する。なお、この速度指令Cbは、改良材フィーダ6bの駆動油圧モータ15の回転速度と改良材添加量との関係を表す関係式又はデータテーブルに基づいて求められる。そして、改良材フィーダ速度制御部37で、この求めた速度指令Cbと、改良材フィーダ6bの速度センサ17からの速度フィードバック信号との偏差値に応じて前記流量制御弁13の第2制御弁13bの流量を制御し、改良材フィーダ6bの駆動油圧モータ15の回転数を制御する。
【0034】
さらに、積分器39で、速度センサ17からの速度フィードバック信号に基づく改良材フィーダ6bの速度の積分値S1を演算する。
次に、改良材添加重量積算値演算部40で、この積算値S1と、前記改良材比重Cnとから、前記駆動油圧モータ15の回転速度と改良材添加量との関係に基づき、改良材添加重量の積算計算値Vsを数式「Vs=S1×Cn」によって求める。この改良材添加重量の積算計算値Vsは、図示しない表示器に表示される。
【0035】
次に、積分器31で速度センサ16からの速度フィードバック信号に基づく原料土フィーダの積分値S2を演算する。そして、原料土体積積算値演算部42で、この積算値S2と前記原料土体積修正係数Kwとから、原料土体積積算値Waを数式「Wa=S2×Kw」によって求める。
【0036】
そして、第1原料土重量積算値演算部43で、この求めた原料土体積積算計算値Waと前記原料土密度qとに基づき、第1原料土重量積算値Wwを数式「Ww=Wa×q」によって演算する。
【0037】
また一方、搬出コンベア9に設けられたコンベアスケール12により測定された改良土重量値を、改良土測定重量積算値演算部45で作業開始時から積分して改良土測定重量積算値を求める。そして、次に、第2原料土重量積算値演算部47で、この求めた改良土測定重量積算値から前記演算した改良材添加重量積算計算値Vsを差し引いた原料土重量の積算値を第2原料土重量積算計算値Wsとして求める。
【0038】
さらに、原料土重量補正率演算部48で、この求めた第2原料土重量積算計算値Wsと、前記求めた第1原料土重量積算値Wwとの比Mを求める。
次に、原料土体積修正係数演算部25で、この求めた比Mを新たな原料土体積修正係数Kwとして更新する。
これにより、原料土の供給重量が、設定された原料土重量Wjと等しくなるように制御する。
【0039】
また、実測改良材添加重量積算値演算部46は、ロードセル11で測定した重量値から実測改良材添加重量積算値Vaを演算する。すなわち、所定時間毎の重量測定値と前回測定値との差がその間の改良材添加重量であり、この添加重量の積算値を求めている。
次に、改良材比重補正率演算部49で、この求めた実測改良材添加重量積算値Vaと、前記求めた改良材添加重量積算計算値Vsとの比Pを求める。そして、改良材比重修正係数演算部26で、この求めた比Pを新たな改良材比重修正係数Kvとして更新する。
【0040】
以上の処理を繰り返すことにより、改良材添加重量の実測値と計算値(制御値)とのずれの大きさに応じて、制御演算時に用いる改良材比重の大きさを補正することができ、また改良土重量の実測値と改良材添加重量の実測値との差から求めた原料土重量の実測値と計算値(制御値)とのずれの大きさに応じて、制御演算時に用いる原料土体積すなわち制御作業量目標値の大きさを適正に補正することができる。このため、改良材比重の設定値が実際値と異なっていても、適正値に補正され、これに基づいて改良材添加量及び原料土供給量が補正されて制御されるので、図5に示すように改良材添加重量すなわち改良材重量実測値の減少カーブが目標に略等しくなるように制御される。この結果、混合比精度が良い改良土を製作できる。
【0041】
ここで、実測改良材添加重量積算値演算部46での演算処理方法について図5〜図7により詳細に説明する。図5は、ロードセル11で測定した重量値の経過時間に対する変化を示している。
ロードセル11で測定した重量値は改良材ホッパ6と改良材フィーダ6b及びその中に貯溜されている改良材の合計重量を示しており、土質改良作業で改良材が添加されるに従ってその添加量に応じた傾斜角度で減少する。所定のサーボ演算周期時間Δtの間隔を有する時刻t1,t2の時に読み込まれたロードセル11の測定値の差値が、前回演算処理時から今回演算処理時までの間の改良材添加重量ΔVに相当する。そして、この改良材添加重量ΔVの積算値を実測改良材添加重量積算値Vaとする。
【0042】
一方、改良材ホッパ6内の貯溜改良材量が減少すると、作業員は新たな改良材袋から改良材ホッパ6内に投入するので、重量測定値は図6に示すようにステップ状に増加する。また、作業員が改良材ホッパ6回りの監視やメンテナンス等を行なう場合には改良材ホッパ6部に昇降して作業することがあり、この場合にも図7に示すようにステップ状の重量測定値の増減が起こる。また、自走式土質改良機の場合、走行しながら改良作業を行っている時に車体の振動に伴って重量測定値が変動することもある。このような重量測定値の急激な増減は、前述の実測改良材添加重量積算値Vaの演算処理においては誤差要因(ノイズ)となるので、この影響を除去するために以下の処理が成される。
【0043】
(誤差要因の発生判定)
下記の少なくともいずれかの場合に、誤差要因の発生と判定される。
(1)重量測定値がこれまでの減少傾向による予測ラインから所定値以上大きく外れたとき
(2)重量測定値が所定値以上の傾斜角で急激に変化したとき
【0044】
(誤差要因の除去処理)
誤差要因の発生と判定したら、次のような処理が行なわれる。
(1)その時の急激な変化分の測定値は無視し、前述の原料土体積修正係数Kw及び改良材比重修正係数Kvの更新による補正演算を中止し、それまでの係数を用いて制御演算処理を行う。補正演算の中止の間は、チャイム等を鳴らしたり、警告ランプ等を点灯したり、警告メッセージを表示したりなど、オペレータに対して注意を促すようにする。
(2)誤差要因の発生後、重量測定値の急激な変化が安定したら、上記補正演算中止処理を自動的に解除し、測定値に基づく改良材添加重量及び実測改良材添加重量積算値Vaの演算を行ない、これによる上記各係数の更新、及びこの更新による補正演算を再開する。
