JPH08218771A - Sludge type tunnel excavator - Google Patents

Sludge type tunnel excavator

Info

Publication number
JPH08218771A
JPH08218771A JP2376095A JP2376095A JPH08218771A JP H08218771 A JPH08218771 A JP H08218771A JP 2376095 A JP2376095 A JP 2376095A JP 2376095 A JP2376095 A JP 2376095A JP H08218771 A JPH08218771 A JP H08218771A
Authority
JP
Japan
Prior art keywords
air
chamber
muddy water
mud
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2376095A
Other languages
Japanese (ja)
Other versions
JP3117380B2 (en
Inventor
Makoto Samejima
誠 鮫島
Masaaki Miura
正昭 三浦
Masahiko Sugiyama
雅彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2376095A priority Critical patent/JP3117380B2/en
Publication of JPH08218771A publication Critical patent/JPH08218771A/en
Application granted granted Critical
Publication of JP3117380B2 publication Critical patent/JP3117380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE: To reduce always the variation in facing pressure even if the balance of flow rate inside a chamber is lost by disturbance occurring during the excavation and to excavate a facing while keeping the stabilized facing. CONSTITUTION: Double layer construction consisting of a sludge layer and an air layer is constituted in a chamber 3, a sludge conveying pump 6 for supplying sludge is provided to the inside of the chamber 3, and a level sensor 31 for detecting the level of the surface of the water is provided to the inside of the chamber 3. A difference between water level set point and level value from the level sensor is inputted and, at the same time, a control amount for the number of revolution in a state to maintain the level of the surface of the water in specific value is set on the basis of the difference to provide a compensator outputted to the sludge conveying pump 6. The sludge conveying pump 6 is driven in a state to maintain the level of the surface of the water in specific value, the level of the surface of the water in the chamber 3 is maintained in a specific state, the variation in facing pressure is always reduced even if the balance of flow rate inside the chamber is lost by disturbance occurring during the excavation, and excavation is made while maintaining the stabilized facing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は泥水式トンネル掘削機に
関し、チャンバー内に空気層を設けたハイドロシールド
掘削機を用いて、掘進中の切羽を常に安定させるように
企図したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a muddy water tunnel excavator and is intended to always stabilize a face during excavation by using a hydroshield excavator having an air layer in a chamber.

【0002】[0002]

【従来の技術】泥水式トンネル掘削機として、掘進中の
切羽を安定させるためにチャンバー内に空気層を設けた
ハイドロシールド掘削機がある。図10に基づいて従来
のハイドロシールド掘削機の構成を説明する。図10に
は従来のハイドロシールド掘削機の概略構成を示してあ
る。
2. Description of the Related Art As a mud tunnel excavator, there is a hydroshield excavator in which an air layer is provided in a chamber to stabilize a face during excavation. The structure of a conventional hydroshield excavator will be described with reference to FIG. FIG. 10 shows a schematic configuration of a conventional hydroshield excavator.

【0003】図に示すように、シールド掘削機本体1の
前胴部にはカッタ2が取り付けられており、掘削した泥
土はチャンバー3に入り排泥回路14を通って排泥され
る。チャンバー3は常に所定の圧力を発生させるように
泥水輸送系で水を供給しつつ掘削泥土を排出するように
なっている。泥水輸送系の泥水供給ラインは図中の調整
槽4からバルブ8までで構成されている。駆動器5で駆
動される送泥ポンプ6は調整槽4中の水を吸い上げ、吸
い上げられた水は送泥回路7を通ってバルブ8を介して
チャンバー3内に供給される。また、泥水輸送系の泥水
排出ラインは図中のバルブ9から泥水処理プラント15
までで構成されている。掘削した泥土を排出するために
排泥回路14には複数の排泥ポンプ11,13が使用さ
れる。図10には2台の排泥ポンプ11,13を用いた
場合を示しているが、掘進長に応じて排泥ポンプ11,
13の台数は調整される。排泥ポンプ11,13はそれ
ぞれ駆動器10,12で駆動され、バルブ9を通った掘
削泥土は排泥回路14中を流れ泥水処理プラント15に
送られる。泥水処理プラント15では、掘削土と水とを
分離する処理が行われ、分離された水は再び調整槽4で
再利用される。
As shown in the figure, a cutter 2 is attached to the front body of the shield excavator body 1, and the excavated mud enters the chamber 3 and is discharged through the mud discharge circuit 14 to be discharged. The chamber 3 discharges excavated mud while supplying water by a mud transportation system so as to always generate a predetermined pressure. The muddy water supply line of the muddy water transportation system is composed of the adjusting tank 4 to the valve 8 in the figure. The mud pump 6 driven by the driver 5 sucks up the water in the adjusting tank 4, and the sucked water is supplied into the chamber 3 through the mud feeding circuit 7 and the valve 8. In addition, the muddy water discharge line of the muddy water transport system is shown in FIG.
It consists of up to. A plurality of mud pumps 11 and 13 are used in the mud discharge circuit 14 to discharge the excavated mud. FIG. 10 shows the case where two sludge pumps 11 and 13 are used.
The number of thirteen is adjusted. The sludge pumps 11 and 13 are driven by drivers 10 and 12, respectively, and the excavated mud that has passed through the valve 9 flows through the sludge circuit 14 and is sent to the sludge treatment plant 15. In the muddy water treatment plant 15, a treatment for separating excavated soil and water is performed, and the separated water is reused again in the adjusting tank 4.

【0004】地上には中央監視装置16と制御装置17
が設けられ、中央監視装置16は泥水輸送系の状態を常
に監視するものであり、異常があれば警報等を出力す
る。制御装置17にはチャンバー3内に設けられた圧力
センサ19の検出値が入力されると共に排泥回路14に
設けられた流量センサ20の検出値が入力される。制御
装置17はこの入力情報に基づいて、チャンバー3内の
圧力が一定になるように駆動器5の回転数即ち送泥ポン
プ6の回転数を操作して送泥ポンプ6の流量を調整しす
ると共に、排泥量が一定になるように駆動器10,12
の回転数即ち排泥ポンプ11,13の回転数を操作して
排泥ポンプ11,13の流量を調整する。尚、図中の符
号で18は緊急圧抜き弁である。
A central monitoring device 16 and a control device 17 are provided on the ground.
The central monitoring device 16 constantly monitors the state of the mud transportation system, and outputs an alarm or the like if there is an abnormality. The detection value of the pressure sensor 19 provided in the chamber 3 is input to the control device 17, and the detection value of the flow rate sensor 20 provided in the sludge discharge circuit 14 is also input. Based on this input information, the controller 17 adjusts the flow rate of the mud pump 6 by operating the rotational speed of the driver 5 or the mud pump 6 so that the pressure in the chamber 3 becomes constant. At the same time, the drivers 10 and 12 are controlled so that the amount of sludge is constant.
The number of rotations of the sludge pumps 11, 13 is operated to adjust the flow rate of the sludge pumps 11, 13. Reference numeral 18 in the drawing is an emergency pressure relief valve.

【0005】[0005]

【発明が解決しようとする課題】図10でに示したハイ
ドロシールド掘削機では、切羽圧を一定にするように送
泥ポンプ6の送泥量を操作し、排泥量を一定にするよう
に排泥ポンプ11,13の排泥量を操作していたが、チ
ャンバー3に泥水を充満させた状態で上記操作を行って
いるため、次に示す問題があった。
In the hydroshield excavator shown in FIG. 10, the mud feed amount of the mud feed pump 6 is manipulated so that the face pressure is constant, and the mud discharge amount is kept constant. Although the amount of sludge discharged from the sludge pumps 11 and 13 was operated, the above-mentioned operation was performed in a state where the chamber 3 was filled with muddy water, resulting in the following problem.

【0006】切羽圧を一定に保つためには、送泥量と排
泥量とでチャンバー3内の流量バランスを一定に保つ必
要があるが、掘削中にはこの流量バランスを崩す外乱要
素が必ず存在する。このため、外乱によりチャンバー3
内に過剰の泥水が入ったり、不足することになってい
た。また、排泥回路14が掘削泥土中の岩等により閉塞
することがあるがこの場合も排泥量が不足しチャンバー
3内の流量バランスが崩れることになっていた。更に、
チャンバー3を泥水で充満させる従来のハイドロシール
ド掘削機では、外乱で生じる流量変化に対しチャンバー
3の圧力変化が敏感になり、切羽圧を一定にするために
送泥ポンプ6からの供給水を制御しても、過渡的な圧力
変化が生じてしまっていた。
In order to keep the cutting face pressure constant, it is necessary to keep the flow rate balance in the chamber 3 constant by the amount of sludge fed and the amount of sludge discharged. Exists. Therefore, due to disturbance, the chamber 3
There was an excess of muddy water inside, and there was a shortage. Further, the mud discharge circuit 14 may be blocked by rocks in the excavated mud, but in this case as well, the amount of mud is insufficient and the flow balance in the chamber 3 is disrupted. Furthermore,
In a conventional hydroshield excavator that fills the chamber 3 with mud, the pressure change in the chamber 3 becomes sensitive to the flow rate change caused by disturbance, and the feed water from the mud pump 6 is controlled to keep the face pressure constant. Even so, a transient pressure change had occurred.

【0007】図11には、上述したハイドロシールド掘
削機の泥水輸送系において、定常掘進中に外部からチャ
ンバー3内に強制的に泥水をステップ入力させた場合の
シミュレーション結果を示してある。図に示すように、
最初約2kgf/cm2であった切羽圧が一瞬約4kgf/cm2まで上
昇している。切羽圧を一定に保つために送泥ポンプ6の
回転数を操作することで(図11の場合回転数を低下さ
せている)、徐々に切羽圧が初期の状態に戻っている
が、外乱に対してチャンバー3の圧力変化が敏感にな
り、切羽圧を一定に保つことが困難になっている。
FIG. 11 shows a simulation result in the case where mud is forced to be stepwise input into the chamber 3 from the outside during steady excavation in the mud transport system of the hydroshield excavator described above. As shown in the figure,
The face pressure, which was about 2 kgf / cm 2 at first, increased to about 4 kgf / cm 2 for a moment. By operating the number of revolutions of the mud pump 6 to keep the face pressure constant (the number of revolutions is reduced in the case of FIG. 11), the face pressure gradually returns to the initial state, but the disturbance occurs. On the other hand, the pressure change in the chamber 3 becomes sensitive, and it becomes difficult to keep the face pressure constant.

