JPH0788599B2 - Method for producing iron-coated composite material - Google Patents

Method for producing iron-coated composite material

Info

Publication number
JPH0788599B2
JPH0788599B2 JP3314215A JP31421591A JPH0788599B2 JP H0788599 B2 JPH0788599 B2 JP H0788599B2 JP 3314215 A JP3314215 A JP 3314215A JP 31421591 A JP31421591 A JP 31421591A JP H0788599 B2 JPH0788599 B2 JP H0788599B2
Authority
JP
Japan
Prior art keywords
iron
coated composite
composite material
plating
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3314215A
Other languages
Japanese (ja)
Other versions
JPH0649685A (en
Inventor
節 久保田
俊一 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62175446A priority Critical patent/JPS6417892A/en
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP3314215A priority patent/JPH0788599B2/en
Publication of JPH0649685A publication Critical patent/JPH0649685A/en
Publication of JPH0788599B2 publication Critical patent/JPH0788599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄被覆複合材の製造方
法に関し、さらに詳しくは、展延性のある靱軟な電着鉄
めっき層を有する鉄被覆複合材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an iron-coated composite material, and more particularly to a method for manufacturing an iron-coated composite material having a malleable and soft electrodeposited iron plating layer.

【0002】[0002]

【従来の技術】金属被覆複合材の製造方法としては、芯
材表面に電気めっきにより金属被覆層を形成する電着め
っき法、芯材表面に金属蒸着により金属層を被覆する真
空蒸着法、芯材を外被金属管に挿通しこれに引抜加工等
を施し金属被覆層を形成するクラッド法、芯材を溶融金
属中に走行させて芯材表面に溶融金属を被覆する溶融め
っき法などが知られている。
2. Description of the Related Art As a method for producing a metal-coated composite material, an electrodeposition plating method for forming a metal coating layer on the surface of a core material by electroplating, a vacuum deposition method for coating a metal layer on the surface of the core material by metal deposition, and a core Known are the clad method of inserting the material into the outer metal tube and subjecting it to a drawing process to form a metal coating layer, and the hot dip coating method of running the core material into the molten metal and coating the surface of the core material with the molten metal. Has been.

【0003】しかし、鉄被覆複合材の製造方法として
は、電着めっき法が主に用いられている。その理由は、
真空蒸着法では鉄の蒸気圧が低いため工業的手段での蒸
着が困難であること、クラッド法では被覆管として用い
るべき所望サイズの高純度鉄管が市場から得難く仮に入
手し得たとしても非常に高価なものとなり加えて引抜加
工工程において異種金属である芯材金属との間の接合が
十分得られないため歩留りが悪いなど工業的に採用する
には経済性の点で難点があること、溶融めっき法では鉄
の融点が1535℃と高いため芯材として用いることの
できる金属材が限定されること等が挙げられる。
However, the electrodeposition plating method is mainly used as a method for producing the iron-coated composite material. The reason is,
In the vacuum deposition method, the vapor pressure of iron is low, so it is difficult to deposit by industrial means.In the clad method, it is difficult to obtain a high-purity iron tube of the desired size to be used as a cladding tube from the market, and even if it can be obtained, it is very In addition to being expensive, there is a problem in terms of economic efficiency to industrially adopt such as poor yield because the joining between the core metal which is a dissimilar metal cannot be sufficiently obtained in the drawing process, In the hot dipping method, since the melting point of iron is as high as 1535 ° C., the metal material that can be used as the core material is limited.