なお、補正演算中止処理の解除方法としては上記に限らず、例えば、図示しない解除スイッチ等を設けてオペレータが改良材投入の完了後やメンテナンスで改良材ホッパ6部から降りた後にこの解除スイッチ等を手動で操作したとき、または所定時間経過後に自動的に、解除するようにしても構わない。
【0045】
このようにして、改良材重量の測定値に外乱が生じても、この外乱の影響を除去するように演算処理しているので、正確に改良材重量を測定でき、精度の良い混合比の改良土を製作できる。
また、エア圧送によって改良材を投入する場合の比重の変化や、改良材ホッパの上部と下部での比重の変化等があっても、正確に改良材の供給重量を管理できる。
【0046】
なお、上記実施形態では、改良材重量の測定手段にロードセルを用いた例で説明したが、これに限定されず、例えば歪ゲージ、又はコンベアスケール等を用いて重量を測定してもよい。
また、自走式土質改良機としてクローラ式走行装置を有する例で説明したが、車輪式であってもよい。
【0047】
さらに、実施形態では、改良材重量の実測値と演算値(制御値)とのずれ量に基づいて、このずれ量が小さくなるように改良材添加量の制御量を補正しているが、これに限らず、目標の混合比を満たすように改良材重量の前記実測値に応じた原料土供給重量とする制御を行なっても構わないことは勿論である。
また、改良材の添加重量を測定し、この測定値と改良材添加重量の計算値(制御値)とのずれ量に基づいて、このずれ量が小さくなるように改良材添加の制御量又は原料土供給制御量を補正するための演算方法は、上記に限定するものではない。例えば、改良材添加重量積算値Vsと改良材添加重量比Vとに基づき、前記原料土体積積算値Waを求めるようにしてもよい。
【0048】
以上説明したように、本発明によると、以下の効果を奏する。
改良材の添加重量を測定し、この測定値と改良材添加重量の計算値(制御値)とのずれ量に基づいて、このずれ量が小さくなるように改良材添加の制御量、又は原料土供給制御量を補正するので、改良材の締め固めによる比重の変化があっても、正確に改良材の供給重量を管理できる。このため、さらに精度良く原料土と改良材との混合比を管理して混合できるので、高品質の改良土を製作できる。ロードセル等の改良材重量測定センサを改良材ホッパの下部に設けたので、簡単な構成で取付けが容易であり、取付けスペースが小さくてすみ、製作コストを安くできる。また、改良材ホッパ内への改良材投入作業やホッパメンテナンス作業等の邪魔にならない位置に設けられるため、作業性が良い。
【0049】
また、改良材重量の測定に際して、改良材ホッパ内への新たな改良材の投入や改良材ホッパ回りでのメンテナンス作業、又は自走式の場合の車両の振動等により改良材重量の測定値に変動が生じても、この変動を自動的に検知して変動による影響を除去する演算処理を行なうようにしたので、正確に改良材重量を測定できる。
さらに、改良材の供給重量を精度良く管理して制御しているので、必要以上の余分な供給をすることがなく、改良材の使用量を低減できる。
【図面の簡単な説明】
【図1】本発明に係る自走式土質改良機の側面図である。
【図2】図1のX視図である。
【図3】本発明に係る制御装置の構成ブロック図である。
【図4】本発明に係る制御機能ブロック図である。
【図5】ロードセルで測定した重量値の経過時間に対する変化図である。
【図6】改良材投入時の重量測定値の変化図である。
【図7】改良材ホッパ部に人が昇降した場合の重量測定値の変化図である。
【符号の説明】
1…自走式土質改良機、2…下部走行体、3…基台、5…原料土ホッパ、6…改良材ホッパ、6a…改良材シュータ、6b…改良材フィーダ、7…混合機、8…原料土フィーダ、9…搬出コンベア、10…制御器、11…ロードセル、12…コンベアスケール、13…流量制御弁、14,15…駆動油圧モータ、16,17…速度センサ、18…操作部、25…原料土体積修正係数演算部、26…改良材比重修正係数演算部、27…原料土体積演算部、28…理論原料土体積演算部、29…原料土フィーダ目標速度演算部、30…原料土フィーダ速度制御部、32…改良材添加重量比演算部、34…理論改良材添加体積比演算部、35…改良材添加速度演算部、36…改良材フィーダ目標速度演算部、37…改良材フィーダ速度制御部、39…積分器、40…改良材添加重量積算値演算部、41…、42…原料土体積積算値演算部、43…第1原料土重量積算値演算部、44…、45…改良土測定重量積算値演算部、46…実測改良材添加重量積算値演算部、47…第2原料土重量積算値演算部、48…原料土重量補正率演算部、49…改良材比重補正率演算部。
[0001]
BACKGROUND OF THE INVENTION
  The present invention is a soil improvement device.ofControl deviceInRelated.
[0002]
[Prior art]
For example, a method for reusing the excavated soil by excavating a groove for embedding pipes on the road, crushing and mixing the excavated soil and the improved material at this time, and filling the groove with the improved soil Many have been adopted. In order to maintain the strength of such improved soil used for backfilling, the regulation requires that the mixing ratio of the raw material soil (excavated soil) and the improved material be a predetermined constant value. For this reason, there has been proposed one that controls the supply amount of the improved material with this mixing ratio as a target value.