【0008】本発明は上記状況に鑑みてなされたもの
で、チャンバー内の空気や泥水の圧力状態を一定に保つ
ことができる泥水式トンネル掘削器を提供し、もって掘
進中の切羽圧を常に安定させることを目的とする。
The present invention has been made in view of the above circumstances, and provides a muddy water tunnel excavator capable of maintaining a constant pressure state of air and muddy water in a chamber, thereby constantly stabilizing the face pressure during excavation. The purpose is to let.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の第1発明の泥水式トンネル掘削機は、前胴に設けられ
たチャンバーの隔壁であるバルクヘッドに平行して仕切
板を設け、前記チャンバー内に空気を封入すると共に、
前記チャンバー内に泥水を供給する泥水供給用送泥ポン
プを設け、前記チャンバー内に泥水層と空気層とを形成
して掘削中における切羽圧を一定に保つ泥水式トンネル
掘削機において、前記空気層と前記泥水層との境界であ
る水面のレベルを検出するレベルセンサを前記チャンバ
ー内に設け、水面レベル設定値と前記レベルセンサから
のレベル値との差が入力されると共に該差に基づいて水
面のレベルが所定の値を維持する状態の回転数操作量を
設定して前記泥水供給用送泥ポンプに出力する補償器を
備えたことを特徴とする。
A muddy water tunnel excavator according to a first aspect of the present invention for achieving the above object is characterized in that a partition plate is provided in parallel with a bulkhead which is a partition wall of a chamber provided in a front body. While enclosing air in the chamber,
In the muddy water tunnel excavator, which is provided with a muddy water supply mud pump for supplying muddy water in the chamber, forms a muddy water layer and an air layer in the chamber to keep the face pressure during excavation constant, And a level sensor for detecting the level of the water surface which is the boundary between the muddy water layer and the chamber, the difference between the level value set by the water surface level and the level sensor is input, and the water surface is based on the difference. Is provided with a compensator for setting a rotational speed manipulated variable in a state where the level of (1) is maintained at a predetermined value and outputting it to the mud supply mud pump.

【0010】上記目的を達成するための第2発明の泥水
式トンネル掘削機は、前胴に設けられたチャンバーの隔
壁であるバルクヘッドに平行して仕切板を設け、前記チ
ャンバー内に空気を封入すると共に、前記チャンバー内
に泥水を供給する泥水供給用送泥ポンプを設け、前記チ
ャンバー内に泥水層と空気層とを形成して掘削中におけ
る切羽圧を一定に保つ泥水式トンネル掘削機において、
前記空気層の空気圧を検出する圧力センサを前記チャン
バー内に設ける一方、空気圧設定値と前記圧力センサか
らの圧力値との差が入力されると共に該差に基づいて空
気圧が所定の値を維持する状態の回転数操作量を設定し
て前記泥水供給用送泥ポンプに出力する補償器を備えた
ことを特徴とする。
The muddy water tunnel excavator of the second invention for achieving the above object is provided with a partition plate in parallel with a bulkhead which is a partition wall of a chamber provided in the front body, and air is enclosed in the chamber. In addition, in the muddy water tunnel excavator which is provided with a muddy water supply mud pump for supplying muddy water into the chamber, which forms a muddy water layer and an air layer in the chamber to keep the face pressure constant during excavation,
A pressure sensor for detecting the air pressure of the air layer is provided in the chamber, while the difference between the air pressure set value and the pressure value from the pressure sensor is input and the air pressure maintains a predetermined value based on the difference. It is characterized by comprising a compensator for setting a rotational speed manipulated variable in a state and outputting it to the mud feed mud pump.

【0011】上記目的を達成するための第3発明の泥水
式トンネル掘削機は、前胴に設けられたチャンバーの隔
壁であるバルクヘッドに平行して仕切板を設け、前記チ
ャンバー内に空気を封入すると共に該チャンバー内に泥
水を供給し、前記チャンバー内に泥水層と空気層とを形
成して掘削中における切羽圧を一定に保つ泥水式トンネ
ル掘削機において、前記チャンバー内に空気を供給する
空気圧縮器もしくは空気圧縮器とアキュムレータを設
け、前記チャンバー内から空気を排出する空気排出経路
を設け、空気の供給操作を行う空気供給弁を備える一
方、前記空気排出経路に空気の排出操作を行う空気排出
弁を設け、前記空気層の空気圧を検出する圧力センサを
前記チャンバー内に設け、前記圧力センサによる空気圧
の検出値が所定の値以下の場合に前記空気供給弁を開操
作すると共に該圧力センサによる空気圧の検出値がが所
定値以上の場合に前記空気排出弁を開操作して前記チャ
ンバー内の空気圧を常に所定の圧力に維持する制御装置
を備えたことを特徴とする。
The muddy water tunnel excavator of the third invention for achieving the above object is provided with a partition plate in parallel with a bulkhead which is a partition wall of a chamber provided in the front body, and air is enclosed in the chamber. In the muddy water tunnel excavator that supplies muddy water into the chamber and forms a muddy water layer and an air layer in the chamber to maintain a constant face pressure during excavation, air that supplies air into the chamber. A compressor or an air compressor and an accumulator are provided, an air discharge path for discharging air from the chamber is provided, and an air supply valve for supplying air is provided, while air for discharging air is supplied to the air discharge path. An exhaust valve is provided, a pressure sensor for detecting the air pressure of the air layer is provided in the chamber, and the detected value of the air pressure by the pressure sensor is a predetermined value or more. In this case, the air supply valve is operated to be opened, and when the detected value of the air pressure by the pressure sensor is a predetermined value or more, the air discharge valve is operated to be opened to maintain the air pressure in the chamber at a predetermined pressure at all times. A control device is provided.

【0012】上記目的を達成するための第4発明の泥水
式トンネル掘削機は、前胴に設けられたチャンバーの隔
壁であるバルクヘッドに平行して仕切板を設け、前記チ
ャンバー内に空気を封入すると共に、前記チャンバー内
に泥水を供給する泥水供給用送泥ポンプを設け、前記チ
ャンバー内に泥水層と空気層とを形成して掘削中におけ
る切羽圧を一定に保つ泥水式トンネル掘削機において、
前記チャンバー内に空気を供給する空気圧縮器もしくは
空気圧縮器とアキュムレータを設け、前記チャンバー内
から空気を排出する空気排出経路を設け、空気の供給操
作を行う空気供給弁を備えると共に、前記空気排出経路
に空気の排出操作を行う空気排出弁を設け、前記空気層
の空気圧を検出する圧力センサを前記チャンバー内に設
け、前記圧力センサによる空気圧の検出値が所定の値以
下の場合に前記空気供給弁を開操作すると共に該圧力セ
ンサによる空気圧の検出値がが所定値以上の場合に前記
空気排出弁を開操作して前記チャンバー内の空気圧を常
に所定の圧力に維持する制御装置を備え、更に、前記空
気層と前記泥水層との境界である水面のレベルを検出す
るレベルセンサを前記チャンバー内に設ける一方、前記
レベルセンサによるレベル値が許容上限値以上の場合に
前記泥水供給用送泥ポンプの回転数を減少させると共に
前記レベルセンサによるレベル値が許容下限値以下の場
合に前記泥水供給用送泥ポンプの回転数を増加させて水
面レベルを所定の範囲に維持する送泥制御装置を備えた
ことを特徴とする。
A muddy water tunnel excavator according to a fourth aspect of the invention for achieving the above object is to provide a partition plate in parallel with a bulkhead which is a partition wall of a chamber provided in the front body, and to enclose air in the chamber. In addition, in the muddy water tunnel excavator which is provided with a muddy water supply mud pump for supplying muddy water into the chamber, which forms a muddy water layer and an air layer in the chamber to keep the face pressure constant during excavation,
An air compressor for supplying air into the chamber or an air compressor and an accumulator are provided, an air discharge path for discharging air from the chamber is provided, an air supply valve for performing air supply operation is provided, and the air discharge is performed. An air discharge valve for discharging air is provided in the path, a pressure sensor for detecting the air pressure of the air layer is provided in the chamber, and the air supply is performed when the detected value of the air pressure by the pressure sensor is a predetermined value or less. A control device is provided for opening the valve and operating the air discharge valve to open the air pressure in the chamber at a predetermined pressure when the detected value of the air pressure by the pressure sensor is equal to or higher than a predetermined value. A level sensor for detecting a level of a water surface which is a boundary between the air layer and the muddy water layer is provided in the chamber while the level sensor is used. When the level value is above the allowable upper limit value, the rotation speed of the mud supply mud pump is decreased, and when the level value by the level sensor is below the allowable lower limit value, the rotation speed of the mud water supply mud pump is increased. It is characterized by being provided with a mud feed control device for maintaining the water surface level within a predetermined range.

【0013】上記目的を達成するための第5発明の泥水
式トンネル掘削機は、前胴に設けられたチャンバーの隔
壁であるバルクヘッドに平行して仕切板を設け、前記チ
ャンバー内に空気を封入すると共に該チャンバー内に泥
水を供給する一方、前記チャンバー内の泥水を排出する
泥水排出用排泥ポンプを設け、前記チャンバー内に泥水
層と空気層とを形成して掘削中における切羽圧を一定に
保つ泥水式トンネル掘削機において、泥水排出経路に排
泥量を検出する流量検出器を設け、排泥量設定値と前記
流量検出器からの値との差が入力されると共に該差に基
づいて排泥量が所定の値を維持する状態の回転数操作量
を設定して前記泥水排出用の排泥ポンプに出力する補償
器を備えたことを特徴とする。
A muddy water tunnel excavator according to a fifth aspect of the invention for achieving the above object is to provide a partition plate in parallel with a bulkhead which is a partition wall of a chamber provided in the front body, and to enclose air in the chamber. In addition to supplying muddy water into the chamber, a muddy water drainage pump for discharging muddy water in the chamber is provided, and a muddy water layer and an air layer are formed in the chamber to maintain a constant face pressure during excavation. In the muddy water tunnel excavator to be kept at, a flow rate detector for detecting the amount of sludge is provided in the muddy water discharge route, and the difference between the set value of the amount of sludge and the value from the flow rate detector is input and based on the difference. It is characterized by comprising a compensator for setting a rotational speed manipulated variable in a state where the amount of sludge is maintained at a predetermined value and outputting it to the sludge pump for discharging the muddy water.