【0004】ところが、従来の電着めっき法により得ら
れた鉄被覆複合材の電着鉄めっき層は、展延性、靱軟性
がなく、塑性加工が困難であり、また強度の曲げ変形な
どが加わったときに亀裂を生ずるといった欠点がある。
このため、所望のサイズの鉄被覆複合材を得るには、予
め芯材に所定サイズまで圧延、線引等の塑性加工を施
し、しかる後にこの芯材を鉄の電着めっき工程に付して
いる。
However, the electrodeposited iron-plated layer of the iron-coated composite material obtained by the conventional electrodeposition-plating method has no malleability and toughness, is difficult to plastically work, and is subject to strong bending deformation. There is a defect that cracks occur when it is played.
Therefore, in order to obtain an iron-coated composite material of a desired size, the core material is rolled to a predetermined size in advance, plastic working such as wire drawing is performed, and then this core material is subjected to an iron electrodeposition plating step. There is.

【0005】[0005]

【発明が解決しようとする課題】しかし、芯材が細いも
のになり、特に機械的強度の低い材質のものになると、
電着めっき工程で破断トラブルが多発し勝になる。例え
ば、銅あるいは銅合金等の非磁性導電体の細い芯線に強
磁性体の鉄を電着めっきした鉄めっきエナメル銅線が優
れた高周波特性を有することから高周波コイル用線材と
して用いられているが、かかる細い芯線の場合、電着め
っき工程で加わる機械的張力によって断線トラブルが起
り易くなり、生産性を著しく低下させる原因となってい
る。
However, when the core material becomes thin, especially when the material has low mechanical strength,
A lot of breakage troubles occur in the electrodeposition plating process, which is a win. For example, an iron-plated enamel copper wire obtained by electrodepositing a ferromagnetic iron on a thin core wire of a non-magnetic conductor such as copper or a copper alloy is used as a wire material for a high-frequency coil because it has excellent high-frequency characteristics. In the case of such a thin core wire, disconnection trouble is likely to occur due to mechanical tension applied in the electrodeposition plating step, which is a cause of markedly reducing productivity.

【0006】特に最近、コイルの小型化のために、外径
30ミクロン〜25ミクロンといった芯線の細径化が求
められると、芯線が電着めっき工程での機械的張力に耐
えられずたびたび断線するため、製造が困難となってい
る。
Particularly, in recent years, in order to reduce the size of the coil, when the outer diameter of the core wire is reduced to 30 to 25 microns, the core wire is often unable to withstand the mechanical tension in the electrodeposition plating step and is often broken. Therefore, manufacturing is difficult.

【0007】本発明は、上述の問題点を解決するために
なされたもので、圧延、線引等の塑性加工によって容易
に所定サイズまで加工することの可能な、また折り曲げ
によっても電着鉄めっき層に亀裂を生ずることのない機
械的特性に優れた鉄被覆複合材を製造するための方法を
提供することを目的とするものである。
The present invention has been made in order to solve the above-mentioned problems, and can be easily processed to a predetermined size by plastic working such as rolling and wire drawing, and electrodeposition iron plating by bending. It is an object of the present invention to provide a method for producing an iron-coated composite material having excellent mechanical properties which does not cause cracks in the layer.

【0008】[0008]

【課題を解決するための手段】本発明は、酸性鉄塩水溶
液に、塑性加工可能な金属芯材を浸漬し、アノードに純
度99.9%以上の高純度電解鉄を用い、浴温を40℃
以上とし且つ電流密度を0.3A/dm2以上0.5A
/dm2以下の低電流密度に設定して通電して、前記金
属芯材の外周に鉄めっき層を電着し、熱間または冷間塑
性加工を施し、所定サイズに加工することを特徴とする
鉄被覆複合材の製造方法を提供する。
According to the present invention, a plastically workable metal core material is immersed in an acidic iron salt aqueous solution, high purity electrolytic iron having a purity of 99.9% or more is used as an anode, and a bath temperature is set to 40. ℃
Above and current density of 0.3 A / dm 2 or above 0.5 A
Characterized in that the iron plated layer is electrodeposited on the outer periphery of the metal core material by applying a current at a low current density of / dm 2 or less, hot or cold plastic working, and working to a predetermined size. A method for producing an iron-coated composite material is provided.