[0003]
For example, in Japanese Patent Laid-Open No. 9-67830, the improvement material is supplied to the mixer by an improvement material feeder that supplies an improvement material in an amount corresponding to the rotation speed from the improvement material hopper, and from the raw soil hopper according to the rotation speed. The raw material soil is supplied to the mixer by the raw material soil feeder that supplies the amount of raw material soil, and the rotation speed of each feeder is controlled so that the supply amount (volume) becomes a predetermined value so as to obtain the target mixing ratio. A control device for the soil improvement machine is described.
[0004]
Japanese Patent Laid-Open No. 2001-303546 discloses that the weight of the improved soil is measured, the improved material added weight is obtained from the supply volume of the improved material and its specific gravity, and the obtained improved material added weight is obtained from the measured improved soil weight. A self-propelled soil improvement machine is described in which the material soil supply weight is obtained by subtracting the slag and the supply amount of the improving material is controlled according to the determined material soil supply weight.
[0005]
[Problems to be solved by the invention]
Mixing ratio of improving material to raw soil is usually weight / volume (Kg / mThree) Or weight / weight (Kg / Kg), as specified by weight / weight (Kg / Kg), the additive weight of the modifier in the mixing ratio is an important control factor. That is, when mixing, it is important to accurately control the added weight of the improving material in order to produce a high quality improved soil.
However, many improvement materials such as lime used for soil quality improvement are usually packed in powder. For this reason, it may be transported in a packed state and compacted during long-term storage, and the specific gravity of the improved material in the bag may be larger than the original specification value. In such a case, the mixing ratio cannot be accurately controlled by the conventional mixing control.
[0006]
That is, in the soil improvement machine described in Japanese Patent Application Laid-Open No. 9-67830, the added weight is controlled equivalently by controlling the supply amount (volume) of the improvement material under the condition that the specific gravity of the improvement material is constant. Therefore, when the specific gravity of the improved material is different from the specification value as described above, there arises a problem that the mixing ratio cannot be managed with high accuracy. In addition, when the actual specific gravity is larger than the specification value, since the volume is controlled, the improvement material is supplied more than the specified added weight, so the use amount of the improvement material is increased. There is also a problem that the production cost of the improved soil increases.
[0007]
Also, the difference between the actual value of consumption of the improved material (for example, the amount calculated from the number of used improved material bags) and the calculated value of the added amount (control value) as a result of the volume control as described above On the basis of the above, there is also a correction method in which an operator inputs a correction value of the improved material specific gravity used for the calculation in the control device. However, in this method, since the operator must correct each time, the correction work is troublesome.
[0008]
Moreover, in the thing of Unexamined-Japanese-Patent No. 2001-303546, although the weight of improved soil is measured, since the addition weight of improved material is calculated | required from the supply volume and its specific gravity, it is actually the same as the above. Decrease in the accuracy of the mixing ratio resulting from the difference between the specific gravity of the material and the specific gravity of the specification value is a problem.
[0009]
  The present invention has been made paying attention to the above problems, and even if the specific gravity of the improved material changes due to compaction or the like, the soil quality improving device can improve the accuracy of the mixing ratio of the improved material and the raw material soil.ofcontrolEquipmentIt is intended to provide.
[0010]
[Means, actions and effects for solving the problems]
  In order to achieve the above object, the first invention provides an improved material weight measuring means for measuring the weight of the improved material supplied from the improved material hopper by the improved material feeder in the control device of the soil quality improving device, and the improved improved material weight. Based onImprovement materialController to control the supply amount ofAnd an operation unit for inputting and setting values of the weight of raw material soil, the density of raw material soil, the weight addition ratio which is the ratio of the weight of the improved material added to the treated weight of the raw material soil, the moisture content of the raw material soil and the specific gravity of the improved materialThe controller includes an improvement material addition weight ratio representing an improvement material addition weight per unit volume of the raw soil., Based on the value of the raw soil density, weight addition rate, raw soil water content ratio set by the operation unit, V = q × Vj × (1-j) ByBased on the calculation unit to calculate, the integrated value of the actually measured improved material addition weight measured by the improved material weight measuring means, and the integrated value of the improved material addition weight calculated value obtained from the supply speed detection value of the improved material feeder,Formula " Kv = Va / Vs ByA calculation unit for calculating a correction coefficient of the specific gravity of the improved material that represents the weight of the improved material per unit volume, and the weight ratio of the improved material added,Correction factorAnd the initial value of the improved material specific gravity set by the operation unit, based on the correction coefficient and the calculated value of the improved material specific gravity up to the previous time, Cn = Kv × Cn-1 Improved material specific gravity, And raw soil weight and raw soil density set by the operation unitBased onFormula "( Wj × V ) / ( q × Cn ) "And a calculation unit that obtains a target value for improving material addition speed, and is configured to control the amount of improvement material supplied from the improving material feeder based on the target value for improving material addition speed.
[0015]
  According to the first invention, the weight of the improved material is measured, and the integrated value of the measured improved material addition weight is measured.of, Integrated value of the calculated weight of the improved material addition obtained from the feed rate detection value of the improved material feederDivide byBased on the above, the correction coefficient of the improved material specific gravity is calculated, the improved material addition weight ratio, and the improved material specific gravity corrected by the correction coefficient,The raw soil weight and raw soil density set by the operation unitBased onObtain the target value for improving material addition speed, and based on this target value for improving material addition speedSince the supply amount of the improved material is controlled, the mixing ratio of the raw material soil and the improved material can be accurately controlled even if there is a change in specific gravity due to compaction of the improved material.
[0016]
  First2Invention1In the invention,The controller is the weight of the improved materialmeasured valueDisturbanceWhen the problem occurs, the update of the correction coefficient for the improved material specific gravity is stopped, and control is performed using the correction coefficient immediately before.It is configured.