【0014】上記目的を達成するための第6発明の泥水
式トンネル掘削機は、前胴に設けられたチャンバーの隔
壁であるバルクヘッドに平行して仕切板を設け、前記チ
ャンバー内に空気を封入し、前記チャンバー内に泥水を
供給する泥水供給用送泥ポンプを設けると共に、前記チ
ャンバー内の泥水を排出する泥水排出用排泥ポンプを設
け、前記チャンバー内に泥水層と空気層とを形成して掘
削中における切羽圧を一定に保つ泥水式トンネル掘削機
において、泥水を供給する送泥系として、第1発明もし
くは第2発明もしくは第3発明もしくは第4発明に記載
の送泥系を適用し、泥水を排出する排泥系として第5発
明に記載の排泥系を適用したことを特徴とする。
A muddy water tunnel excavator according to a sixth aspect of the invention for achieving the above object is to provide a partition plate in parallel with a bulkhead which is a partition wall of a chamber provided in the front body, and enclose air in the chamber. Then, a muddy water supply mud pump for supplying muddy water is provided in the chamber, and a muddy water discharge mud pump for discharging muddy water in the chamber is provided to form a muddy water layer and an air layer in the chamber. In a muddy water tunnel excavator that maintains a constant face pressure during excavation, the mud feeding system according to the first invention, the second invention, the third invention, or the fourth invention is applied as a mud feeding system for supplying muddy water. The sludge discharge system according to the fifth aspect is applied as a sludge discharge system for discharging muddy water.

【0015】[0015]

【作用】第1発明によると、チャンバー内の空気層と泥
水層との境界である水面のレベルをレベルセンサによっ
て検出し、水面レベルが所定の値を維持するように、水
面レベル設定値とレベルセンサからのレベル値との差を
補償器に入力し、この差に基づいて回転数操作量を設定
して補償器の出力を泥水供給用送泥ポンプの回転数操作
量とする。
According to the first aspect of the present invention, the level sensor detects the level of the water surface at the boundary between the air layer and the muddy water layer in the chamber, and the water level setting value and the level are set so that the water level maintains a predetermined value. The difference from the level value from the sensor is input to the compensator, and the rotational speed manipulated variable is set based on this difference, and the output of the compensator is used as the rotational speed manipulated variable of the mud feed mud pump.

【0016】第2発明によると、空気層の空気圧を圧力
センサによって検出し、空気圧が所定の値を維持するよ
うに、空気圧設定値と圧力センサセンサからの圧力値と
の差を補償器に入力し、この差に基づいて回転数操作量
を設定して補償器の出力を泥水供給用送泥ポンプの回転
数操作量とする。
According to the second aspect of the invention, the air pressure in the air layer is detected by the pressure sensor, and the difference between the air pressure set value and the pressure value from the pressure sensor sensor is input to the compensator so that the air pressure maintains a predetermined value. Then, the rotational speed manipulated variable is set based on this difference, and the output of the compensator is used as the rotational speed manipulated variable of the mud feed mud pump.

【0017】第3発明によると、空気層の空気圧を圧力
センサによって検出し、空気圧が所定の値以下の場合に
は空気供給弁を開操作して空気圧縮機もしくはアキュム
レータから空気を供給し、空気圧が所定値以上に場合に
は空気排出弁を開操作して空気排出経路に空気を排出
し、空気圧が常に所定の圧力を維持するようにする。
According to the third aspect of the present invention, the air pressure in the air layer is detected by the pressure sensor, and when the air pressure is below a predetermined value, the air supply valve is opened to supply air from the air compressor or accumulator to obtain the air pressure. When is greater than or equal to a predetermined value, the air exhaust valve is opened to exhaust air to the air exhaust path so that the air pressure always maintains the predetermined pressure.

【0018】第4発明によると、空気層の空気圧を圧力
センサによって検出し、空気圧が所定の値以下の場合に
は空気供給弁を開操作して空気圧縮機もしくはアキュム
レータから空気を供給し、空気圧が所定値以上に場合に
は空気排出弁を開操作して空気排出経路に空気を排出
し、空気圧が常に所定の圧力を維持するようにし、更に
水面のレベルをレベルセンサによって検出し、水面のレ
ベルが許容上限値以上になった場合泥水供給用送泥ポン
プの回転数を減少させ、水面レベルが許容下限値以下に
なった場合送泥ポンプの回転数を増加させ、水面レベル
が所定の範囲を維持するようにする。
According to the fourth aspect of the present invention, the air pressure in the air layer is detected by the pressure sensor, and when the air pressure is below a predetermined value, the air supply valve is opened to supply air from the air compressor or accumulator. When is above a predetermined value, the air exhaust valve is opened to exhaust air to the air exhaust path so that the air pressure is always maintained at a predetermined pressure, and the level of the water surface is detected by a level sensor, When the level is above the upper limit, the rotation speed of the mud supply mud pump is decreased, and when the water level is below the lower limit, the rotation speed of the mud pump is increased, and the water level is within the specified range. Try to maintain.

【0019】第5発明によると、泥水排出経路の排泥量
を流量検出器によって検出し、排泥量が所定の値を維持
するように、排泥量設定値と流量検出器からの値との差
を補償器に入力し、この差に基づいて回転数操作量を設
定して補償器の出力を泥水排出用排泥ポンプの回転数操
作量とする。
According to the fifth aspect of the present invention, the amount of sludge discharged from the mud discharge route is detected by the flow rate detector, and the set amount of sludge and the value from the flow rate detector are set so that the amount of sludge is maintained at a predetermined value. Is input to the compensator, and the rotational speed manipulated variable is set based on this difference, and the output of the compensator is used as the rotational speed manipulated variable of the mud discharge mud pump.

【0020】第6発明によると、泥水を供給する送泥系
は第1発明乃至第4発明のいずれかを適用して泥水供給
用送泥ポンプの回転数もしくは空気層の空気圧を調整
し、泥水を排出する排泥系は第5発明を適用して泥水排
出用排泥ポンプの回転数を調整し、チャンバー内の空気
や泥水の圧力状態を一定に保つ。
According to the sixth aspect of the present invention, the mud-sending system for supplying mud water is formed by applying any one of the first to fourth aspects of the present invention to adjust the rotational speed of the mud-sending mud pump or the air pressure in the air layer. For the sludge discharge system for discharging the muddy water, the fifth invention is applied to adjust the rotation speed of the muddy water discharge sludge pump to keep the pressure state of the air and the muddy water in the chamber constant.

【0021】[0021]

【実施例】以下に本発明の実施例を説明する。図1には
本発明の泥水式トンネル掘削機における泥水輸送系の全
体構成を示す第一の実施例、図5には第二の実施例、図
7には第三の実施例を示してある。また、図2、図3、
図6、図8には各実施例における制御装置内に格納され
た制御部を示してあり、図9には泥水式トンネル掘削機
の一例としてのハイドロシールド掘削機の外観を示して
ある。尚、図10に示した部材と同一部材には同一符号
を付して重複する説明は省略してある。
Embodiments of the present invention will be described below. FIG. 1 shows a first embodiment showing the overall structure of a muddy water transport system in a muddy water tunnel excavator of the present invention, FIG. 5 shows a second embodiment, and FIG. 7 shows a third embodiment. . In addition, FIG. 2, FIG.
6 and 8 show a control unit stored in the control device in each embodiment, and FIG. 9 shows the appearance of a hydroshield excavator as an example of a muddy tunnel excavator. It should be noted that the same members as those shown in FIG. 10 are designated by the same reference numerals and duplicate explanations are omitted.

【0022】先ず、図9に基づいてハイドロシールド掘
削機の構成を説明する。図に示すように、ハイドロシー
ルド掘削機はチャンバー3の中に仕切板30を設け、バ
ルクヘッド42と仕切板30との間に空気を封入する空
気室41を備え、泥水40と空気室41との2層構造を
なしたものである。カッタ2で掘削した泥土は仕切板3
0下部の隙間を通って後述する排泥管より排出される。
First, the construction of the hydroshield excavator will be described with reference to FIG. As shown in the figure, the hydroshield excavator is provided with a partition plate 30 in the chamber 3, an air chamber 41 for enclosing air between the bulkhead 42 and the partition plate 30, and a muddy water 40 and an air chamber 41. It has a two-layer structure. The mud excavated by the cutter 2 is the partition plate 3
It is discharged from the mud pipe described later through the gap at the bottom.

【0023】図1乃至図3に基づいて第一の実施例を説
明する。図1に示すように、ハイドロシールド掘削機の
チャンバー3には仕切板30が設けられ、空気室41と
泥水との境界である水面のレベルを検出するレベルセン
サ31が設けられている。制御装置17は、レベルセン
サ31の検出値と排泥回路14に設けられた流量センサ
20からの検出値とが入力され、送泥ポンプ6を駆動す
る駆動器5の回転数指令(送泥ポンプ6の回転数指令)
及び排泥ポンプ11を駆動する駆動器10の回転数指令
(排泥ポンプ11の回転数指令)を出力する。尚、図1
において、2台の排泥ポンプ11,13を用いた場合を
示しているが掘進長に応じて排泥ポンプ11,13の台
数は調整される。以下、単に排泥ポンプ11として説明
する。
A first embodiment will be described with reference to FIGS. As shown in FIG. 1, a partition plate 30 is provided in the chamber 3 of the hydroshield excavator, and a level sensor 31 that detects the level of the water surface that is the boundary between the air chamber 41 and the muddy water is provided. The control device 17 receives the detected value of the level sensor 31 and the detected value from the flow rate sensor 20 provided in the mud discharge circuit 14, and inputs a rotation speed command of the driver 5 that drives the mud pump 6 (mud pump). 6 speed command)
And a rotation speed command of the driver 10 for driving the sludge pump 11 (a rotation speed command of the sludge pump 11). FIG.
In the above, the case of using the two sludge pumps 11 and 13 is shown, but the number of the sludge pumps 11 and 13 is adjusted according to the digging length. Hereinafter, the sludge pump 11 will be simply described.