【0009】上記構成において、酸性鉄塩水溶液の主成
分として、硫酸第一鉄を用いるのが好ましい。
In the above structure, it is preferable to use ferrous sulfate as the main component of the acidic iron salt aqueous solution.

【0010】[0010]

【作用】この発明の鉄被覆複合材の製造方法では、酸性
鉄塩水溶液に、塑性加工可能な金属芯材を浸漬し、次の
条件下で通電めっきする。 アノードに純度99.9%以上の高純度電解鉄を用い
る。 浴温を40℃以上とし、且つ、電流密度を0.3A/
dm2〜0.5A/dm2の低電流密度に設定する。この
通電めっきによって、金属芯材の外周に、純度が99.
97%以上,含有炭素量が20ppm以上150ppm
以下,含有酸素量が40ppm以下の組成を有し、ビッ
カース硬度が250以下で、内部応力が少なく、展延性
のある靭軟な電着鉄めっき層を形成することが出来る。
この結果、塑性加工性に優れた鉄被覆複合材を得ること
が出来る。
In the method of manufacturing an iron-coated composite material according to the present invention, a plastically workable metal core material is immersed in an acidic iron salt aqueous solution, and electroplating is performed under the following conditions. High-purity electrolytic iron having a purity of 99.9% or more is used for the anode. A bath temperature of 40 ° C or higher and a current density of 0.3 A /
It is set to a low current density of dm 2 to 0.5 A / dm 2 . By this electroplating, the purity of 99.
97% or more, carbon content 20ppm or more 150ppm
Hereinafter, it is possible to form a tough and soft electrodeposited iron plating layer having a composition having an oxygen content of 40 ppm or less, a Vickers hardness of 250 or less, little internal stress, and ductility.
As a result, an iron-coated composite material having excellent plastic workability can be obtained.

【0011】これに対して、アノードに純度99.9%
以上の高純度電解鉄を用いなければ、めっき中への不純
物の共析が生じる。この不純物の共析は、めっき結晶核
の発生を活発化させるため結晶を微細化させるが、結晶
が微細化すると結晶粒界が大きくなり、結晶格子面(面
心立方格子型の鉄の場合、(110)面)でのすべり変
形が粒界で止り、塑性加工性が著しく劣るものとなる。
更に、前記不純物は結晶粒界に共析するため、機械的性
質が悪化し、圧延,線引等の塑性加工時に電着鉄めっき
層に亀裂を生じる。すなわち、健全な鉄被覆複合材が得
られない。
On the other hand, the anode has a purity of 99.9%.
If the above high-purity electrolytic iron is not used, the co-deposition of impurities during plating will occur. The eutectoid of this impurity refines the crystal in order to activate the generation of plating crystal nuclei, but when the crystal is refined, the grain boundary becomes large, and the crystal lattice plane (face-centered cubic lattice type iron, The slip deformation on the (110) plane stops at the grain boundaries, and the plastic workability becomes extremely poor.
Further, since the impurities co-deposit on the grain boundaries, the mechanical properties are deteriorated, and cracks occur in the electrodeposited iron plating layer during plastic working such as rolling and drawing. That is, a sound iron-coated composite material cannot be obtained.

【0012】また、めっき液浴温が40℃未満の低温で
あったり、電流密度が0.3A/dm2 未満の場合は、
めっき効率が極端に悪化する。一方、電流密度が0.5
A/dm2 を超える高電流密度であると、めっき析出の
過電圧が大きくなり、めっき結晶核の発生が活発化し
て、めっき結晶が微細化し、上述のように塑性加工性が
著しく劣るものとなる。更に、めっき液中で水素が発生
し易くなり、結晶核発生点が多く生成され、やはり結晶
が微細化し、上述のように塑性加工性が著しく劣るもの
となる。
When the plating bath temperature is lower than 40 ° C. or the current density is less than 0.3 A / dm 2 ,
Plating efficiency is extremely deteriorated. On the other hand, the current density is 0.5
When the current density is higher than A / dm 2 , the overvoltage of plating deposition becomes large, the generation of plating crystal nuclei becomes active, the plating crystals become finer, and the plastic workability becomes extremely poor as described above. . Further, hydrogen is likely to be generated in the plating solution, many crystal nucleus generation points are generated, and the crystal is also finely divided, so that the plastic workability is remarkably deteriorated as described above.

【0013】[0013]

【実施例】図1に、本発明の鉄被覆複合材の製造方法の
一実施例の工程フローチャートを示す。芯材1は、例え
ば断面円形あるいは角状の金属棒材または線条材であ
る。
EXAMPLE FIG. 1 shows a process flow chart of an example of a method for producing an iron-coated composite material according to the present invention. The core material 1 is, for example, a metal rod material or a wire material having a circular or rectangular cross section.

【0014】電着鉄めっき装置2は、塩酸浴、硫酸浴あ
るいはこれらの混合浴から成り、アノードには純度9
9.9%以上の高純度電解鉄を用いる。電解液の成分濃
度、浴温、電流密度等の電解パラメータは、芯材1の材
質、構造、めっき厚さ等を考慮して決定する。但し、純
度が99.97%以上で、含有炭素量が20ppm以上
150ppm以下、含有酸素量が40ppm以下の組成
を有し、ビッカース硬度250以下の電着鉄めっき層を
形成するため、電解液の浴温は40℃以上、電流密度は
0.3A/dm2〜0.5A/dm2の低電流密度に設定
する必要がある。また、芯材1の形状を考慮のうえ、バ
ッチ式あるいは連続式が選択される。電着鉄めっき装置
2からは、可とう性鉄被覆複合母材3が得られる。
The electrodeposition iron plating apparatus 2 comprises a hydrochloric acid bath, a sulfuric acid bath or a mixed bath thereof, and the anode has a purity of 9%.
High-purity electrolytic iron of 9.9% or more is used. Electrolysis parameters such as component concentration of the electrolytic solution, bath temperature, and current density are determined in consideration of the material, structure, plating thickness, etc. of the core material 1. However, the purity is 99.97% or more, the content carbon content is 20 ppm or more and 150 ppm or less, the content oxygen content has a composition of 40 ppm or less, in order to form an electrodeposition iron plating layer of Vickers hardness 250 or less, It is necessary to set the bath temperature to 40 ° C. or higher and the current density to a low current density of 0.3 A / dm 2 to 0.5 A / dm 2 . A batch type or a continuous type is selected in consideration of the shape of the core material 1. A flexible iron-coated composite base material 3 is obtained from the electrodeposition iron plating device 2.

【0015】押出装置、圧延装置または線引装置4は、
可とう性鉄被覆複合母材3に、塑性加工を施す。押出
し、圧延および線引は、可とう性鉄被覆複合母材3の形
状,寸法によって選択される。比較的太径の場合は、押
出し又は圧延を行った後、線引を行う。比較的細径の場
合は、直接線引を施す。押出装置、圧延装置または線引
装置4からは、所定サイズに加工された可とう性鉄被覆
複合材5が得られる。
The extrusion device, rolling device or drawing device 4 is
The flexible iron-coated composite base material 3 is subjected to plastic working. Extrusion, rolling and wire drawing are selected depending on the shape and size of the flexible iron-coated composite base material 3. When the diameter is relatively large, wire drawing is performed after extrusion or rolling. If the diameter is relatively small, draw directly. The flexible iron-coated composite material 5 processed into a predetermined size is obtained from the extrusion device, the rolling device or the wire drawing device 4.

【0016】第2図(a),(b),(c)は、可とう
性鉄被覆複合材5の例を示すもので、各々において6は
電着鉄めっき層である。
FIGS. 2 (a), (b) and (c) show an example of the flexible iron-coated composite material 5, in each of which 6 is an electrodeposited iron plating layer.

【0017】−製造例1− 芯材に、外径8mmφの銅材を用いた。前処理として、水
酸化ナトリウム系のアルカリ溶液中でのカソード脱脂
(処理条件;液温50℃,カーソド電圧DC4V,処理
時間3分)、水洗及び塩酸系溶液中での酸洗いによる銅
材表面のスケール及び酸化物除去、水洗を行った。
-Production Example 1-A copper material having an outer diameter of 8 mmφ was used as the core material. As pretreatment, cathode degreasing in sodium hydroxide-based alkaline solution (treatment condition; liquid temperature 50 ° C, cathode voltage DC4V, treatment time 3 minutes), washing with water and pickling in hydrochloric acid-based solution Scale and oxide removal and water washing were performed.

【0018】前処理の後、下記条件にて、0.4mm 厚の
電着鉄めっき層を形成した。条件は、 めっき液; FeCl2・4H2O 300g/l CaCl2・2H2O 200〜400g/l pH 1〜2 浴温; 60℃ めっき液循環流量; 5〜10 l/min アノード; 高純度電解鉄(純度99.9%) 電流密度; 0.5A/dm2 である。
After the pretreatment, a 0.4 mm thick electrodeposited iron plating layer was formed under the following conditions. The conditions are: plating solution; FeCl 2 .4H 2 O 300 g / l CaCl 2 .2H 2 O 200 to 400 g / l pH 1-2 bath temperature; 60 ° C. plating solution circulation flow rate; 5 to 10 l / min anode; high purity Electrolytic iron (purity 99.9%) Current density: 0.5 A / dm 2 .

【0019】電着鉄めっき層の組成が、純度99.97
%以上、含有炭素量20ppm以上150ppm以下、
含有酸素量40ppm以下であることを成分分析により
確認した。ビッカース硬度は、115であった。
The composition of the electrodeposited iron plating layer has a purity of 99.97.
% Or more, carbon content 20 ppm or more and 150 ppm or less,
It was confirmed by component analysis that the oxygen content was 40 ppm or less. The Vickers hardness was 115.

【0020】得られた鉄被覆銅材は、中間焼鈍を行うこ
となく、冷間線引加工によって、0.06mmφ の可とう
性鉄被覆複合線となすことが出来た。電着鉄めっき層に
は、亀裂などの外観異常は認められなかった。また、中
間焼鈍を加えることによって、 0.02mmφの可とう性
鉄被覆複合線を得ることが出来た。電着鉄めっき層に
は、亀裂などの外観異常は認められなかった。
The obtained iron-coated copper material could be made into a flexible iron-coated composite wire of 0.06 mmφ by cold drawing without intermediate annealing. No abnormalities such as cracks were found in the electrodeposited iron plating layer. Further, by adding the intermediate annealing, a flexible iron-coated composite wire of 0.02 mmφ could be obtained. No abnormalities such as cracks were found in the electrodeposited iron plating layer.

【0021】−製造例2− 芯材に、外径8mmφの銅材を用いた。前処理として、水
酸化ナトリウム系のアルカリ溶液中でのカソード脱脂
(処理条件;液温50℃,カーソド電圧DC4V,処理
時間3分)、水洗及び塩酸系溶液中での酸洗いによる銅
材表面のスケール及び酸化物除去、水洗を行った。
-Production Example 2-A copper material having an outer diameter of 8 mmφ was used as the core material. As pretreatment, cathode degreasing in sodium hydroxide-based alkaline solution (treatment condition; liquid temperature 50 ° C, cathode voltage DC4V, treatment time 3 minutes), washing with water and pickling in hydrochloric acid-based solution Scale and oxide removal and water washing were performed.

【0022】前処理の後、下記条件にて、0.4mm 厚の
電着鉄めっき層を形成した。条件は、 めっき液; FeSO4+7H2O 150g/l (NH42SO4 150g/l pH 2〜3 浴温; 50℃ めっき液循環流量; 5〜10l/min アノード; 高純度電解鉄(純度99.9%) 電流密度: 0.3A/dm2 である。
After the pretreatment, an electroplated iron plating layer having a thickness of 0.4 mm was formed under the following conditions. The conditions are as follows: plating solution; FeSO 4 + 7H 2 O 150 g / l (NH 4 ) 2 SO 4 150 g / l pH 2-3 bath temperature; 50 ° C. circulation flow rate of plating solution; 5-10 l / min anode; high-purity electrolytic iron ( Purity 99.9%) Current density: 0.3 A / dm 2 .

【0023】電着鉄めっき層の組成が、純度99.97
%以上、含有炭素量20ppm以上150ppm以下、
含有酸素量40ppm以下であることを成分分析により
確認した。ビッカース硬度は、112であった。
The composition of the electrodeposited iron plating layer has a purity of 99.97.
% Or more, carbon content 20 ppm or more and 150 ppm or less,
It was confirmed by component analysis that the oxygen content was 40 ppm or less. The Vickers hardness was 112.

【0024】得られた鉄被覆銅材は、中間焼鈍を行うこ
となく、冷間線引加工によって、0.1mmφ の可とう性
鉄被覆複合線となすことが出来た。電着鉄めっき層に
は、亀裂などの外観異常は認められなかった。また、中
間焼鈍を加えることによって、 0.02mmφの可とう性
鉄被覆複合線を得ることが出来た。電着鉄めっき層に
は、亀裂などの外観異常は認められなかった。
The obtained iron-coated copper material could be made into a flexible iron-coated composite wire of 0.1 mmφ by cold drawing without intermediate annealing. No abnormalities such as cracks were found in the electrodeposited iron plating layer. Further, by adding the intermediate annealing, a flexible iron-coated composite wire of 0.02 mmφ could be obtained. No abnormalities such as cracks were found in the electrodeposited iron plating layer.

【0025】−製造例3− 芯材に、外径8mmφの銅材を用いた。前処理として、水
酸化ナトリウム系のアルカリ溶液中でのカソード脱脂
(処理条件;液温50℃,カーソド電圧DC4V,処理
時間3分)、水洗及び塩酸系溶液中での酸洗いによる銅
材表面のスケール及び酸化物除去、水洗を行った。
-Production Example 3-A copper material having an outer diameter of 8 mmφ was used as the core material. As pretreatment, cathode degreasing in sodium hydroxide-based alkaline solution (treatment condition; liquid temperature 50 ° C, cathode voltage DC4V, treatment time 3 minutes), washing with water and pickling in hydrochloric acid-based solution Scale and oxide removal and water washing were performed.

【0026】前処理の後、下記条件にて、0.4mm 厚の
電着鉄めっき層を形成した。条件は、 めっき液: FeSO4・7H2O 250g/l FeCl2 ・4H2O 40g/l NH4Cl 20g/l pH 2〜3 浴温; 40℃ めっき液循環流量; 5〜10l/min である。
After the pretreatment, a 0.4 mm thick electrodeposited iron plating layer was formed under the following conditions. Conditions, the plating solution: FeSO 4 · 7H 2 O 250g / l FeCl 2 · 4H 2 O 40g / l NH 4 Cl 20g / l pH 2~3 bath temperature; at 5 to 10 L / min; 40 ° C. plating solution circulation flow rate is there.

【0027】電着鉄めっき層の組成が、純度99.97
%以上、含有炭素量20ppm以上150ppm以下、
含有酸素量40ppm以下であることを成分分析により
確認した。ビッカース硬度は、124であった。
The composition of the electrodeposited iron plating layer has a purity of 99.97.
% Or more, carbon content 20 ppm or more and 150 ppm or less,
It was confirmed by component analysis that the oxygen content was 40 ppm or less. The Vickers hardness was 124.

【0028】得られた鉄被覆銅材は、中間焼鈍を行うこ
となく、冷間線引加工によって、0.1mmφ の可とう性
鉄被覆複合線となすことが出来た。電着鉄めっき層に
は、亀裂などの外観異常は認められなかった。また、中
間焼鈍を加えることによって、 0.02mmφの可とう性
鉄被覆複合線を得ることが出来た。電着鉄めっき層に
は、亀裂などの外観異常は認められなかった。
The obtained iron-coated copper material could be made into a flexible iron-coated composite wire of 0.1 mmφ by cold drawing without intermediate annealing. No abnormalities such as cracks were found in the electrodeposited iron plating layer. Further, by adding the intermediate annealing, a flexible iron-coated composite wire of 0.02 mmφ could be obtained. No abnormalities such as cracks were found in the electrodeposited iron plating layer.

【0029】[0029]

【発明の効果】本発明の鉄被覆複合材の製造方法によれ
ば、塑性加工可能な電着鉄めっき層を有する鉄被覆複合
材が好適に得られる。従って、これまで得ることの困難
であった極細の鉄被覆複合材が得られる。この結果、鉄
被覆複合材の用途を拡大できると共に、これを使用した
電子部品等の小型高性能化、低コスト化を実現できる。
According to the method for producing an iron-coated composite material of the present invention, an iron-coated composite material having a plastically workable electrodeposited iron plating layer can be suitably obtained. Therefore, an ultrafine iron-coated composite material, which has been difficult to obtain until now, can be obtained. As a result, the applications of the iron-coated composite material can be expanded, and electronic parts and the like using the iron-coated composite material can be made smaller and have higher performance and lower costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鉄被覆複合材の製造方法の一実施例の
工程フローチャートである。
FIG. 1 is a process flow chart of an embodiment of a method for manufacturing an iron-coated composite material according to the present invention.

【図2】(a),(b),(c)はそれぞれ鉄被覆複合
材の横断面図である。
2 (a), (b), (c) are cross-sectional views of an iron-coated composite material, respectively.

【符号の説明】[Explanation of symbols]

1 芯材 2 電着鉄めっき装置 3 可とう性鉄被覆複合母材 4 押出,圧延,線引装置 5 可とう性鉄被覆複合材 6 電着鉄めっき層 1 Core Material 2 Electroplated Iron Plating Equipment 3 Flexible Iron Coated Composite Base Material 4 Extrusion, Rolling, Drawing Equipment 5 Flexible Iron Coated Composite Material 6 Electroplated Iron Plating Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸性鉄塩水溶液に、塑性加工可能な金属芯
材を浸漬し、アノードに純度99.9%以上の高純度電
解鉄を用い、電解パラメータの主要素である浴温を40
℃以上とし且つ電流密度を0.3A/dm 2 以上0.5
A/dm 2 以下の低電流密度に設定して通電して、前記
金属芯材の外周に鉄めっき層を電着し、熱間または冷間
塑性加工を施し、所定サイズに加工することを特徴とす
る鉄被覆複合材の製造方法。
1. A high-purity electrode having a purity of 99.9% or more is immersed in an anode by immersing a plastically workable metal core material in an acidic iron salt aqueous solution.
The temperature of the bath, which is the main factor of electrolysis parameters, is 40
℃ or more and current density of 0.3 A / dm 2 or more 0.5
A low current density of A / dm 2 or less is set and electricity is applied, and an iron plating layer is electrodeposited on the outer periphery of the metal core material , hot or cold.
A method for producing an iron-coated composite material, which comprises subjecting to plastic working to a predetermined size .
JP3314215A 1987-07-14 1991-11-28 Method for producing iron-coated composite material Expired - Lifetime JPH0788599B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62175446A JPS6417892A (en) 1987-07-14 1987-07-14 Iron coated composite material and production thereof
JP3314215A JPH0788599B2 (en) 1987-07-14 1991-11-28 Method for producing iron-coated composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62175446A JPS6417892A (en) 1987-07-14 1987-07-14 Iron coated composite material and production thereof
JP3314215A JPH0788599B2 (en) 1987-07-14 1991-11-28 Method for producing iron-coated composite material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62175446A Division JPS6417892A (en) 1987-07-14 1987-07-14 Iron coated composite material and production thereof

Publications (2)

Publication Number Publication Date
JPH0649685A JPH0649685A (en) 1994-02-22
JPH0788599B2 true JPH0788599B2 (en) 1995-09-27

Family

ID=26496717

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62175446A Granted JPS6417892A (en) 1987-07-14 1987-07-14 Iron coated composite material and production thereof
JP3314215A Expired - Lifetime JPH0788599B2 (en) 1987-07-14 1991-11-28 Method for producing iron-coated composite material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62175446A Granted JPS6417892A (en) 1987-07-14 1987-07-14 Iron coated composite material and production thereof

Country Status (1)

Country Link
JP (2) JPS6417892A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331677A (en) * 1992-05-27 1993-12-14 Sumitomo Metal Mining Co Ltd Iron electroplating liquid
JPH05331676A (en) * 1992-05-27 1993-12-14 Sumitomo Metal Mining Co Ltd Iron electroplating liquid
CN102337567B (en) * 2011-11-02 2013-12-11 西南交通大学 Preparation method of nano iron cube with hierarchical structure and nano iron flower-shaped structure
US20180105945A1 (en) * 2016-10-13 2018-04-19 Alligant Scientific, LLC Metal deposits, compositions, and methods for making the same
CN111101176B (en) * 2019-01-22 2022-06-03 上海微电子装备(集团)股份有限公司 Workpiece manufacturing method and workpiece

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236962A (en) * 1975-09-18 1977-03-22 Sansha Electric Mfg Co Ltd Firing circuit for thyristor
JPS6011713B2 (en) * 1976-09-08 1985-03-27 武田薬品工業株式会社 Cephalosporin derivatives and their production method
JPH0236680B2 (en) * 1985-12-26 1990-08-20 Tokyo Tokushu Densen Kk KOSHUHASENRINYOZETSUENDENSENNOSEIZOHO

Also Published As

Publication number Publication date
JPH0571677B2 (en) 1993-10-07
JPH0649685A (en) 1994-02-22
JPS6417892A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
EP0267972A1 (en) A method for the electrodeposition of an ordered alloy
US4652347A (en) Process for electroplating amorphous alloys
CN115198318A (en) Electric contact tube and manufacturing method thereof
US4115211A (en) Process for metal plating on aluminum and aluminum alloys
JPH0788599B2 (en) Method for producing iron-coated composite material
US2511952A (en) Process of plating zinc on aluminum
JP3180197B2 (en) Surface treatment of aluminum and aluminum alloys
US3708405A (en) Process for continuously producing nickel or nickel-gold coated wires
US20210164120A1 (en) Plated wire rod
US2706329A (en) Electrically deposited core iron
JP5076165B2 (en) Nb-Al based superconducting wire having copper plating stabilizing material adhered firmly and method for producing the same
US3505181A (en) Treatment of titanium surfaces
CN110085429B (en) Method for pulse deposition of nano tin dots on medium-high voltage anode aluminum foil for aluminum electrolytic capacitor
WO2020045089A1 (en) Composite member and method for manufacturing same
CN108642539B (en) Preparation method of multilayer gradient structure copper alloy material
JPS624479B2 (en)
CN112342578A (en) Production process of copper strip surface galvanized composite aluminum alloy material
JPH05258623A (en) Forming method for copper stabilized layer of superconductive wire by electroplating
US3645858A (en) Silver plating baths
JP3312235B2 (en) Beryllium copper alloy spring material and its manufacturing method
Saubestre Electroplating on Certain Transition Metals:(Groups IV, V, VI)
CN107460506A (en) A kind of electroplate liquid of nickel
JP2516102B2 (en) Small diameter composite metal coating
US1607960A (en) Method and means for electrodepositing nickel metals and the resulting products
US3007856A (en) Insoluble anodes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term