[0017]
  First2According to the invention, when an improved material weight measuring means such as a load cell is provided in the lower part of the improved material hopper, the improved material supply weight is measured based on a weight measurement value including the weight of the improved material hopper itself. When the improvement material is thrown into the hopper, when a maintenance worker climbs the hopper, or when the vibration of the vehicle occurs, the weight measurement value at this time fluctuates, and this becomes a disturbance of the weight measurement value. . According to the present invention, for example, when the measured value of the improved material weight fluctuates with a slope larger than a predetermined slope, it is determined as a disturbance, so that it is not affected by this disturbance.The update of the correction coefficient of the improved material specific gravity is stopped, and control is performed using the correction coefficient immediately before.SoAccurateImprovement materialSupplyWeightcontrolit can.
[0018]
  First3The invention2nd invention WHEREIN: While the said controller has stopped updating the correction coefficient of the said improved material specific gravity, the structure which performs the warning and display which call an operator's attention is stoppedIt is said.
[0019]
  First3According to the invention,While the update of the modified material specific gravity correction coefficient is stopped due to the occurrence of disturbance of the improved material weight measurement value, an alarm or display is given to alert the operator, so the operator is in the process of generating the improved material weight measurement disturbance. Can recognize.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a side view of a self-propelled soil improvement machine according to the invention. FIG. 2 is a front view of the improvement material hopper mounting portion, and is an X view of FIG. In these drawings, the self-propelled soil improvement machine 1 includes a lower traveling body 2 having a crawler traveling device, and a base 3 is attached to the upper portion of the lower traveling body 2. A raw soil hopper 5 is provided on the upper side of the base 3 in the front-rear direction, and a raw soil feeder 8 including a conveyor for transporting the raw soil is disposed below the raw soil hopper 5. In addition, a mixer 7 is mounted substantially at the upper center of the base 3, and the downstream end of the raw soil feeder 8 is disposed toward the inlet of the mixer 7.
[0021]
An improvement material hopper 6 for storing the improvement material is provided between the material soil hopper 5 and the mixer 7 and above the material soil feeder 8. Further, an improvement material feeder 6b that can control the supply amount of the improvement material by controlling the rotation speed of a rotation feeder (not shown) is disposed below the improvement material hopper 6, and the improvement material feeder 6b is not shown. An improvement material shooter 6a is provided at the improvement material discharge port, and the improvement material is supplied to the raw material soil conveyed by the raw material soil feeder 8 via the improvement material shooter 6a.
[0022]
A carry-out conveyor 9 for carrying out the improved soil is disposed below the mixer 7, and the downstream side of the carry-out conveyor 9 is provided upward from the base 3 toward the other end in the front-rear direction. It has been. And in the predetermined area of the intermediate part of the carry-out conveyor 9, the conveyor scale 12 which measures the weight of the improved soil on the conveyor of the area is provided.
[0023]
As shown in FIG. 2, a load cell 11 for measuring the weight of improvement material added is provided below the improvement material hopper 6, and the improvement material hopper 6 is mounted on the base 3 via the load cell 11. The load cell 11 measures the weight of the improved material hopper 6 and the improved material feeder 6b and the weight of the improved material in the improved material hopper 6 and the improved material feeder 6b.
[0024]
FIG. 3 is a block diagram showing the configuration of the control device for the main soil improvement machine.
The present control device includes a controller 10 that controls execution of the entire control sequence. The controller 10 has a high-speed computing device such as a computer, and inputs the weight value measured by the load cell 11 every predetermined time and the improved soil weight value measured by the conveyor scale 12 every predetermined time, Based on these input data, a predetermined calculation process, which will be described later, is performed to control the rotational speed of the improving material feeder 6b and the conveying speed of the raw material soil feeder 8.
[0025]
Further, the control device includes an operation unit 18, and the operation amount (raw material soil processing amount per unit time) target value, raw material soil specific gravity, addition rate (raw material soil treatment) as will be described later from the operation unit 18 by operation of the operator. The values such as the ratio of the weight of the improved material added to the weight), the moisture content of the raw material soil (the weight of water contained in the raw material soil of unit weight), and the improved material specific gravity (the initial value of the improved material specific gravity) are entered, and work begins. The controller 10 is set in advance.
[0026]
The flow rate control valve 13 includes two control valves 13a and 13b. One of the first control valves 13a is a drive hydraulic motor 14 of the raw soil feeder 8 obtained by the controller 10 based on a control process described later. In response to the flow rate command, the hydraulic oil discharged from a hydraulic pump (not shown) is controlled to output a flow rate corresponding to the flow rate command, thereby controlling the rotational speed of the drive hydraulic motor 14. The other second control valve 13b receives a flow command for the drive hydraulic motor 15 of the improvement material feeder 6b from the controller 10 and controls the pressure oil discharged from a hydraulic pump (not shown) to respond to the flow command. The flow rate is output and the rotational speed of the drive hydraulic motor 15 is controlled.
In the above description, the case where the conveyance speed of the raw soil feeder 8 and the rotation speed of the improvement material feeder 6b are controlled has been described, but only one of the controls may be performed.
[0027]
Next, the calculation processing procedure of the controller 10 will be described based on the control function block diagram shown in FIG. In FIG. 4, data set by an operator or each data name obtained by calculation is described in a block representing each function.