【0024】図2、図3は制御装置17に格納された制
御部を示したものであり、図2が送泥ポンプ6の回転数
を操作する制御部であり、図3が排泥ポンプ11の回転
数を操作する制御部である。
2 and 3 show a control unit stored in the control device 17, FIG. 2 is a control unit for operating the rotation speed of the mud pump 6, and FIG. It is a control unit that operates the number of rotations.

【0025】図2に示すように、水面レベル設定値101
とレベルセンサ31からの検出値である実水面レベル10
2 との偏差を加算器103 で求め、上記偏差を不感帯を持
つ関数104 に入力する。関数104 からの値は補償部(補
償器)105 に入力される。補償部105 の出力は送泥ポン
プ6の回転数修正量106 である。回転数修正量106 は送
泥ポンプ6の初期回転数107 と加算器108 で加算され、
加算値が送泥ポンプ6の回転数指令値109 となる(請求
項1:第1発明)。
As shown in FIG. 2, the water surface level set value 101
And the actual water level 10 detected by the level sensor 31
The deviation from 2 is obtained by the adder 103, and the above deviation is input to the function 104 having a dead zone. The value from the function 104 is input to the compensator (compensator) 105. The output of the compensator 105 is the rotation speed correction amount 106 of the mud pump 6. The rotation speed correction amount 106 is added by the initial rotation speed 107 of the mud pump 6 and the adder 108,
The added value becomes the rotation speed command value 109 of the mud pump 6 (Claim 1: First invention).

【0026】図3に示すように、排泥流量設定値111 と
流量センサ20からの検出値である実排泥流量112 との
偏差を加算器113 で求め、偏差を不感帯を持つ関数114
に入力する。関数114 からの値は補償部(補償器)115
に入力される。補償部115 の出力は排泥ポンプ11の回
転数修正量116 である。回転数修正量116 は排泥ポンプ
11の初期回転数117 と加算器118 で加算され、加算値
が排泥ポンプ11の回転数指令値119 となる(請求項
5:第5発明)。
As shown in FIG. 3, the deviation between the set value 111 of sludge flow rate and the actual flow rate 112 of sludge detected by the flow sensor 20 is calculated by an adder 113, and the deviation 114 is a function 114 having a dead zone.
To enter. The value from the function 114 is the compensator (compensator) 115.
Is input to The output of the compensation unit 115 is the rotation speed correction amount 116 of the sludge pump 11. The rotation speed correction amount 116 is added to the initial rotation speed 117 of the sludge pump 11 by the adder 118, and the added value becomes the rotation speed command value 119 of the sludge pump 11 (claim 5: fifth invention).

【0027】上述した関数104,114 に不感帯を設けたの
は微少の制御誤差に対しては送泥ポンプ6及び排泥ポン
プ11の回転数を制御しないためのものである。正常な
掘進であっても水面レベル、排泥流量とも常に微少変動
しており、この微少変動に対していたずらに回転数を操
作しないために、不感帯を持つ関数104,114 を設けてい
る。尚、不感帯幅をゼロにすれば不感帯のない制御部に
なる。また、図2、図3中の初期回転数107,117 は掘進
状況に応じて調整されるものである。
The above-described functions 104 and 114 are provided with a dead zone so that the rotational speeds of the mud feed pump 6 and the mud pump 11 are not controlled for a slight control error. Even in the case of normal excavation, the water level and the sludge flow rate are constantly fluctuating slightly, and the functions 104 and 114 with dead zones are provided to prevent the rpm from being manipulated in spite of this minute fluctuation. If the dead zone width is set to zero, the control section has no dead zone. The initial rotational speeds 107 and 117 in FIGS. 2 and 3 are adjusted according to the excavation situation.

【0028】上述したハイドロシールド掘削機(図1乃
至図3)の作用について説明する。チャンバー3内の泥
水の流量バランスが崩れると水面レベルが変化すること
になる。即ち、排泥回路14の閉塞等の外乱によりチャ
ンバー3内の泥水が増加すると水面レベルが上昇し、逸
水等の外乱により泥水が減少すると水面レベルが降下す
ることになる。しかし、水面レベルの変化はいわゆるエ
アークッション作用となり、また空気の圧力は急激に変
化しないため、流量バランスが崩れても切羽圧の変化は
少ない。
The operation of the above-mentioned hydroshield excavator (FIGS. 1 to 3) will be described. If the flow rate balance of the muddy water in the chamber 3 is lost, the water surface level will change. That is, when the muddy water in the chamber 3 increases due to disturbance such as clogging of the mud discharge circuit 14, the water surface level rises, and when the muddy water decreases due to disturbance such as lost water, the water surface level falls. However, the change of the water surface level has a so-called air cushion effect, and the air pressure does not change rapidly, so that the face pressure does not change much even if the flow rate balance is lost.

【0029】図2に示した制御部を用いることにより、
水面レベルを一定に保つように送泥ポンプ6の回転数を
操作するため、更に切羽圧の変化を小さくすることが可
能となる。図2に示した制御部は、水面レベルを所定の
設定値101 或いは誤差範囲に納める作用を持ち、加算器
103 で得られる水面レベルの偏差が関数104 中の不感帯
幅以内になるように送泥ポンプ6の回転数を操作する。
図中の補償部105 は比例定数、積分器、微分器等で構成
され、比例動作P、積分動作I及び微分動作Dの3つの
制御動作の組み合わせによって比例、積分及び微分の3
動作を行わせるようにした、いわゆるPID制御で構成
されている。
By using the control unit shown in FIG.
Since the rotational speed of the mud pump 6 is operated so as to keep the water surface level constant, it is possible to further reduce the change in the face pressure. The control unit shown in FIG. 2 has a function of keeping the water surface level within a predetermined set value 101 or an error range,
The rotation speed of the mud pump 6 is controlled so that the deviation of the water surface level obtained at 103 is within the dead zone width in the function 104.
A compensating unit 105 in the figure is composed of a proportional constant, an integrator, a differentiator, etc., and a proportional operation, an integral operation, and a differential operation D are combined by a combination of three control operations.
It is configured by so-called PID control so that the operation is performed.

【0030】補償部105 は制御偏差を減少させる作用を
持つものであり、その作用を持つ構成であればよい。例
えば、図2において実水面レベル102 が水面レベル設定
101より大きく且つその偏差が関数104 中の不感帯幅よ
り大きい場合、補償部105 の出力である回転数修正量10
6 は負の値となり、加算器108 で初期回転数107 と修正
量106 とを加算するため、送泥ポンプ6の回転数は初期
回転数107 より小さくなる。即ち、チャンバー3内に供
給される送泥量が減少するため次第に実水面レベル102
は降下するようになる。逆に他の外乱により実水面レベ
ル102 が低下すると、送泥ポンプ6からの供給量が増加
することになる。
The compensating unit 105 has a function of reducing the control deviation, and may be configured to have that function. For example, in Figure 2, the actual water level 102 is the water level setting.
If the deviation is larger than 101 and the deviation is larger than the dead band width in the function 104, the rotation speed correction amount 10 which is the output of the compensation unit 105
6 becomes a negative value, and since the adder 108 adds the initial rotation speed 107 and the correction amount 106, the rotation speed of the mud pump 6 becomes smaller than the initial rotation speed 107. That is, since the amount of sludge supplied to the chamber 3 is reduced, the actual water level 102
Will come down. On the contrary, if the actual water surface level 102 decreases due to another disturbance, the supply amount from the mud pump 6 will increase.

【0031】図3は排泥流量を所定の設定値或いは誤差
範囲に納める作用を持つ。制御部の構成は図2で示した
制御部と同じであるが、入力値として排泥流量設定値11
1 と実排泥流量112 を用い、出力は排泥ポンプ11の回
転数指令となる。例えば、図3において実排泥流量112
が排泥流量設定値111 より大きく且つその偏差が関数11
4 中の不感帯幅より大きい場合、補償部115 の出力であ
る回転数修正量116 は負の値となり、加算器118 で初期
回転数117 と修正量116 とを加算するため、排泥ポンプ
11の回転数は初期回転数117 より小さくなる。即ち、
排泥量が減少するため次第に実排泥流量112 は減少する
ことになる。
FIG. 3 has a function of keeping the sludge flow rate within a predetermined set value or error range. The configuration of the control unit is the same as that of the control unit shown in FIG.
Using 1 and the actual sludge flow rate 112, the output is the rotation speed command of the sludge pump 11. For example, in FIG. 3, the actual sludge flow rate 112
Is larger than the set value 111 for sludge flow and the deviation is
When the dead band width in 4 is larger than the dead band width, the rotation speed correction amount 116, which is the output of the compensation unit 115, becomes a negative value, and the adder 118 adds the initial rotation speed 117 and the correction amount 116. The rotation speed is smaller than the initial rotation speed 117. That is,
Since the amount of sludge is reduced, the actual sludge flow rate 112 is gradually reduced.

【0032】図4には図2、図3で示した制御部による
図11と同様の条件のシミュレーション結果を示してあ
る。図に示すように、切羽圧の変化は0.1kgf/cm2程度の
変化に納まっている。水面レベルの偏差が増加している
ため、送泥ポンプ6の回転数が減少し、次第に偏差はゼ
ロになっていることが判る。
FIG. 4 shows a simulation result under the same conditions as in FIG. 11 by the control unit shown in FIGS. As shown in the figure, the change in face pressure is within 0.1 kgf / cm 2 . Since the deviation of the water surface level is increasing, it can be seen that the rotation speed of the mud pump 6 decreases and the deviation gradually becomes zero.

【0033】次に図5、図6に基づいて第二の実施例を
説明する。図5において、図1と異なるのはレベルセン
サ31の代わりに空気の圧力を検出する圧力センサ32
を設けた点である(請求項2:第2発明)。図6は制御
装置17に格納された制御部を示したものであり、空気
圧を基に送泥ポンプ6の回転数を操作する制御部であ
る。
Next, a second embodiment will be described with reference to FIGS. 5 is different from FIG. 1 in that instead of the level sensor 31, a pressure sensor 32 for detecting the pressure of air is used.
Is provided (Claim 2: Second invention). FIG. 6 shows a control unit stored in the control device 17, which is a control unit for operating the rotation speed of the mud pump 6 based on the air pressure.

【0034】図6に示したように、空気圧設定値121 と
圧力センサ32からの検出値である実空気圧122 との偏
差を加算器123 で求め、偏差を不感帯を持つ関数124 に
入力する。関数124 からの値は補償部125 に入力され
る。補償部125 の出力は送泥ポンプ6の回転数修正量12
6 である。回転数修正量126 は送泥ポンプ6の初期回転
数127 と、加算器128 で加算され、加算値が送泥ポンプ
6の回転数指令値129 となる。関数124 は前述したよう
に不感帯をゼロにすれば上記関数の無い制御部にするこ
とができる。空気室41を密閉状態にすれば、空気圧が
一定の時、水面レベルが一定になる、という特性を持つ
ため、図6での作用は図2で示した作用と同様になる。
As shown in FIG. 6, the deviation between the air pressure set value 121 and the actual air pressure 122 detected by the pressure sensor 32 is calculated by an adder 123, and the deviation is input to a function 124 having a dead zone. The value from the function 124 is input to the compensation unit 125. The output of the compensator 125 is the rotation speed correction amount 12 of the mud pump 6
6 The rotation speed correction amount 126 is added to the initial rotation speed 127 of the mud pump 6 by the adder 128, and the added value becomes the rotation speed command value 129 of the mud pump 6. As described above, the function 124 can be a control unit without the above function by setting the dead zone to zero. If the air chamber 41 is hermetically closed, the water level becomes constant when the air pressure is constant. Therefore, the operation in FIG. 6 is the same as that shown in FIG.

【0035】例えば、図6において、排泥回路14の閉
塞等により実空気圧122 が空気圧設定値121 より大きく
且つその偏差が関数124 中の不感帯幅より大きい場合、
補償部125 の出力である回転数修正量126 は負の値とな
り、加算器128 で初期回転数127 と修正量126 とを加算
するため、送泥ポンプ6の回転数は初期回転数127 より
小さくなる。即ち、チャンバー3内に供給される送泥量
が減少するため次第に実空気圧122 は減少するようにな
る。逆に他の外乱により実空気圧122 が低下すると送泥
ポンプ6からの供給量が増加することになる。
For example, in FIG. 6, when the actual air pressure 122 is larger than the air pressure set value 121 and the deviation thereof is larger than the dead band width in the function 124 due to the clogging of the sludge discharge circuit 14 or the like,
The rotation speed correction amount 126, which is the output of the compensator 125, becomes a negative value, and the adder 128 adds the initial rotation speed 127 and the correction amount 126, so the rotation speed of the mud pump 6 is smaller than the initial rotation speed 127. Become. That is, since the amount of sludge supplied to the chamber 3 decreases, the actual air pressure 122 gradually decreases. On the contrary, if the actual air pressure 122 decreases due to another disturbance, the supply amount from the mud pump 6 will increase.

【0036】次に図7、図8に基づいて第三の実施例を
説明する。図7に示した第三の実施例は、圧力センサ3
2で空気圧を検出し、空気室41に空気圧縮機33で空
気供給弁35を介して直接空気を供給し、更に空気排出
弁36で空気を排出して空気圧を一定に保つものである
(請求項3:第3発明)。また、水面レベルを平均的に
所定のレベルに維持するためにレベルセンサ31で水面
レベルを検出し、送泥ポンプ6の回転数を操作する(請
求項4:第4発明)。図8は制御装置17に格納された
図7に関する制御部のフローチャートを示したものであ
る。
Next, a third embodiment will be described with reference to FIGS. The third embodiment shown in FIG. 7 is the pressure sensor 3
2, the air pressure is detected, the air is supplied directly to the air chamber 41 by the air compressor 33 through the air supply valve 35, and the air discharge valve 36 discharges the air to keep the air pressure constant. Item 3: Third invention). Further, in order to maintain the water surface level on average on a predetermined level, the water level is detected by the level sensor 31, and the rotation speed of the mud pump 6 is operated (Claim 4: Fourth invention). FIG. 8 is a flow chart of the control unit stored in the control device 17 and related to FIG.

【0037】図8に示すように、先ず、空気圧偏差判定
器130 で空気設定圧に対し実空気圧に偏差があるかどう
かを判定する。空気圧偏差判定器130 で空気圧の偏差が
あり且つその偏差が負の場合、空気供給部131 に移行す
る。空気供給部131 では空気圧縮機33及びアキュムレ
ータ34で空気を供給するために空気供給弁35を操作
する。アキュムレータ34を使用するのは空気供給弁3
5の操作時の空気供給の応答性を向上させるためであ
る。空気圧偏差判定器130 の判定で空気圧の偏差があり
且つその偏差が正の場合、空気排出部132 に移行する。
空気排出部132 では空気室41内の空気を排出するため
の空気排出弁36を操作する。空気圧偏差判定器130 の
判定で空気圧の偏差がない場合には空気供給弁35及び
空気排出弁36の操作は行わない。
As shown in FIG. 8, first, the air pressure deviation determiner 130 determines whether the actual air pressure is different from the set air pressure. If the air pressure deviation determiner 130 has a deviation in air pressure and the deviation is negative, the operation moves to the air supply unit 131. In the air supply unit 131, the air supply valve 35 is operated to supply air with the air compressor 33 and the accumulator 34. The accumulator 34 is used for the air supply valve 3
This is for improving the responsiveness of the air supply during the operation of No. 5. If the air pressure deviation determiner 130 determines that there is a deviation in the air pressure and the deviation is positive, the operation moves to the air discharger 132.
In the air discharge part 132, the air discharge valve 36 for discharging the air in the air chamber 41 is operated. If the air pressure deviation determiner 130 determines that there is no air pressure deviation, the air supply valve 35 and the air discharge valve 36 are not operated.

【0038】次に、水面レベル判定器133 では、空気室
41の水面レベル偏差が許容範囲内かどうかを判定す
る。前述の空気供給部131 及び空気排出部132 では水面
レベルの如何に関わらず空気圧を制御していたが、この
場合、空気室41が仕切板30下部の開口部に達すると
掘削面の切羽に空気が流れ込んでしまう。そのため、水
面レベルを監視し、水面レベル偏差が許容範囲以内にな
るようにしなければならない。水面レベル判定器133 で
偏差が下限値を下回る場合、回転数操作部134 に移行す
る。操作部134 では送泥ポンプ6の回転数を増加させる
操作を行い、送泥ポンプ6からの供給水を増加させ水面
レベルを上昇させるようにする。水面レベル判定器133
で偏差が上限値を上回る場合、回転数操作部135 に移行
する。操作部135 では送泥ポンプ6の回転数を減少させ
る操作を行い、送泥ポンプ6からの供給水を減少させ水
面レベルを降下させ、水面レベルの偏差が常に許容範囲
内を維持するように制御する。
Next, the water level determiner 133 determines whether the water level deviation of the air chamber 41 is within the allowable range. The air pressure was controlled in the air supply part 131 and the air discharge part 132 regardless of the water surface level. In this case, when the air chamber 41 reaches the opening at the bottom of the partition plate 30, air is blown to the face of the excavation surface. Will flow in. Therefore, the water level must be monitored and the water level deviation must be within the allowable range. When the deviation is less than the lower limit value in the water surface level determination unit 133, the operation proceeds to the rotation speed operation unit 134. The operation unit 134 performs an operation of increasing the rotation speed of the mud pump 6 to increase the water supplied from the mud pump 6 and raise the water level. Water level judge 133
If the deviation exceeds the upper limit value at, the process proceeds to the rotation speed operation unit 135. The operation unit 135 performs an operation to decrease the rotation speed of the mud pump 6, reduces the water supplied from the mud pump 6, lowers the water surface level, and controls so that the deviation of the water surface level always remains within the allowable range. To do.

【0039】尚、各実施例は請求項6(第6発明)に相
当する。また、上記実施例では、トンネル掘削機として
主に軟弱地盤を掘削するシールド掘削機を例に挙げて説
明したが、本願発明はこれに限らず、岩盤の掘削を行う
掘削機等他のトンネル掘削機に適用可能である。
Each embodiment corresponds to claim 6 (sixth invention). Further, in the above-described embodiment, the shield excavator that excavates mainly soft ground is taken as an example of the tunnel excavator, but the present invention is not limited to this, and other tunnel excavators such as an excavator that excavates rock. Applicable to machine.

【0040】このように、前胴にあるチャンバー3に空
気を封入し、チャンバー3内に泥水層と空気層との2層
構造をなして掘削を行うハイドロシールド掘削機におい
て、上述した実施例では、空気層と泥水層との境界であ
る水面のレベルを一定に保つ制御或いは空気の圧力を一
定に保つ制御を行っているため、排泥管の閉塞、チャン
バー3内の泥水の逸水等の外乱によりチャンバー3内の
流量バランスがくずれても、空気層がいわゆるエアーク
ッションの役割をして空気層と泥水との境界である水面
が変化することになる。また、空気の圧力は急激に変化
しないため、切羽圧の変化も小さい。更に、水面のレベ
ルを一定に保つ制御或いは空気の圧力を一定に保つ制御
を実施しているため、掘進中に生じる外乱に対して更に
切羽圧の変化を小さくすることができ、安定した切羽を
維持しつつ掘進することが可能になる。
As described above, in the hydroshield excavator in which air is enclosed in the chamber 3 in the front body and the two-layer structure of the muddy water layer and the air layer is formed in the chamber 3 for excavation, Since the control for keeping the level of the water surface which is the boundary between the air layer and the muddy water layer constant or the control for keeping the pressure of the air constant is performed, it is possible to prevent clogging of the mud pipe, loss of muddy water in the chamber 3, etc. Even if the flow rate balance in the chamber 3 is disturbed by a disturbance, the air layer acts as a so-called air cushion and the water surface that is the boundary between the air layer and the muddy water changes. Moreover, since the air pressure does not change rapidly, the change in face pressure is small. Furthermore, because the control to keep the water surface level constant or the control to keep the air pressure constant is carried out, it is possible to further reduce the change in the face pressure with respect to the disturbance that occurs during excavation, and to obtain a stable face. It is possible to dig while maintaining.