[0028]
The operator sets the material soil weight Wj, material soil density q, weight addition rate Vj, water content ratio j, material soil volume correction coefficient Kw, improved material specific gravity C and improved material specific gravity correction coefficient Kv in the controller 10 in advance. . Here, the raw material soil weight Wj is the raw material soil weight Wj per unit time (for example, t / H), and the raw material soil density q is the raw material soil weight per unit volume (for example, t / m).3The weight addition rate Vj represents the weight addition ratio (unit: eg,%) of the improving material to the unit weight of the raw soil, and the water content ratio j is the weight ratio (unit: eg, the water content in the unit weight of the raw soil). %). The raw soil volume correction coefficient Kw is used to correct the raw soil volume of the target work amount according to the deviation between the actual raw material weight used (substantially close to the actual measurement value) and the calculated value, as will be described in detail later. The coefficient is usually set to an initial value of 1. Furthermore, the specific gravity C of the improved material is the weight of the improved material per unit volume (unit: eg t / m).3The improvement material specific gravity correction coefficient Kv is used to correct the improvement material specific gravity C used for calculating the target improvement material addition volume according to the deviation between the actual measurement value and the calculation value of the improvement material addition weight. The coefficient is usually set to an initial value of 1.
[0029]
At the start of control, the controller 10 starts with the material soil volume calculation unit 27, based on the set material soil weight Wj and material soil density q, as the target work amount, the material soil volume W (unit: For example, m3/ H) is determined by the formula “W = Wj / q”.
[0030]
At the time of control, first, the theoretical raw soil volume calculation unit 28 performs the theoretical raw soil volume W0 to be processed per hour based on the raw soil volume W to be processed per hour and the set raw soil volume correction coefficient Kw. Is calculated by the formula “W0 = W / Kw”.
Next, the raw material feeder target speed calculation unit 29 calculates the target speed of the raw material soil feeder 8 that satisfies the obtained theoretical raw material soil volume W0 per time, and outputs this as a speed command Ca. Then, the material soil feeder speed control unit 30 determines the flow rate of the first control valve 13a of the flow rate control valve 13 according to the deviation value between the speed command Ca and the speed feedback signal from the speed sensor 16 of the material soil feeder 8. And the rotational speed of the drive hydraulic motor 14 of the raw soil feeder 8 is controlled.
[0031]
Further, at the start of the control, the controller 10 firstly improves the additive material weight ratio calculation unit 32 to extract moisture from the material soil per unit volume based on the set material soil density q, weight addition rate Vj and water content ratio j. Addition weight ratio V of improved material to the true raw soil removed (unit: eg kg / m3) Is obtained by the mathematical expression “V = q × Vj × (1-j)”.
[0032]
At the time of control, first, the theoretically improved material addition volume ratio calculation unit 34 performs the improvement corrected by the obtained addition weight ratio V of the improved material with respect to the true raw soil and the set improved material specific gravity correction coefficient Kv. Based on the material specific gravity Cn (= Cn-1 × Kv, where n represents the number of operations per predetermined servo operation cycle time), the theoretically improved material addition volume ratio VL (unit: liter, for example) representing the improvement material addition volume with respect to the raw soil / M3) Is calculated by the formula "VL = V / Cn". Next, the improvement material addition speed calculation unit 35 determines the improvement material addition speed Q (unit) required per time based on the obtained theoretical improvement material addition volume ratio VL and the obtained raw material soil volume W to be processed per time. : Liter / H, for example, is calculated by the mathematical formula “Q = W × VL”, and this is output as the target value for the improvement material addition speed.
[0033]
Next, the improvement material feeder target speed calculation unit 36 obtains the speed of the drive hydraulic motor 15 of the improvement material feeder 6b that satisfies the above-described improvement material addition speed Q, and outputs this as a speed command Cb. The speed command Cb is obtained based on a relational expression or a data table that represents the relationship between the rotational speed of the drive hydraulic motor 15 of the improvement material feeder 6b and the addition amount of the improvement material. Then, the improvement material feeder speed control unit 37 determines the second control valve 13b of the flow rate control valve 13 in accordance with the deviation value between the obtained speed command Cb and the speed feedback signal from the speed sensor 17 of the improvement material feeder 6b. And the rotational speed of the drive hydraulic motor 15 of the improvement material feeder 6b is controlled.
[0034]
Further, the integrator 39 calculates an integral value S1 of the speed of the improved material feeder 6b based on the speed feedback signal from the speed sensor 17.
Next, the improved material addition weight integrated value calculation unit 40 adds the improved material based on the relationship between the rotation value of the drive hydraulic motor 15 and the improved material addition amount from the integrated value S1 and the improved material specific gravity Cn. The weight integrated calculation value Vs is obtained by the equation “Vs = S1 × Cn”. The total calculated value Vs of the improved material addition weight is displayed on a display (not shown).
[0035]
Next, the integrator 31 calculates the integrated value S2 of the raw soil feeder based on the speed feedback signal from the speed sensor 16. Then, the material soil volume integrated value calculation unit 42 obtains the material soil volume integrated value Wa from the integrated value S2 and the material soil volume correction coefficient Kw by the formula “Wa = S2 × Kw”.
[0036]
Then, the first material soil weight integrated value calculation unit 43 calculates the first material soil weight integrated value Ww based on the calculated material soil volume integrated calculation value Wa and the material soil density q, using the formula “Ww = Wa × q”. To calculate.
[0037]
On the other hand, the improved soil weight value measured by the conveyor scale 12 provided on the carry-out conveyor 9 is integrated by the improved soil measured weight integrated value calculation unit 45 from the start of the operation to obtain the improved soil measured weight integrated value. Then, in the second raw material soil weight integrated value calculation unit 47, the integrated value of the raw material soil weight obtained by subtracting the calculated improved material addition weight integrated calculation value Vs from the calculated improved soil measured weight integrated value is a second value. Obtained as a raw soil weight integrated calculation value Ws.
[0038]
Further, the material soil weight correction factor calculation unit 48 obtains a ratio M between the calculated second material soil weight integrated value Ws and the calculated first material soil weight integrated value Ww.
Next, in the raw soil volume correction coefficient calculation unit 25, the obtained ratio M is updated as a new raw soil volume correction coefficient Kw.