【0041】[0041]

【発明の効果】第1発明のトンネル掘削機は、チャンバ
ー内に泥水層と空気層との2層構造をを構成し、チャン
バー内に泥水を供給する泥水供給用送泥ポンプを設け、
水面のレベルを検出するレベルセンサをチャンバー内に
設け、水面レベル設定値とレベルセンサからのレベル値
との差が入力されると共に差に基づいて水面のレベルが
所定の値を維持する状態の回転数操作量を設定して泥水
供給用送泥ポンプに出力する補償器を備えたので、水面
レベルが所定の値に維持される状態に泥水供給用送泥ポ
ンプが駆動され、チャンバー内の水面レベルを所定状態
に維持することができる。この結果、掘進中に生じる外
乱でチャンバー内の流量バランスが崩れても常に切羽圧
の変化を小さくすることができるため、安定した切羽を
維持しつつ掘進することが可能になる。
The tunnel excavator of the first invention has a two-layer structure of a muddy water layer and an air layer in the chamber, and is provided with a muddy water supply mud pump for supplying muddy water into the chamber.
A level sensor that detects the level of the water surface is installed inside the chamber, and the difference between the set value of the water surface level and the level value from the level sensor is input, and the rotation of the state where the water surface level maintains a predetermined value based on the difference. Since it has a compensator that sets several manipulated variables and outputs it to the mud water supply mud pump, the mud water supply mud pump is driven to maintain the water level at a specified value, and the water level in the chamber Can be maintained in a predetermined state. As a result, even if the flow rate balance in the chamber is disturbed by the disturbance generated during the excavation, the change in the cutting face pressure can be constantly reduced, so that the excavation can be performed while maintaining a stable cutting face.

【0042】第2発明のトンネル掘削機は、チャンバー
内に泥水層と空気層との2層構造をを構成し、チャンバ
ー内に泥水を供給する泥水供給用送泥ポンプを設け、空
気層の空気圧を検出する圧力センサをチャンバー内に設
け、空気圧設定値と圧力センサからの圧力値との差が入
力されると共に差に基づいて空気圧が所定の値を維持す
る状態の回転数操作量を設定して泥水供給用送泥ポンプ
に出力する補償器を備えたので、空気層の空気圧が所定
の値に維持される状態に泥水供給用送泥ポンプが駆動さ
れ、空気層の空気圧を所定状態に維持することができ
る。この結果、掘進中に生じる外乱でチャンバー内の流
量バランスが崩れても常に切羽圧の変化を小さくするこ
とができるため、安定した切羽を維持しつつ掘進するこ
とが可能になる。
The tunnel excavator of the second invention has a two-layer structure of a muddy water layer and an air layer in the chamber, is provided with a muddy water supply mud pump for supplying muddy water in the chamber, and the air pressure of the air layer is A pressure sensor for detecting is set in the chamber, and the difference between the air pressure set value and the pressure value from the pressure sensor is input, and the rotational speed manipulated variable is set based on the difference to maintain the air pressure at a predetermined value. Since it has a compensator that outputs to the mud water supply mud pump, the mud water supply mud pump is driven so that the air pressure of the air layer is maintained at a predetermined value, and the air pressure of the air layer is maintained at a predetermined state. can do. As a result, even if the flow rate balance in the chamber is disturbed by the disturbance generated during the excavation, the change in the cutting face pressure can be constantly reduced, so that the excavation can be performed while maintaining a stable cutting face.

【0043】第3発明のトンネル掘削機は、チャンバー
内に泥水層と空気層との2層構造をを構成し、チャンバ
ー内に空気を供給する空気圧縮器もしくは空気圧縮器と
アキュムレータを設け、チャンバー内から空気を排出す
る空気排出経路を設け、空気の供給操作を行う空気供給
弁を備える一方、空気排出経路に空気の排出操作を行う
空気排出弁を設け、空気層の空気圧を検出する圧力セン
サをチャンバー内に設け、圧力センサによる空気圧の検
出値が所定の値以下の場合に空気供給弁を開操作すると
共に圧力センサによる空気圧の検出値がが所定値以上の
場合に空気排出弁を開操作してチャンバー内の空気圧を
常に所定の圧力に維持する制御装置を備えたので、空気
層の空気圧が所定の値に維持される状態に空気供給弁及
び空気排出弁が開操作され、空気層の空気圧を所定状態
に維持することができる。この結果、掘進中に生じる外
乱でチャンバー内の流量バランスが崩れても常に切羽圧
の変化を小さくすることができるため、安定した切羽を
維持しつつ掘進することが可能になる。
The tunnel excavator of the third invention has a two-layer structure of a muddy water layer and an air layer in the chamber, and is provided with an air compressor for supplying air into the chamber or an air compressor and an accumulator. A pressure sensor that detects the air pressure in the air layer by providing an air discharge path that discharges air from the inside and an air supply valve that performs air supply operation while providing an air discharge valve that performs air discharge operation in the air discharge path Is installed inside the chamber, and opens the air supply valve when the air pressure detected by the pressure sensor is below the specified value, and opens the air discharge valve when the air pressure detected by the pressure sensor is above the specified value. Since it is equipped with a control device that constantly maintains the air pressure in the chamber at a predetermined pressure, the air supply valve and the air exhaust valve are opened so that the air pressure in the air layer is maintained at a predetermined value. Is created, it is possible to maintain the air pressure of the air layer in a predetermined state. As a result, even if the flow rate balance in the chamber is disturbed by the disturbance generated during the excavation, the change in the cutting face pressure can be constantly reduced, so that the excavation can be performed while maintaining a stable cutting face.

【0044】第4発明のトンネル掘削機は、チャンバー
内に泥水層と空気層との2層構造をを構成し、チャンバ
ー内に泥水を供給する泥水供給用送泥ポンプを設け、チ
ャンバー内に空気を供給する空気圧縮器もしくは空気圧
縮器とアキュムレータを設けると共に、チャンバー内か
ら空気を排出する空気排出経路を設け、空気の供給操作
を行う空気供給弁を備える一方、空気排出経路に空気の
排出操作を行う空気排出弁を設け、空気層の空気圧を検
出する圧力センサをチャンバー内に設け、圧力センサに
よる空気圧の検出値が所定の値以下の場合に空気供給弁
を開操作すると共に圧力センサによる空気圧の検出値が
が所定値以上の場合に空気排出弁を開操作してチャンバ
ー内の空気圧を常に所定の圧力に維持する制御装置を備
えたことにより、空気層の空気圧が所定の範囲の値に維
持される状態に空気供給弁及び空気排出弁が開操作さ
れ、空気層の空気圧を所定状態に維持することができ
る。また、水面のレベルを検出するレベルセンサをチャ
ンバー内に設け、レベルセンサによるレベル値が許容上
限値以上の場合に泥水供給用送泥ポンプの回転数を減少
させると共にレベルセンサによるレベル値が許容下限値
以下の場合に泥水供給用送泥ポンプの回転数を増加させ
て水面レベルを所定の範囲に維持する送泥制御装置を備
えたことにより、水面レベルが所定の範囲の値に維持さ
れる状態に泥水供給用送泥ポンプが駆動され、チャンバ
ー内の水面レベルを所定状態に維持することができる。
この結果、掘進中に生じる外乱でチャンバー内の流量バ
ランスが崩れても常に切羽圧の変化を小さくすることが
できるため、安定した切羽を維持しつつ掘進することが
可能になる。
The tunnel excavator of the fourth aspect of the invention has a two-layer structure of a muddy water layer and an air layer in the chamber, is provided with a muddy water supply mud pump for supplying muddy water into the chamber, and has an air flow inside the chamber. Is provided with an air compressor or an air compressor and an accumulator, an air discharge path for discharging air from the chamber is provided, and an air supply valve for supplying air is provided, while an air discharge operation is performed on the air discharge path. An air exhaust valve for performing the above is installed, a pressure sensor for detecting the air pressure of the air layer is installed in the chamber, and when the detected value of the air pressure by the pressure sensor is below a predetermined value, the air supply valve is opened and the air pressure by the pressure sensor is opened. By providing a control device that constantly operates the air exhaust valve to maintain the air pressure in the chamber at a predetermined pressure when the detected value of is greater than or equal to a predetermined value, Air supply valve and the air discharge valve in a state where the air pressure of the air layer is maintained at a value of the predetermined range is operated to open, it is possible to maintain the air pressure of the air layer in a predetermined state. In addition, a level sensor that detects the level of the water surface is installed in the chamber, and when the level value by the level sensor is above the allowable upper limit value, the rotation speed of the mud supply mud pump is reduced and the level value by the level sensor is the allowable lower limit value. When the water level is maintained at a value within a predetermined range by installing a mud control device that increases the number of rotations of the mud supply mud pump to maintain the water level within a specified range The mud pump for supplying muddy water is driven to keep the water level in the chamber at a predetermined level.
As a result, even if the flow rate balance in the chamber is disturbed by the disturbance generated during the excavation, the change in the cutting face pressure can be constantly reduced, so that the excavation can be performed while maintaining a stable cutting face.

【0045】第5発明のトンネル掘削機は、チャンバー
内に泥水層と空気層との2層構造をを構成し、チャンバ
ー内に空気を封入すると共に該チャンバー内に泥水を供
給する一方、前記チャンバー内の泥水を排出する泥水排
出用排泥ポンプを設け、泥水排出経路に排泥量を検出す
る流量検出器を設け、排泥量設定値と流量検出器からの
値との差が入力されると共に差に基づいて排泥量が所定
の値を維持する状態の回転数操作量を設定して泥水排出
用の排泥ポンプに出力する補償器を備えたことにより、
排泥量が所定の値に維持される状態に泥水排出用の排泥
ポンプが駆動され、泥水の圧力状態を一定に維持するこ
とができる。この結果、掘進中に生じる外乱でチャンバ
ー内の流量バランスが崩れても常に切羽圧の変化を小さ
くすることができるため、安定した切羽を維持しつつ掘
進することが可能になる。
The tunnel excavator of the fifth aspect of the present invention has a two-layer structure of a muddy water layer and an air layer in the chamber, encloses air in the chamber and supplies muddy water into the chamber, A mud discharge drainage pump that discharges the mud inside is installed, and a flow rate detector that detects the amount of mud discharge is installed in the mud discharge route, and the difference between the set value of the mud discharge and the value from the flow rate detector is input. With the compensator that sets the rotation speed manipulated variable in a state in which the amount of sludge is maintained at a predetermined value based on the difference, and outputs it to the sludge pump for discharging muddy water,
The mud pump for mud discharge is driven in a state where the amount of mud is maintained at a predetermined value, and the pressure state of mud can be maintained constant. As a result, even if the flow rate balance in the chamber is disturbed by the disturbance generated during the excavation, the change in the cutting face pressure can be constantly reduced, so that the excavation can be performed while maintaining a stable cutting face.

【0046】第6発明のトンネル掘削機は、泥水を供給
する送泥系は第1発明乃至第4発明のいずれかを適用し
て泥水供給用送泥ポンプの回転数もしくは空気層の空気
圧を調整し、泥水を排出する排泥系は第5発明を適用し
て泥水排出用排泥ポンプの回転数を調整するようにした
ので、チャンバー内の空気や泥水の圧力状態を一定に保
つことができる。この結果、掘進中に生じる外乱でチャ
ンバー内の流量バランスが崩れても常に切羽圧の変化を
小さくすることができるため、安定した切羽を維持しつ
つ掘進することが可能になる。
In the tunnel excavator according to the sixth aspect of the invention, the mud feeding system for feeding mud applies any one of the first to fourth aspects of the invention to adjust the rotational speed of the mud feeding mud pump or the air pressure of the air layer. However, since the sludge discharge system for discharging the muddy water is adapted to adjust the rotational speed of the muddy water discharge sludge pump by applying the fifth invention, the pressure state of the air and the muddy water in the chamber can be kept constant. . As a result, even if the flow rate balance in the chamber is disturbed by the disturbance generated during the excavation, the change in the cutting face pressure can be constantly reduced, so that the excavation can be performed while maintaining a stable cutting face.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例に係る泥水輸送系の全体
構成図。
FIG. 1 is an overall configuration diagram of a muddy water transport system according to a first embodiment of the present invention.

【図2】本発明の第一の実施例に係る制御装置内に格納
された送泥制御部の説明図。
FIG. 2 is an explanatory diagram of a mud sending control unit stored in the control device according to the first embodiment of the present invention.

【図3】本発明の第一の実施例に係る制御装置内に格納
された排泥制御部の説明図。
FIG. 3 is an explanatory diagram of a sludge control unit stored in the control device according to the first embodiment of the present invention.

【図4】本発明の第一の実施例を適用した場合のシミュ
レーション結果のグラフ。
FIG. 4 is a graph of simulation results when the first embodiment of the present invention is applied.

【図5】本発明の第二の実施例に係る泥水輸送系の全体
構成図。
FIG. 5 is an overall configuration diagram of a muddy water transportation system according to a second embodiment of the present invention.

【図6】本発明の第二の実施例に係る制御装置内に格納
された送泥制御部の説明図。
FIG. 6 is an explanatory diagram of a mud sending control unit stored in a control device according to a second embodiment of the present invention.

【図7】本発明の第三の実施例に係る泥水輸送系の全体
構成図。
FIG. 7 is an overall configuration diagram of a muddy water transportation system according to a third embodiment of the present invention.

【図8】本発明の第三の実施例に係る制御装置内に格納
された送泥制御部のフローチャート。
FIG. 8 is a flowchart of a mud sending control unit stored in a control device according to a third embodiment of the present invention.

【図9】ハイドロシールド掘削機の外観図。FIG. 9 is an external view of a hydroshield excavator.

【図10】従来の泥水輸送系の全体構成図。FIG. 10 is an overall configuration diagram of a conventional muddy water transportation system.

【図11】従来の泥水輸送系のシミュレーション結果の
グラフ。
FIG. 11 is a graph of a simulation result of a conventional muddy water transport system.

【符号の説明】[Explanation of symbols]

1 シールド掘削機 2 カッタ 3 チャンバー 6 送泥ポンプ 7 送泥回路 11,13 排泥ポンプ 14 排泥回路 17 制御装置 20 流量センサ 31 レベルセンサ 32 圧力センサ 33 空気圧縮機 34 アキュムレータ 35 空気供給弁 36 空気排出弁 41 空気室 42 バルクヘッド 101 水面レベル設定値 102 実水面レベル 103,108,113,118,123,128 加算器 104,114,124 関数 105,115,125 補償部 106,116,126 回転数修正量 107,117,127 初期回転数 109,119,129 排泥ポンプ回転数指令 111 排泥流量設定値 112 実排泥流量 111 排泥流量設定値 121 空気圧設定値 122 実空気圧 129 送泥ポンプ回転数指令 130 空気圧偏差判別器 131 空気供給部 132 空気排出部 133 水面レベル判定器 134,135 回転数操作部 1 Shield Excavator 2 Cutter 3 Chamber 6 Mud Pump 7 Mud Circuit 11, 13 Mud Pump 14 Mud Circuit 17 Controller 20 Flow Sensor 31 Level Sensor 32 Pressure Sensor 33 Air Compressor 34 Accumulator 35 Air Supply Valve 36 Air Discharge valve 41 Air chamber 42 Bulkhead 101 Water surface level set value 102 Actual water surface level 103,108,113,118,123,128 Adder 104,114,124 Function 105,115,125 Compensation unit 106,116,126 Rotation speed correction amount 107,117,127 Initial rotation speed 109,119,129 Sludge pump rotation speed command value 111 Sludge flow rate setting value 112 Actual discharge Mud flow rate 111 Sludge discharge flow rate set value 121 Air pressure set value 122 Actual air pressure 129 Mud pump rotation speed command 130 Air pressure deviation discriminator 131 Air supply unit 132 Air discharge unit 133 Water surface level determination unit 134,135 Rotation speed operation unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 前胴に設けられたチャンバーの隔壁であ
るバルクヘッドに平行して仕切板を設け、前記チャンバ
ー内に空気を封入すると共に、前記チャンバー内に泥水
を供給する泥水供給用送泥ポンプを設け、前記チャンバ
ー内に泥水層と空気層とを形成して掘削中における切羽
圧を一定に保つ泥水式トンネル掘削機において、前記空
気層と前記泥水層との境界である水面のレベルを検出す
るレベルセンサを前記チャンバー内に設け、水面レベル
設定値と前記レベルセンサからのレベル値との差が入力
されると共に該差に基づいて水面のレベルが所定の値を
維持する状態の回転数操作量を設定して前記泥水供給用
送泥ポンプに出力する補償器を備えたことを特徴とする
泥水式トンネル掘削機。
1. A muddy water feed mud for supplying a muddy water into the chamber while enclosing air in the chamber by providing a partition plate in parallel with a bulkhead which is a partition wall of the chamber provided in the front body. In a muddy water tunnel excavator that is provided with a pump and forms a muddy water layer and an air layer in the chamber to keep the face pressure during excavation constant, the level of the water surface that is the boundary between the air layer and the muddy water layer is adjusted. A level sensor for detecting is provided in the chamber, and the number of revolutions in a state where the difference between the water surface level set value and the level value from the level sensor is input and the water surface level maintains a predetermined value based on the difference. A mud tunnel excavator, comprising a compensator for setting a manipulated variable and outputting it to the mud pump for supplying mud.
【請求項2】 前胴に設けられたチャンバーの隔壁であ
るバルクヘッドに平行して仕切板を設け、前記チャンバ
ー内に空気を封入すると共に、前記チャンバー内に泥水
を供給する泥水供給用送泥ポンプを設け、前記チャンバ
ー内に泥水層と空気層とを形成して掘削中における切羽
圧を一定に保つ泥水式トンネル掘削機において、前記空
気層の空気圧を検出する圧力センサを前記チャンバー内
に設ける一方、空気圧設定値と前記圧力センサからの圧
力値との差が入力されると共に該差に基づいて空気圧が
所定の値を維持する状態の回転数操作量を設定して前記
泥水供給用送泥ポンプに出力する補償器を備えたことを
特徴とする泥水式トンネル掘削機。
2. A muddy water feed mud for supplying a muddy water into the chamber while enclosing air in the chamber by providing a partition plate in parallel with a bulkhead which is a partition wall of the chamber provided in the front body. In a muddy water tunnel excavator which is provided with a pump and forms a muddy water layer and an air layer in the chamber to keep the face pressure constant during excavation, a pressure sensor for detecting the air pressure of the air layer is provided in the chamber. On the other hand, the difference between the air pressure set value and the pressure value from the pressure sensor is input, and based on the difference, the rotational speed manipulated variable is set in a state where the air pressure maintains a predetermined value, and the mud supply mud feed is set. A mud tunnel excavator, which is equipped with a compensator for outputting to a pump.
【請求項3】 前胴に設けられたチャンバーの隔壁であ
るバルクヘッドに平行して仕切板を設け、前記チャンバ
ー内に空気を封入すると共に該チャンバー内に泥水を供
給し、前記チャンバー内に泥水層と空気層とを形成して
掘削中における切羽圧を一定に保つ泥水式トンネル掘削
機において、前記チャンバー内に空気を供給する空気圧
縮器もしくは空気圧縮器とアキュムレータを設け、前記
チャンバー内から空気を排出する空気排出経路を設け、
空気の供給操作を行う空気供給弁を備える一方、前記空
気排出経路に空気の排出操作を行う空気排出弁を設け、
前記空気層の空気圧を検出する圧力センサを前記チャン
バー内に設け、前記圧力センサによる空気圧の検出値が
所定の値以下の場合に前記空気供給弁を開操作すると共
に該圧力センサによる空気圧の検出値がが所定値以上の
場合に前記空気排出弁を開操作して前記チャンバー内の
空気圧を常に所定の圧力に維持する制御装置を備えたこ
とを特徴とする泥水式トンネル掘削機。
3. A partition plate is provided in parallel with a bulkhead which is a partition wall of a chamber provided in the front body, encloses air in the chamber and supplies muddy water into the chamber, and the muddy water is fed into the chamber. Layer and air layer to form a muddy water tunnel excavator for maintaining a constant face pressure during excavation, an air compressor for supplying air into the chamber or an air compressor and an accumulator are provided, and air is supplied from within the chamber. An air discharge path for discharging
While having an air supply valve for performing an air supply operation, an air discharge valve for performing an air discharge operation is provided in the air discharge path,
A pressure sensor for detecting the air pressure of the air layer is provided in the chamber, and when the detected value of the air pressure by the pressure sensor is less than or equal to a predetermined value, the air supply valve is opened and the detected value of the air pressure by the pressure sensor. A muddy water tunnel excavator comprising a control device for opening the air discharge valve to constantly maintain the air pressure in the chamber at a predetermined pressure when is greater than or equal to a predetermined value.
【請求項4】 前胴に設けられたチャンバーの隔壁であ
るバルクヘッドに平行して仕切板を設け、前記チャンバ
ー内に空気を封入すると共に、前記チャンバー内に泥水
を供給する泥水供給用送泥ポンプを設け、前記チャンバ
ー内に泥水層と空気層とを形成して掘削中における切羽
圧を一定に保つ泥水式トンネル掘削機において、前記チ
ャンバー内に空気を供給する空気圧縮器もしくは空気圧
縮器とアキュムレータを設け、前記チャンバー内から空
気を排出する空気排出経路を設け、空気の供給操作を行
う空気供給弁を備えると共に、前記空気排出経路に空気
の排出操作を行う空気排出弁を設け、前記空気層の空気
圧を検出する圧力センサを前記チャンバー内に設け、前
記圧力センサによる空気圧の検出値が所定の値以下の場
合に前記空気供給弁を開操作すると共に該圧力センサに
よる空気圧の検出値がが所定値以上の場合に前記空気排
出弁を開操作して前記チャンバー内の空気圧を常に所定
の圧力に維持する制御装置を備え、更に、前記空気層と
前記泥水層との境界である水面のレベルを検出するレベ
ルセンサを前記チャンバー内に設ける一方、前記レベル
センサによるレベル値が許容上限値以上の場合に前記泥
水供給用送泥ポンプの回転数を減少させると共に前記レ
ベルセンサによるレベル値が許容下限値以下の場合に前
記泥水供給用送泥ポンプの回転数を増加させて水面レベ
ルを所定の範囲に維持する送泥制御装置を備えたことを
特徴とする泥水式トンネル掘削機。
4. A muddy water feed mud for supplying muddy water into the chamber while enclosing air in the chamber and providing a partition plate in parallel with a bulkhead which is a partition wall of the chamber provided in the front body. In a muddy water tunnel excavator that is provided with a pump and forms a muddy water layer and an air layer in the chamber to keep the face pressure constant during excavation, an air compressor or an air compressor for supplying air into the chamber. An accumulator is provided, an air discharge path for discharging air from the chamber is provided, an air supply valve for performing an air supply operation is provided, and an air discharge valve for performing an air discharge operation is provided at the air discharge path. A pressure sensor for detecting the air pressure of the bed is provided in the chamber, and the air supply valve is provided when the detected value of the air pressure by the pressure sensor is equal to or less than a predetermined value And a control device for constantly maintaining the air pressure in the chamber at a predetermined pressure by opening the air discharge valve when the detected value of the air pressure by the pressure sensor is equal to or higher than a predetermined value. A level sensor that detects the level of the water surface that is the boundary between the air layer and the muddy water layer is provided in the chamber, while the level value by the level sensor is equal to or greater than the allowable upper limit, the muddy water supply mud pump A mud feed control device is provided for maintaining the water surface level within a predetermined range by decreasing the rotational speed and increasing the rotational speed of the mud feed mud pump when the level value by the level sensor is equal to or lower than the allowable lower limit value. A mud tunnel excavator characterized by
【請求項5】 前胴に設けられたチャンバーの隔壁であ
るバルクヘッドに平行して仕切板を設け、前記チャンバ
ー内に空気を封入すると共に該チャンバー内に泥水を供
給する一方、前記チャンバー内の泥水を排出する泥水排
出用排泥ポンプを設け、前記チャンバー内に泥水層と空
気層とを形成して掘削中における切羽圧を一定に保つ泥
水式トンネル掘削機において、泥水排出経路に排泥量を
検出する流量検出器を設け、排泥量設定値と前記流量検
出器からの値との差が入力されると共に該差に基づいて
排泥量が所定の値を維持する状態の回転数操作量を設定
して前記泥水排出用の排泥ポンプに出力する補償器を備
えたことを特徴とする泥水式トンネル掘削機。
5. A partition plate is provided in parallel with a bulkhead that is a partition wall of a chamber provided in the front body, and air is enclosed in the chamber and muddy water is supplied into the chamber while the partition in the chamber is provided. In a muddy water tunnel excavator, which is provided with a muddy water discharge mud pump for discharging muddy water, forms a muddy water layer and an air layer in the chamber to keep the face pressure constant during excavation, Is provided with a flow rate detector to detect the difference, and the difference between the set value of the amount of sludge and the value from the flow rate detector is input, and the amount of sludge is maintained at a predetermined value based on the difference. A mud tunnel excavator, comprising a compensator for setting a quantity and outputting the mud water to the mud discharge pump.
【請求項6】 前胴に設けられたチャンバーの隔壁であ
るバルクヘッドに平行して仕切板を設け、前記チャンバ
ー内に空気を封入し、前記チャンバー内に泥水を供給す
る泥水供給用送泥ポンプを設けると共に、前記チャンバ
ー内の泥水を排出する泥水排出用排泥ポンプを設け、前
記チャンバー内に泥水層と空気層とを形成して掘削中に
おける切羽圧を一定に保つ泥水式トンネル掘削機におい
て、泥水を供給する送泥系として、第1発明もしくは第
2発明もしくは第3発明もしくは第4発明に記載の送泥
系を適用し、泥水を排出する排泥系として第5発明に記
載の排泥系を適用したことを特徴とする泥水式トンネル
掘削機。
6. A sludge pump for supplying muddy water, which is provided with a partition plate in parallel with a bulkhead which is a partition wall of a chamber provided in the front body, encloses air in the chamber, and supplies muddy water into the chamber. In the muddy water tunnel excavator, which is provided with a muddy water drainage pump for discharging muddy water in the chamber, forms a muddy water layer and an air layer in the chamber to keep the face pressure during excavation constant. The mud feeding system according to the first invention, the second invention, the third invention or the fourth invention is applied as a mud feeding system for supplying mud, and the drainage according to the fifth invention is applied as a mud draining system. A mud tunnel excavator characterized by applying a mud system.
JP2376095A 1995-02-13 1995-02-13 Muddy tunnel excavator Expired - Lifetime JP3117380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2376095A JP3117380B2 (en) 1995-02-13 1995-02-13 Muddy tunnel excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2376095A JP3117380B2 (en) 1995-02-13 1995-02-13 Muddy tunnel excavator