Thereby, the supply weight of the raw material soil is controlled to be equal to the set raw material soil weight Wj.
[0039]
The actually measured improved material addition weight integrated value calculation unit 46 calculates the actually measured improved material addition weight integrated value Va from the weight value measured by the load cell 11. That is, the difference between the weight measurement value for each predetermined time and the previous measurement value is the weight of the additive added in the meantime, and the integrated value of this addition weight is obtained.
Next, the improved material specific gravity correction rate calculating unit 49 obtains a ratio P between the obtained actual measured improved material addition weight integrated value Va and the obtained improved material added weight integrated calculated value Vs. Then, the improved material specific gravity correction coefficient calculator 26 updates the obtained ratio P as a new improved material specific gravity correction coefficient Kv.
[0040]
By repeating the above processing, the magnitude of the specific gravity of the improved material used at the time of the control calculation can be corrected according to the magnitude of the deviation between the actually measured value and the calculated value (control value) of the improved material added weight. The volume of the raw material soil used in the control calculation according to the difference between the measured value of the raw material soil weight and the calculated value (control value) obtained from the difference between the actual measured value of the improved soil weight and the actual value of the added weight of the improved material That is, the control work amount target value can be appropriately corrected. For this reason, even if the set value of the specific gravity of the improved material is different from the actual value, it is corrected to an appropriate value, and based on this, the improved material addition amount and the raw soil supply amount are corrected and controlled. Thus, the reduction curve of the improved material addition weight, that is, the improved material weight actual measurement value is controlled to be substantially equal to the target. As a result, improved soil with good mixing ratio accuracy can be produced.
[0041]
Here, the calculation processing method in the actually measured improved material addition weight integrated value calculation unit 46 will be described in detail with reference to FIGS. FIG. 5 shows the change of the weight value measured by the load cell 11 with respect to the elapsed time.
The weight value measured by the load cell 11 indicates the total weight of the improvement material hopper 6, the improvement material feeder 6b, and the improvement material stored therein, and the addition amount increases as the improvement material is added in the soil improvement work. Decrease at the corresponding tilt angle. The difference value of the measured value of the load cell 11 read at the times t1 and t2 having the predetermined servo calculation cycle time Δt corresponds to the improvement material addition weight ΔV from the previous calculation process to the current calculation process. To do. Then, the integrated value of the improved material addition weight ΔV is set as the actually measured improved material addition weight integrated value Va.
[0042]
On the other hand, when the amount of the storage improvement material in the improvement material hopper 6 decreases, the worker puts the improvement material bag into the improvement material hopper 6 from a new improvement material bag, so that the weight measurement value increases stepwise as shown in FIG. . Further, when the worker performs monitoring or maintenance around the improvement material hopper 6, the operator may move up and down to the improvement material hopper 6 part, and in this case as well, stepped weight measurement is performed as shown in FIG. The value increases or decreases. In the case of a self-propelled soil improvement machine, the weight measurement value may fluctuate with the vibration of the vehicle body when the improvement work is performed while traveling. Such a rapid increase / decrease in the weight measurement value causes an error factor (noise) in the calculation processing of the above-described actually measured improved material addition weight integrated value Va, and thus the following processing is performed to remove this influence. .
[0043]
(Determination of error factors)
It is determined that an error factor has occurred in at least one of the following cases.
(1) When the weight measurement value deviates more than the predetermined value from the predicted line due to the decreasing trend so far
(2) When the weight measurement value suddenly changes at an inclination angle greater than or equal to a predetermined value
[0044]
(Error elimination process)
If it is determined that an error factor has occurred, the following processing is performed.
(1) Ignore the measured value of the sudden change at that time, stop the correction calculation by updating the raw material soil volume correction coefficient Kw and the improved material specific gravity correction coefficient Kv, and perform the control calculation process using the coefficients so far I do. While the correction calculation is stopped, the operator is alerted by sounding a chime, turning on a warning lamp, or displaying a warning message.
(2) When the rapid change in the weight measurement value is stabilized after the occurrence of the error factor, the correction calculation stop processing is automatically canceled, and the improvement material addition weight based on the measurement value and the actually measured improvement material addition weight integrated value Va The calculation is performed, and the update of each coefficient and the correction calculation by the update are restarted.
The method for canceling the correction calculation stop processing is not limited to the above. For example, a release switch (not shown) or the like is provided, and after the operator finishes the introduction of the improved material or after getting off the improved material hopper 6 for maintenance, the release switch or the like is used. You may make it cancel | release, when operating manually or after predetermined time progress.
[0045]
In this way, even if a disturbance occurs in the measured value of the improved material weight, the calculation process is performed so as to eliminate the influence of this disturbance, so the improved material weight can be measured accurately and the mixing ratio can be improved with high accuracy. You can make soil.
In addition, even if there is a change in specific gravity when the improved material is introduced by air pumping or a change in specific gravity between the upper and lower portions of the improved material hopper, the supply weight of the improved material can be accurately managed.
[0046]
In the above embodiment, an example in which a load cell is used as the improvement material weight measuring means has been described. However, the present invention is not limited to this, and the weight may be measured using, for example, a strain gauge or a conveyor scale.
Moreover, although demonstrated by the example which has a crawler type traveling apparatus as a self-propelled soil improvement machine, a wheel type may be sufficient.
[0047]
Furthermore, in the embodiment, the control amount of the improvement material addition amount is corrected so as to reduce the deviation amount based on the deviation amount between the actually measured value of the improvement material weight and the calculated value (control value). Of course, it is possible to control the material soil supply weight according to the actually measured value of the improved material weight so as to satisfy the target mixing ratio.