Publications (2)

Publication Number Publication Date
JPH08218771A true JPH08218771A (en) 1996-08-27
JP3117380B2 JP3117380B2 (en) 2000-12-11

Family

ID=12119297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2376095A Expired - Lifetime JP3117380B2 (en) 1995-02-13 1995-02-13 Muddy tunnel excavator

Country Status (1)

Country Link
JP (1) JP3117380B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134356A1 (en) * 2000-03-16 2001-09-19 Hochtief Aktiengesellschaft Method for carrying out inspections and /or maintenance in tunnel boring machines
EP1172522A1 (en) * 2000-07-12 2002-01-16 Hochtief Aktiengesellschaft Driving shield tunneling machine
CN104018844A (en) * 2014-05-27 2014-09-03 中铁十九局集团轨道交通工程有限公司 Shield tunneling machine water-pressure and gas-pressure balance control system and method in water-rich stratum
DE102014104580B4 (en) 2014-04-01 2024-03-21 Herrenknecht Ag Device for driving a tunnel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425855B2 (en) * 2011-10-12 2014-02-26 株式会社アクティオ Muddy water type shield machine
JP5425856B2 (en) * 2011-10-12 2014-02-26 株式会社アクティオ Muddy water type shield machine
DE102018216552A1 (en) * 2018-09-27 2020-04-02 Robert Bosch Gmbh Actuators for a braking element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134356A1 (en) * 2000-03-16 2001-09-19 Hochtief Aktiengesellschaft Method for carrying out inspections and /or maintenance in tunnel boring machines
EP1172522A1 (en) * 2000-07-12 2002-01-16 Hochtief Aktiengesellschaft Driving shield tunneling machine
DE102014104580B4 (en) 2014-04-01 2024-03-21 Herrenknecht Ag Device for driving a tunnel
CN104018844A (en) * 2014-05-27 2014-09-03 中铁十九局集团轨道交通工程有限公司 Shield tunneling machine water-pressure and gas-pressure balance control system and method in water-rich stratum

Also Published As

Publication number Publication date
JP3117380B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
US4167289A (en) Method and system for controlling earth pressure in tunnel boring or shield machine
JPH08218771A (en) Sludge type tunnel excavator
FI90276B (en) A method of drilling a hole in rock
JP3138559B2 (en) Earth pressure control device for earth pressure type shield
JP7427342B2 (en) Mud water type shield excavation machine and compressed air pressure adjustment method in muddy water type shield excavation machine
JP3129853B2 (en) Automatic control system of face water pressure in mud pressurized shield construction
JP4423783B2 (en) Excavation management method for shield machine
JPH0860983A (en) Device and method for controlling cutter torque of tunnel boring machine
JP2696396B2 (en) Mud pressurized shield machine
JP7449637B2 (en) Mud water type shield excavator and its excavation method
JP7412860B2 (en) Mud water type shield excavation machine and compressed air pressure adjustment method in muddy water type shield excavation machine
JP2974208B2 (en) Sludge adjusting device
JP2714310B2 (en) Cutter torque control device for shield machine
JPH0235839B2 (en) SHIIRUDOSHIKITONNERUKUTSUSAKUKI
JPH0258438B2 (en)
JP7391760B2 (en) Tunnel boring machine and its operating method
JP2804524B2 (en) Hydraulic drive for civil and construction machinery
CN117555359A (en) Control method and system for slurry air cushion bin liquid level of shield tunneling machine and electronic equipment
GB1580813A (en) Method of and system for controlling earth pressure in tunnel boring
JPH0319360B2 (en)
JPH0649838A (en) Device for controlling level of stabilizer liquid for excavation wall surface
JPS6056873B2 (en) Tuning machine face water pressure control device
JPH07189587A (en) Method and device for controlling grease supplying pressure for sealed part of shield excavating machine
JPH0694783B2 (en) Face earth pressure control method in shield method
JP2865192B2 (en) Face water pressure control device in muddy water shield method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 13

EXPY Cancellation because of completion of term