Also, the additive weight of the improved material is measured, and based on the amount of deviation between this measured value and the calculated value (control value) of the improved material added weight, the control amount or raw material of the improved material is added so that the deviation amount is reduced. The calculation method for correcting the soil supply control amount is not limited to the above. For example, the raw material soil volume integrated value Wa may be obtained based on the improved material added weight integrated value Vs and the improved material added weight ratio V.
[0048]
As described above, according to the present invention, the following effects can be obtained.
Based on the amount of deviation between this measured value and the calculated value (control value) of the improved material added weight, the controlled amount of the improved material added or the raw material soil is reduced so that the amount of deviation is reduced. Since the supply control amount is corrected, even if there is a change in specific gravity due to compaction of the improved material, the supply weight of the improved material can be managed accurately. For this reason, since the mixing ratio of the raw material soil and the improved material can be controlled and mixed with higher accuracy, a high quality improved soil can be produced. Since an improved material weight measuring sensor such as a load cell is provided in the lower part of the improved material hopper, it can be easily installed with a simple structure, requires a small installation space, and can be manufactured at low cost. In addition, the workability is good because it is provided at a position that does not interfere with the work of introducing the improver into the improver hopper or the hopper maintenance work.
[0049]
In addition, when measuring the weight of the improved material, the measured value of the improved material weight is obtained by introducing a new improved material into the improved material hopper, performing maintenance work around the improved material hopper, or vibration of the vehicle in the case of self-propelled Even if fluctuations occur, the weight of the improved material can be accurately measured because the calculation process for automatically detecting the fluctuations and removing the influence of the fluctuations is performed.
Furthermore, since the supply weight of the improved material is accurately managed and controlled, the amount of the improved material used can be reduced without excessive supply more than necessary.
[Brief description of the drawings]
FIG. 1 is a side view of a self-propelled soil improvement machine according to the present invention.
2 is an X view of FIG. 1;
FIG. 3 is a configuration block diagram of a control device according to the present invention.
FIG. 4 is a control function block diagram according to the present invention.
FIG. 5 is a change diagram of the weight value measured by the load cell with respect to the elapsed time.
FIG. 6 is a change diagram of a weight measurement value at the time of introducing an improved material.
FIG. 7 is a change diagram of weight measurement values when a person moves up and down on the improved material hopper.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Self-propelled soil improvement machine, 2 ... Lower traveling body, 3 ... Base, 5 ... Raw material hopper, 6 ... Improvement material hopper, 6a ... Improvement material shooter, 6b ... Improvement material feeder, 7 ... Mixer, 8 ... Raw material soil feeder, 9 ... Unloading conveyor, 10 ... Controller, 11 ... Load cell, 12 ... Conveyor scale, 13 ... Flow control valve, 14, 15 ... Drive hydraulic motor, 16, 17 ... Speed sensor, 18 ... Operation unit, 25 ... Raw material volume correction coefficient calculating unit 26 ... Improved material specific gravity correction coefficient calculating unit 27 ... Raw material volume calculating unit 28 ... Theoretical raw material soil volume calculating unit 29 ... Raw material feeder target speed calculating unit 30 ... Raw material Soil feeder speed control unit, 32 ... improving material addition weight ratio calculation unit, 34 ... theoretical improvement material addition volume ratio calculation unit, 35 ... improving material addition speed calculation unit, 36 ... improving material feeder target speed calculating unit, 37 ... improving material Feeder speed control unit, 39 Integrator: 40 ... improved material addition weight integrated value calculating unit, 41 ..., 42 ... raw material soil volume integrated value calculating unit, 43 ... first raw material soil weight integrated value calculating unit, 44 ..., 45 ... improved soil measured weight integrated value Calculation unit 46... Actual improved material addition weight integrated value calculation unit 47. Second raw material soil weight integrated value calculation unit 48. Raw material soil weight correction rate calculation unit 49.

Claims (3)

土質改良装置の制御装置において、
改良材ホッパ(6) から改良材フィーダ(6b)により供給する改良材の重量を測定する改良材重量測定手段(11)と、測定した改良材重量に基づき、改良材の供給量を制御する制御器(10)と、
原料土重量 (Wj) 、原料土密度 (q) 、原料土処理重量に対する改良材添加重量の比である重量添加率 (Vj) 、原料土の含水比 (j) 、改良材比重 (C) の値を入力して設定する操作部 (18) を備え、
前記制御器(10)は、
原料土の単位体積当たりの改良材添加重量を表す改良材添加重量比(V) を、前記操作部 (18) により設定された原料土密度 (q) 、重量添加率 (Vj) 、原料土の含水比 (j) の値に基づき、数式「 V q × Vj × (1-j) 」により演算する演算部と、
前記改良材重量測定手段(11)により測定した実測改良材添加重量の積算値(Va)と、前記改良材フィーダ(6b)の供給速度検出値から求めた改良材添加重量計算値の積算値(Vs)とに基づき、数式「 Kv Va Vs 」により単位体積当たりの改良材重量を表す改良材比重の修正係数(Kv)を演算する演算部と、
前記改良材添加重量比(V) 前記修正係数(Kv)と前記操作部 (18) により設定された改良材比重 (C) の初期値との乗算を基に、前記修正係数 (Kv) と前回までの改良材比重 (Cn-1) の演算値とに基づき数式「 Cn Kv × Cn-1 」により演算された改良材比重(Cn)、及び前記操作部 (18) により設定された原料土重量 (Wj) と原料土密度 (q) に基づき、数式「( Wj × V )/( q × Cn )」により改良材添加速度目標値(Q) を求める演算部とを有し、
前記改良材添加速度目標値(Q) に基づき前記改良材フィーダ(6b)からの改良材供給量を制御する
ことを特徴とする土質改良装置の制御装置。
In the control device of the soil improvement device,
Improvement material weight measuring means (11) for measuring the weight of the improved material supplied from the improved material hopper (6) by the improved material feeder (6b), and control for controlling the supply amount of the improved material based on the measured improved material weight. Vessel (10) ,
Raw soil material weight (Wj), raw soil density of (q), the weight addition rate is the ratio of the modifying material addition weight to the raw soil material processing weight (Vj), water content ratio of the raw soil material (j), modifying material specific gravity (C) comprising an operation unit for setting by inputting a value and (18),
The controller (10)
The improvement material addition weight ratio (V) representing the improvement material addition weight per unit volume of the raw material soil, the raw material soil density (q) , the weight addition rate (Vj) set by the operation unit (18) , Based on the value of the water content (j) , an arithmetic unit that calculates by the formula “ V = q × Vj × (1-j) ,
Integrated value (Va) of the actually measured improved material addition weight measured by the improved material weight measuring means (11), and the integrated value of the improved material added weight calculated value obtained from the feed rate detection value of the improved material feeder (6b) ( Vs), and a calculation unit that calculates a correction coefficient (Kv) of the improved material specific gravity that represents the improved material weight per unit volume by the formula “ Kv = Va / Vs ;
Weight ratio of improved material added (V) , Based on the multiplication of the correction coefficient (Kv) and the initial value of the improved material specific gravity (C) set by the operating unit (18) , the correction coefficient (Kv) and the improved material specific gravity (Cn- The improved material specific gravity (Cn) calculated by the formula “ Cn = Kv × Cn-1 based on the calculated value of 1 ) , and the material soil weight (Wj) and material soil density set by the operation unit (18) (q) based on (q) , and a calculation unit for obtaining a target value (Q) for improving material addition rate by the formula “( Wj × V ) / ( q × Cn )” ,
A control device for a soil improvement device, which controls an improvement material supply amount from the improvement material feeder (6b) based on the improvement material addition speed target value (Q).
請求項1記載の土質改良装置の制御装置において、
前記制御器(10)は、改良材重量測定値の外乱が発生したときには、前記改良材比重の修正係数(Kv)の更新を中止し、直前の修正係数(Kv)を用いて制御することを特徴とする土質改良装置の制御装置。
In the control device of the soil improvement device according to claim 1,
The controller (10) stops updating the correction coefficient (Kv) of the improved material specific gravity when the disturbance of the improved material weight measurement value occurs, and controls using the correction coefficient (Kv) immediately before. Control device for soil quality improvement equipment.
請求項2記載の土質改良装置の制御装置において、
前記制御器(10)は、前記改良材比重の修正係数(Kv)の更新を中止している間は、オペレータに注意を促す警報や表示を行うことを特徴とする土質改良装置の制御装置。
In the control device of the soil improvement device according to claim 2,
The controller (10) is a control device for a soil improvement device, which performs an alarm or display to call an operator's attention while the update of the correction coefficient (Kv) of the improvement material specific gravity is stopped.
JP2002142166A 2002-05-16 2002-05-16 Control device for soil quality improvement equipment Expired - Fee Related JP3976615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142166A JP3976615B2 (en) 2002-05-16 2002-05-16 Control device for soil quality improvement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142166A JP3976615B2 (en) 2002-05-16 2002-05-16 Control device for soil quality improvement equipment

Publications (2)

Publication Number Publication Date
JP2003328389A JP2003328389A (en) 2003-11-19
JP3976615B2 true JP3976615B2 (en) 2007-09-19

Family

ID=29702550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142166A Expired - Fee Related JP3976615B2 (en) 2002-05-16 2002-05-16 Control device for soil quality improvement equipment

Country Status (1)

Country Link
JP (1) JP3976615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107551948A (en) * 2017-08-30 2018-01-09 黄河科技学院 Experiment measures distribution adjusting means with fluid material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254399A (en) * 2011-06-08 2012-12-27 Yamato Scale Co Ltd Continuous measuring-and-mixing system
KR101574299B1 (en) 2015-05-21 2015-12-04 엔지니어스 주식회사 Manufacturing device of reinforcing ground material for improving surface layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107551948A (en) * 2017-08-30 2018-01-09 黄河科技学院 Experiment measures distribution adjusting means with fluid material

Also Published As

Publication number Publication date
JP2003328389A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3772306B2 (en) Soil improvement device
JPH0610378A (en) Workload detection device for excavation and loading machine
JP3976615B2 (en) Control device for soil quality improvement equipment
JP4017144B2 (en) Soil improvement device
AU2018422478A1 (en) System and method for reducing environmental contamination at a material transfer point
JP2801584B2 (en) Quantitative cut-out control device for bucket wheel type reclaimer
KR100833058B1 (en) Control method of vibration pattern on alloy weighing process using fuzzy control
JP4992033B2 (en) Powder level control method and apparatus
CN109821343B (en) Method and device for supplementing activated carbon in flue gas purification device
JPH05330665A (en) Powder/grain continuous charging machine operating method
JPH08218771A (en) Sludge type tunnel excavator
JPS5721637A (en) Controller for operation of loading machine
JP4460060B2 (en) Soil improvement machine and method for correcting the supply of soil improvement material
SU696423A1 (en) Device for automatic transporting of loose material
JP2000118718A (en) Granular material level control method for receiving hopper
JPH05215595A (en) Method for controlling amount of raw material weighing hopper to be taken out
JP3458524B2 (en) Quantitative excavation control method for continuous unloader
JP2000055721A (en) Loss-in-weight type granule dispensing equipment
JPS6153649B2 (en)
JPS62156418A (en) Controller for supply of improving material in offshore ground improver
JPS6290514A (en) Quantitative supply apparatus
JPH0319360B2 (en)
JPH0788679B2 (en) Soil stabilizer addition control method for excavated soil reclaimer
JPH05271725A (en) Method for controlling grain size of charging material in blast furnace
JPH09171413A (en) Surge preventing control device for return gas blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3976615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees