JPH078829A - Fine pulverizer - Google Patents

Fine pulverizer

Info

Publication number
JPH078829A
JPH078829A JP17201993A JP17201993A JPH078829A JP H078829 A JPH078829 A JP H078829A JP 17201993 A JP17201993 A JP 17201993A JP 17201993 A JP17201993 A JP 17201993A JP H078829 A JPH078829 A JP H078829A
Authority
JP
Japan
Prior art keywords
crushed
collision
accelerating
pulverized
accelerating tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17201993A
Other languages
Japanese (ja)
Inventor
Satoshi Mitsumura
聡 三ツ村
Hitoshi Kanda
仁志 神田
Kazuhiko Komata
一彦 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17201993A priority Critical patent/JPH078829A/en
Publication of JPH078829A publication Critical patent/JPH078829A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the pulverizing efficiency and to prevent the local abrasion of an impact member by succesively subjecting the material to be pulverized in a pulverizing chamber to the primary and secondary pulverization with the projected surface and the outer peripheral impact surface forming an impact surface of the impact member and then to tertiary pulverization, etc., at the side wall part. CONSTITUTION:An accelerating pipe 3 for conveying and accelerating a material to be pulverized 16 by high pressure gas is installed on the basis of a vertical line. A feeding port for the material to be pulverized 1 is opened in the side wall part of the pipe 3, and also a secondary air introducing port 12 is opened between the feeding port for the material to be pulverized 1 and an accelerating pipe outlet 11. At this time, the opening ratio of the feeding port for the material to be pulverized 1 at the accelerating pipe 3 is set at <=5% of cross-sectional area. On the other hand, the impact surface of an impact member 4 in a pulverizing chamber 5 is formed of a projected surface 14 having a projection, and an outer peripheral impact surface 13 which the primarily pulverized material pulverized on the projected surface 14 secondarily hits. And in the pulverizing chamber 5, a side wall part 15 by which the secondarily pulverized material pulverized on the outer peripheral impact surface 13 is made to hit to perform the tertiary pulverizing is arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】[Industrial applications]

(第一の発明及び第二の発明)本発明は、ジェット気流
(高圧気体)を用いた衝突式気流粉砕機に関する。
(First invention and second invention) The present invention relates to a collision type airflow crusher using a jet airflow (high pressure gas).

【0002】[0002]

【従来の技術】[Prior art]

(第一の発明)ジェット気流を用いた衝突式気流粉砕機
は、ジェット気流に粉体原料を載せ、固気混合流とした
後、加速管の出口より固気混合流を噴射させ、加速管の
出口前方に設けられている衝突部材の衝突面に衝突さ
せ、その衝突力により粉体原料を粉砕するものである。
以下、図7に基づいて、従来の衝突式気流粉砕機の詳細
について説明する。図7に示す様に、高圧気体供給ノズ
ル21が接続された加速管22の出口23に対向して衝
突部材24を設けられている為、加速管22に供給され
た高圧気体の流動により加速管22の中途に連通させて
設けられている粉体原料供給口25から加速管22の内
部に粉体原料を吸引し、これを高圧気体と共に加速管2
2の出口23から噴射して衝突部材24の衝突面に衝突
させると、その衝撃によって粉体原料が微粉砕される。
(First invention) A collision type air flow pulverizer using a jet airflow is a accelerating tube in which a powder raw material is placed on a jet airflow to form a solid gas mixture flow, and then the solid gas mixture flow is injected from an outlet of an accelerating pipe. The colliding member is collided with the colliding surface of the colliding member provided in front of the exit, and the colliding force pulverizes the powder raw material.
Hereinafter, the details of the conventional collision type airflow crusher will be described with reference to FIG. 7. As shown in FIG. 7, since the collision member 24 is provided so as to face the outlet 23 of the accelerating tube 22 to which the high-pressure gas supply nozzle 21 is connected, the accelerating tube is generated by the flow of the high-pressure gas supplied to the accelerating tube 22. The powder raw material is sucked into the accelerating pipe 22 from the powder raw material supply port 25 provided in the middle of the accelerating pipe 2 together with the high pressure gas.
When the powder material is jetted from the second outlet 23 and collides with the collision surface of the collision member 24, the powder raw material is finely pulverized by the impact.

【0003】(第二の発明)ジェット気流を用いた衝突
式気流粉砕機は、ジェット気流に粉体原料を載せ、固気
混合流とした後、加速管の出口より固気混合流を噴射さ
せ、加速管の出口前方に設けられている衝突部材の衝突
面に衝突させて、その衝突力により粉体原料を粉砕する
ものである。以下、図19に基づいて、従来の衝突式気
流粉砕機の詳細について説明する。図19に示す様に、
高圧気体供給ノズル141が接続された加速管142の
出口143に対向して衝突部材144を設けられている
為、加速管142に供給された高圧気体の流動により加
速管142の中途に連通させて設けられている粉体原料
供給口145から加速管142の内部に粉体原料を吸引
し、これを高圧気体と共に加速管142の出口143か
ら噴射して衝突部材144の衝突面に衝突させると、そ
の衝撃によって粉体原料が微粉砕される。
(Second invention) A collision type air flow crusher using a jet air flow puts a powder raw material on the jet air flow to form a solid gas mixture flow, and then injects the solid gas mixture flow from an outlet of an accelerating tube. The powder material is crushed by colliding with a collision surface of a collision member provided in front of the exit of the acceleration tube. Hereinafter, the details of the conventional collision type airflow crusher will be described with reference to FIG. As shown in FIG.
Since the collision member 144 is provided so as to face the outlet 143 of the acceleration pipe 142 to which the high-pressure gas supply nozzle 141 is connected, the collision member 144 is connected to the middle of the acceleration pipe 142 by the flow of the high-pressure gas supplied to the acceleration pipe 142. When the powder raw material is sucked into the acceleration tube 142 from the provided powder raw material supply port 145 and is injected from the outlet 143 of the acceleration tube 142 together with the high pressure gas to collide with the collision surface of the collision member 144, The powder material is pulverized by the impact.

【0004】[0004]

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

(第一の発明)しかしながら、上記した従来の衝突式気
流粉砕機では、被粉砕物の供給口25が加速管22の中
途に連通されている為、以下に挙げる様な問題があっ
た。即ち、加速管22内に吸引導入された被粉砕物は、
被粉砕物の供給口25を通過した直後に、高圧気体供給
ノズル21より噴出する高圧気流により加速管出口23
方向に向って流路を急激に変更しながら高圧気流中に分
散急加速される為、被粉砕物中の粗粒子は慣性力の影響
から加速管低流部側を通過し、一方、被粉砕物中の微粒
子は加速管高流部側を通過する為、被粉砕物が高圧気流
中に十分均一に分散されずに、被粉砕物濃度の高い流れ
と低い流れに分離したまま対向する衝突部材表面に部分
的に集中して衝突することになり、粉砕効率が低下し結
果として粉砕処理能力の低下を招くという問題があっ
た。又、衝突部材24の表面又は端部において局部的に
被粉砕物濃度の高い部分が発生する為に、衝突部材24
の局部的な摩耗が起こり易く、被粉砕物が熱可塑性樹脂
の如き粉体原料である場合は、被粉砕物の融着、粗粒化
及び凝集が発生し易くなるという問題があった。更に、
上記従来例では、衝突部材24の表面に衝突し粉砕され
た粉砕物は粉砕室26の内壁に二次衝突して更に粉砕さ
れるが、粉砕室の形状が直方体形状である為に効率的な
二次衝突が行なわれず、その結果として微粉砕処理能力
の向上が図れないという問題もあった。
(First invention) However, in the above-mentioned conventional collision type airflow crusher, since the supply port 25 for the object to be crushed is communicated with the middle of the acceleration pipe 22, there are the following problems. That is, the object to be ground sucked and introduced into the acceleration tube 22 is
Immediately after passing through the supply port 25 for the material to be crushed, the high pressure gas jet from the high pressure gas supply nozzle 21 causes the acceleration pipe outlet 23.
Direction is changed rapidly, the coarse particles in the object to be crushed pass through the low flow part of the acceleration tube due to the influence of inertial force, while the particles to be crushed are rapidly accelerated. Since the fine particles in the object pass through the high flow part of the acceleration tube, the object to be ground is not sufficiently evenly dispersed in the high-pressure air stream, and the collision member that opposes while separating it into a flow with a high concentration of the object to be ground and a low flow. There is a problem in that the particles are partially concentrated and collide with the surface, and the pulverization efficiency is reduced, resulting in a reduction in the pulverization processing ability. Further, since a portion having a high pulverized material concentration is locally generated on the surface or the end portion of the collision member 24, the collision member 24
There is a problem that local abrasion is likely to occur, and when the material to be pulverized is a powder raw material such as a thermoplastic resin, fusion, coarsening and aggregation of the material to be pulverized are likely to occur. Furthermore,
In the above-mentioned conventional example, the pulverized material which collides with the surface of the collision member 24 and is pulverized is secondarily collided with the inner wall of the pulverization chamber 26 and further pulverized, but the shape of the pulverization chamber is a rectangular parallelepiped shape, which is efficient. There is also a problem that secondary collision does not occur and, as a result, the fine pulverization processing capacity cannot be improved.

【0005】上記従来技術の問題点を解決する為に、図
8に示す如く衝突部材表面に円錐形の突起を設けた衝突
式気流粉砕機や、図9に示す如く衝突部材の衝突面の先
端部分を特定の円錐形状とした衝突式気流粉砕機等が提
案されている。これらの装置によって、粉砕処理能力は
従来よりもかなり改善されたものの、上記の問題点を全
て解決するには至らず、微細な粉砕物を安定して生産・
稼動出来る様な微粉砕機が望まれている。従って、本発
明の目的は、被粉砕物をより一層効率良く粉砕し、衝突
部材の衝突面での局部的摩耗の発生を防止し、粉砕物の
融着、凝集及び粗粒化の発生をも防止得る微粉砕機を提
供することにある。
In order to solve the above-mentioned problems of the prior art, a collision type air flow crusher having a conical projection on the surface of the collision member as shown in FIG. 8 or a tip of the collision surface of the collision member as shown in FIG. A collision-type airflow crusher having a specific cone shape has been proposed. Although the crushing capacity has been improved considerably compared to the past with these devices, it has not been possible to solve all of the above problems, and stable production of fine crushed products is possible.
A fine crusher that can be operated is desired. Therefore, an object of the present invention is to more efficiently pulverize the object to be pulverized, prevent the occurrence of local wear on the collision surface of the collision member, and also to prevent fusion of the pulverized material, aggregation and coarsening. The object is to provide a fine crusher which can be prevented.

【0006】(第二の発明)しかしながら、上記した従
来の衝突式気流粉砕機では、被粉砕物の供給口145が
加速管142の中途に連通されている為、以下に挙げる
様な問題があった。即ち、加速管142内に吸引導入さ
れた被粉砕物は、被粉砕物の供給口145を通過した直
後に、高圧気体供給ノズル141より噴出する高圧気流
により加速管出口143方向に向って流路を急激に変更
しながら高圧気流中に分散急加速される為、被粉砕物中
の粗粒子は慣性力の影響から加速管低流部側を通過し、
一方、被粉砕物中の微粒子は加速管高流部側を通過する
為、被粉砕物が高圧気流中に十分均一に分散されずに、
被粉砕物濃度の高い流れと低い流れに分離したまま対向
する衝突部材表面に部分的に集中して衝突することにな
り、粉砕効率が低下し結果として粉砕処理能力の低下を
招くという問題があった。又、衝突部材144の表面又
は端部において局部的に被粉砕物濃度の高い部分が発生
する為に、衝突部材144の局部的な摩耗が起こり易
く、被粉砕物が熱可塑性樹脂の如き粉体原料である場合
は、被粉砕物の融着、粗粒化及び凝集が発生し易くなる
という問題があった。更に、被粉砕物に摩耗性がある場
合は、衝突部材144の衝突面149及び加速管142
に局部的な粉体摩耗が起こり易く、衝突部材144の交
換頻度が高くなり、連続的に安定生産することが出来な
いという問題があった。
(Second Invention) However, in the above-mentioned conventional collision type airflow crusher, since the supply port 145 of the object to be crushed is connected to the middle of the acceleration pipe 142, there are the following problems. It was That is, the pulverized material sucked and introduced into the accelerating pipe 142 passes through the supply port 145 of the pulverized material, and immediately after passing through the supply port 145 of the pulverized material, the high-pressure gas jetted from the high-pressure gas supply nozzle 141 causes the flow path toward the accelerating pipe outlet 143. Since it is rapidly accelerated by being dispersed in a high-pressure air flow while changing rapidly, coarse particles in the object to be crushed pass through the low flow part of the acceleration tube due to the influence of inertial force.
On the other hand, since the fine particles in the object to be crushed pass through the high flow part side of the acceleration tube, the object to be crushed is not sufficiently uniformly dispersed in the high pressure air flow,
There is a problem that the crushing efficiency is reduced and the crushing capacity is reduced as a result, because the crushed material is separated into a high-concentration flow and a low-concentration flow, and partially collides with the surface of the opposing collision member. It was Further, since a portion having a high concentration of the pulverized material locally occurs on the surface or the end portion of the collision member 144, the abrasion of the collision member 144 is likely to occur locally, and the pulverized material is a powder such as a thermoplastic resin. When it is a raw material, there has been a problem that fusion, coarsening and agglomeration of the crushed material are likely to occur. Further, when the crushed object has abrasion properties, the collision surface 149 of the collision member 144 and the acceleration tube 142 are used.
However, there is a problem that local powder abrasion is likely to occur, the collision member 144 is frequently replaced, and continuous stable production cannot be performed.

【0007】上記従来技術の問題点を解決する為に、衝
突部材の衝突面の形状に関しては、図20に示す如く先
端部分が頂角110°〜175°を有する錐体形状(特
開平1−254266号公報)や、図21に示す如く衝
突部材の中心軸の延長線と直角に交わる平面上に突起を
有した衝突板形状(実開平1−148740号公報)が
提案されている。又、加速管に関しては、図20に示し
た様な被粉砕物供給口と加速管出口の間に二次気体導入
口を有したもの(特開平3−086257号公報)が提
案されている。これらの提案により被粉砕物の粉砕効
率、粉砕能力、融着、粗粒化及び凝集等の面での改善が
一部為されてきてはいるものの、未だ十分な解決とはい
えない。従って、本発明の目的は、従来の衝突式気流粉
砕機に比べ、被粉砕物をより一層効率よく粉砕し、衝突
部材の衝突面での局部的摩耗の発生を防止し、粉砕物の
融着、凝集及び粗粒化の発生をも防止し得る微粉砕機を
提供することにある。
In order to solve the above-mentioned problems of the prior art, regarding the shape of the collision surface of the collision member, as shown in FIG. 20, the tip end portion has a cone shape having an apex angle of 110 ° to 175 ° (JP-A-1- No. 254266) or a collision plate shape having a projection on a plane that intersects at right angles with the extension line of the central axis of the collision member as shown in FIG. 21 (Japanese Utility Model Laid-Open No. 1-148740). As for the accelerating tube, one having a secondary gas introducing port between the crushed object supply port and the accelerating tube outlet as shown in FIG. 20 has been proposed (JP-A-3-086257). Although these proposals have made some improvements in terms of crushing efficiency, crushing ability, fusion, roughening and agglomeration of the crushed object, they cannot be said to be a sufficient solution. Therefore, the object of the present invention is to more efficiently crush the object to be crushed as compared with the conventional collision type air flow crusher, prevent the occurrence of local wear on the collision surface of the collision member, and fuse the crushed material. Another object of the present invention is to provide a fine pulverizer capable of preventing the occurrence of aggregation and coarsening.

【0008】[0008]

【問題を解決する為の手段】[Means for solving the problem]

(第一の発明)上記の目的は、以下の本発明によって達
成される。即ち、本発明は、高気圧体により被粉砕物を
搬送加速する為の加速管と、該加速管の出口の開口面に
対向して設けられている被粉砕物が衝突する衝突面を有
する衝突部材が具備されている粉砕室とを有する微粉砕
機において、鉛直線を基準にして加速管が設置されてお
り、該加速管の側壁部に被粉砕物を加速管内に供給する
為の被粉砕物供給口と、該被粉砕物供給口と加速管出口
との間に二次空気導入口とを有し、且つ被粉砕物供給口
が設けられている加速管側壁部位における被粉砕物供給
口の開口率が該部位の加速管断面積に対して5%以上を
占め、且つ粉砕室内に具備されている衝突部材の衝突面
が、錐体形状の突起を有する突出面と、該突出面の周囲
に設けられている突出面で粉砕された一次粉砕物が更に
二次衝突する為の外周衝突面とからなり、且つ粉砕室の
側壁が、該外周衝突面で二次粉砕された二次粉砕物が衝
突し三次粉砕する為の側壁を有していることを特徴とす
る微粉砕機である。
(First Invention) The above object is achieved by the present invention described below. That is, the present invention provides a collision member having an acceleration tube for accelerating the object to be crushed by a high-pressure body, and a collision surface for collision with the object to be crushed, which is provided facing the opening surface of the outlet of the acceleration tube. In a fine pulverizer having a crushing chamber equipped with a crushing chamber, an accelerating pipe is installed on the basis of a vertical line, and a crushed object for supplying the crushed object to a side wall portion of the accelerating tube into the accelerating tube. A supply port and a secondary air introducing port between the pulverized product supply port and the acceleration pipe outlet, and of the pulverized product supply port in the side wall of the acceleration pipe where the pulverized product supply port is provided. The aperture ratio occupies 5% or more with respect to the cross-sectional area of the accelerating pipe at the site, and the collision surface of the collision member provided in the crushing chamber has a projection surface having a cone-shaped projection and a periphery of the projection surface. Outer collision surface for further secondary collision of the primary crushed material crushed by the protruding surface provided on the Made, and the side wall of the grinding chamber is a mill, characterized in that the secondary pulverized material secondarily pulverized by the outer peripheral colliding surface has a side wall for and tertiary crushing collision.

【0009】(第二の発明)上記の目的は、以下の本発
明によって達成される。即ち、本発明は、高気圧体によ
り被粉砕物を搬送加速する為の加速管と、該加速管の出
口の開口面に対向して設けられている被粉砕物が衝突す
る衝突面を有する衝突部材が具備されている粉砕室とを
有する微粉砕機において、被粉砕物供給筒に隣接されて
いる加速管の後端部に被粉砕物を加速管内に供給する為
の被粉砕物供給口を有し、且つ粉砕室内に具備されてい
る衝突部材の衝突面が、錐体形状の突起を有する突出面
と、該突出面の周囲に設けられている突出面で粉砕され
た一次粉砕物が更に二次衝突する為の外周衝突面とから
なり、且つ粉砕室が、該外周衝突面で二次粉砕された二
次粉砕物が衝突し三次粉砕する為の側壁を有しているこ
とを特徴とする微粉砕機である。
(Second Invention) The above object is achieved by the present invention described below. That is, the present invention provides a collision member having an acceleration tube for accelerating the object to be crushed by a high-pressure body, and a collision surface for collision with the object to be crushed, which is provided facing the opening surface of the outlet of the acceleration tube. And a crushing chamber having a crushing chamber provided with a crushing chamber, the crushing object supply port for supplying the crushing object into the accelerating tube is provided at the rear end of the acceleration tube adjacent to the crushing object supply cylinder. In addition, the collision surface of the collision member provided in the crushing chamber further includes a projecting surface having a cone-shaped projection and a primary crushed product crushed by the projecting surface provided around the projecting surface. The outer peripheral collision surface for the next collision, and the crushing chamber has a side wall for the secondary crushed material secondary-crushed on the outer peripheral collision surface to collide with the third crush. It is a fine crusher.

【0010】[0010]

【作用】[Action]

(第一の発明)本発明者らは、上記の如き従来技術の問
題点を解決すべく鋭意研究の結果、加速管側壁部に被粉
砕物供給口及び二次空気導入口を設け、且つ被粉砕物供
給口の開口率を5%以上とし、且つ粉砕室内に具備され
ている衝突部材を突起面及びその外周に設けられた外周
衝突面とから構成することによって、被粉砕物を均一に
加速し、分散させることが出来、更に、被粉砕物を効率
良く一次粉砕、二次粉砕及び三次粉砕することが出来、
粉砕効率を向上させることが出来ることを知見して本発
明に至った。又、本発明では、加速管の長軸方向の傾き
及び衝突部材の突起部等の形状についても検討を重ねた
結果、これらを特定の形状のものとすれば、粉砕効率の
更なる向上が図られることを知見して本発明に至った。
即ち、本発明の微粉砕機は、高速気流を利用して被粉砕
物を数μmのオーダーまで効率よく粉砕することが出来
る。特に、熱可塑性樹脂の被粉砕物又は熱可塑性樹脂を
主成分とする被粉砕物を、融着、凝集及び粗粒化を生じ
ることなく、効率よく数μmのオーダーまで粉砕するこ
とが出来る。
(First Invention) As a result of intensive research to solve the problems of the prior art as described above, the present inventors have provided a crushed material supply port and a secondary air introduction port on the side wall of the acceleration tube, and The crushed object is uniformly accelerated by setting the opening ratio of the crushed material supply port to 5% or more and by configuring the collision member provided in the crushing chamber with the projection surface and the outer peripheral collision surface provided on the outer periphery thereof. Can be dispersed, further, the object to be crushed can be efficiently primary crushed, secondary crushed and tertiary crushed,
The present invention has been accomplished by finding that the grinding efficiency can be improved. Further, in the present invention, as a result of repeated studies on the inclination of the acceleration tube in the long axis direction and the shapes of the protrusions of the collision member, if these are made to have a specific shape, further improvement of the pulverization efficiency can be achieved. The present invention has been accomplished by finding that it is possible.
That is, the fine pulverizer of the present invention can efficiently pulverize an object to be pulverized to the order of several μm using a high-speed air stream. In particular, the object to be ground of the thermoplastic resin or the object to be ground mainly composed of the thermoplastic resin can be efficiently ground to the order of several μm without causing fusion, aggregation and coarsening.

【0011】(第二の発明)本発明者らは、上記の如き
従来の問題点を解決すべく鋭意研究の結果、加速管の被
粉砕物供給筒側の端部(以下外端部)に被粉砕物供給口
を設け、更に、該被粉砕物供給口と被粉砕物出口との間
に二次空気導入口を設け、且つ粉砕室内に具備されてい
る衝突部材を突起面及びその外周に設けられた外周衝突
面とから構成することによって、被粉砕物を均一に加速
し、分散させることが出来、更に、被粉砕物を効率良く
一次粉砕、二次粉砕及び三次粉砕することが出来、粉砕
効率を向上させることが出来ることを知見して本発明に
至った。上記した二次気体導入口は、高圧気体噴出口に
より噴出してくる高圧気体が、加速管内で急速に膨張及
び急加速する際に、加速管内壁近傍に発生する渦流によ
る空気の乱れを防止し、整流させる為の気体の供給口と
しての機能を有する。従って、加速管内で急速膨張した
高圧気体に同伴された被粉砕物が急加速する際に、上記
の整流効果により更に被粉砕物の加速性能の向上が図
れ、粉砕効率の向上に役立つ。又、本発明では、加速管
の長軸方向の傾き及び衝突部材の突起部等の形状につい
ても検討を重ねた結果、これらを特定の形状のものとす
れば、粉砕効率の更なる向上が図られることを知見して
本発明に至った。即ち、本発明の微粉砕機は、高速気流
を利用して被粉砕物を数μmのオーダーまで効率よく粉
砕することが出来る。特に、熱可塑性樹脂の被粉砕物又
は熱可塑性樹脂を主成分とする被粉砕物を、融着、凝集
及び粗粒化を生じることなく、効率よく数μmのオーダ
ーまで粉砕することが出来る。
(Second Invention) As a result of earnest research to solve the above-mentioned conventional problems, the present inventors have found that the end of the acceleration tube on the side of the crushed material supply cylinder (hereinafter referred to as the outer end). A crushed material supply port is provided, and a secondary air introduction port is further provided between the crushed material supply port and the crushed material outlet, and a collision member provided in the crushing chamber is provided on the projection surface and its outer periphery. By configuring with the provided outer peripheral collision surface, it is possible to uniformly accelerate and disperse the object to be crushed, further, it is possible to efficiently primary crush, secondary crush and tertiary crush the object to be crushed, The present invention has been accomplished by finding that the grinding efficiency can be improved. The secondary gas inlet described above prevents turbulence of air due to a vortex generated near the inner wall of the acceleration pipe when the high-pressure gas ejected from the high-pressure gas ejection port rapidly expands and accelerates in the acceleration pipe. , Has a function as a gas supply port for rectifying. Therefore, when the object to be ground entrained in the high-pressure gas that has rapidly expanded in the acceleration tube is rapidly accelerated, the rectifying effect can further improve the acceleration performance of the object to be ground, which is useful for improving the grinding efficiency. Further, in the present invention, as a result of repeated studies on the inclination of the acceleration tube in the long axis direction and the shapes of the protrusions of the collision member, if these are made to have a specific shape, further improvement of the pulverization efficiency can be achieved. The present invention has been accomplished by finding that it is possible. That is, the fine pulverizer of the present invention can efficiently pulverize an object to be pulverized to the order of several μm using a high-speed air stream. In particular, the object to be crushed of the thermoplastic resin or the object to be crushed containing the thermoplastic resin as the main component can be efficiently crushed to the order of several μm without causing fusion, aggregation and coarsening.

【0012】[0012]

【好ましい実施態様】[Preferred Embodiment]

(第一の発明)次に、好ましい実施態様を挙げて、本発
明を更に詳細に説明する。図1は、本発明の微粉砕機の
一実施例を示す概略断面図であり、図2は図1のA−
A’線における断面図、図3はB−B’線における断面
図、図4はC−C’線における断面図、及び図5はD−
D’線における断面図を夫々示す。
(First Invention) Next, the present invention will be described in more detail with reference to preferred embodiments. FIG. 1 is a schematic cross-sectional view showing an embodiment of the fine pulverizer of the present invention, and FIG. 2 is A- of FIG.
Sectional drawing in the A'line, FIG. 3 is sectional drawing in the BB 'line, FIG. 4 is sectional drawing in the CC' line, and FIG.
Sectional views taken along the line D ′ are shown, respectively.

【0013】図1に示されている様に、本発明の微粉砕
機においては、粉砕されるべき被粉砕物は、先ず鉛直線
を基準にした加速管3の側壁部に設けられている被粉砕
物供給口1より加速管3内に供給される。一方、加速管
3には、圧縮空気の様な圧縮気体が高圧気体供給ノズル
9から導入されている為、加速管3に供給された被粉砕
物は瞬時に加速されて高速度を有する様になる。次に、
高速度で加速管出口11から噴出された固気混合流は、
加速管に隣接して設けられている粉砕室5へと吐出し、
被粉砕物16は衝突部材4の衝突面に衝突して微粉砕さ
れる。
As shown in FIG. 1, in the fine crusher of the present invention, the object to be crushed is the object to be crushed which is provided on the side wall of the accelerating tube 3 based on the vertical line. It is supplied from the crushed material supply port 1 into the acceleration tube 3. On the other hand, since compressed gas such as compressed air is introduced into the accelerating pipe 3 from the high-pressure gas supply nozzle 9, the pulverized material supplied to the accelerating pipe 3 is instantly accelerated and has a high speed. Become. next,
The solid-gas mixture flow ejected from the acceleration pipe outlet 11 at high speed is
Discharge to the crushing chamber 5 provided adjacent to the acceleration tube,
The crushed object 16 collides with the collision surface of the collision member 4 and is finely pulverized.

【0014】本発明の微粉砕機においては、加速管3の
被粉砕物供給口1と加速管出口11との間に二次空気導
入口12が設けられている為、二次空気が加速管3に導
入されて加速管3内の被粉砕物16を分散し、加速管出
口11から被粉砕物16をより均一に噴出させることが
出来る。この結果、対向する衝突部材4の衝突面に効率
よく衝突させることが出来、粉砕効率を従来より向上さ
せることが出来る。即ち、二次空気導入口12により導
入された二次空気は、加速管3内を高速移動する被粉砕
物16の凝集を解きほぐし均一に分散させる為に寄与し
ている。又、加速管3内で加速気体流速分布の遅い部分
である加速管3の内壁に沿う流れを加速するという効果
もある。
In the fine pulverizer of the present invention, since the secondary air introduction port 12 is provided between the crushed object supply port 1 of the acceleration tube 3 and the acceleration tube outlet 11, the secondary air is accelerating. 3 to be dispersed into the accelerating tube 3 to disperse the pulverized material 16 and the pulverized material 16 can be ejected from the accelerating tube outlet 11 more uniformly. As a result, the collision surface of the collision member 4 facing each other can be efficiently collided, and the pulverization efficiency can be improved as compared with the conventional case. That is, the secondary air introduced through the secondary air introduction port 12 contributes to deagglomerate and uniformly disperse the agglomerates 16 that move at high speed in the acceleration tube 3. Further, there is also an effect of accelerating the flow along the inner wall of the accelerating pipe 3, which is a portion of the accelerating pipe 3 where the accelerating gas flow velocity distribution is slow.

【0015】本発明で使用する加速管3に導入する二次
空気としては、圧縮気体及び常圧気体のいずれを用いて
もよい。又、二次空気導入口12にバルブの如き風量制
御装置(図示なし)を設けて、導入する二次空気の風量
を調整することは本発明の非常に好ましい態様である。
又、本発明においては、二次空気導入口12を設ける個
数及び加速管3の円周方向のどの位置に設けるかは特に
限定されず、被粉砕原料及び目標とする粉砕粒子径等に
より適宜に設定すればよい。例えば、図5に示した例
は、加速管3の円周方向に二次空気導入口12を8箇所
設けた場合の例であり、図1のD−D’断面図を示した
ものである。
As the secondary air introduced into the acceleration tube 3 used in the present invention, either compressed gas or atmospheric gas may be used. Further, it is a very preferable aspect of the present invention to provide an air flow rate control device (not shown) such as a valve at the secondary air introduction port 12 to adjust the air flow rate of the secondary air to be introduced.
Further, in the present invention, the number of the secondary air inlets 12 provided and the positions in the circumferential direction of the acceleration tube 3 are not particularly limited, and may be appropriately determined depending on the raw material to be pulverized, the target pulverized particle diameter, and the like. Just set it. For example, the example shown in FIG. 5 is an example in which eight secondary air inlets 12 are provided in the circumferential direction of the accelerating tube 3, and is a sectional view taken along the line DD ′ of FIG. 1. .

【0016】本発明の微粉砕機においては、加速管3が
鉛直線を基準にして直軸方向の傾きが0°〜20°の範
囲内であると好ましい。更に、加速管3の長軸を中心と
してより均一に被粉砕物供給口1から被粉砕物16を投
入せしめる為には、加速管3の長軸方向の傾きが鉛直線
を基準にして、0°〜5°の範囲内であればより好まし
い。
In the fine pulverizer of the present invention, it is preferable that the acceleration tube 3 has an inclination of 0 ° to 20 ° in the direction of the vertical axis with respect to the vertical line. Furthermore, in order to more uniformly feed the crushed material 16 from the crushed material supply port 1 around the long axis of the acceleration tube 3, the inclination of the acceleration tube 3 in the long axis direction is 0 with respect to the vertical line. More preferably, it is in the range of 5 ° to 5 °.

【0017】又、本発明においては、被粉砕物を被粉砕
物供給口1から加速管3内へと安定供給する為に、被粉
砕物供給口1の加速管側壁に対する開口率を、該被粉砕
物供給口1を有する加速管側壁部位の加速管3の断面積
に対して5%以上とするのが好ましい。ここで、被粉砕
物供給口1の開口率とは、被粉砕物供給口が設けられて
いる加速管側壁部位における、該加速管側壁部位の加速
管断面積に対する被粉砕物供給口の占有率をいう。更
に、本発明において被粉砕物供給口1の開口率が5%〜
20%であり、且つ図2(b)に示す如く4個の被粉砕
物供給口1を設けた態様は非常に好ましい。即ち、この
様な態様とすれば、加速管3内での被粉砕物16の分布
状態の均一化が増し、衝突部材4に衝突する被粉砕物1
6が衝突面全体を使って粉砕される為、粉砕効率が従来
よりも更に向上する。
Further, in the present invention, in order to stably supply the material to be ground into the accelerating pipe 3 from the material to be ground supply port 1, the opening ratio of the material to be ground supply port 1 to the side wall of the accelerating pipe is set to a value corresponding to the opening ratio. The cross-sectional area of the accelerating tube 3 at the side wall of the accelerating tube having the crushed material supply port 1 is preferably 5% or more. Here, the opening ratio of the pulverized material supply port 1 means the occupancy rate of the pulverized material supply port with respect to the acceleration pipe cross-sectional area of the accelerating pipe side wall portion where the pulverized material supply port is provided. Say. Further, in the present invention, the opening ratio of the pulverized material supply port 1 is 5% to
It is 20%, and a mode in which four crushed material supply ports 1 are provided as shown in FIG. 2B is very preferable. That is, according to such a mode, the homogenization of the distribution state of the object 16 to be crushed in the acceleration tube 3 is increased, and the object 1 to be crushed which collides with the collision member 4
Since 6 is crushed using the entire collision surface, the crushing efficiency is further improved as compared with the conventional case.

【0018】又、加速管3内の被粉砕物16の分布状態
をより均一化させて、粉砕効率をより向上させる為に
は、図2(a)に示す如く被粉砕物供給口1を加速管3
の側壁の全円周方向に設置し吸引すると、分散性が良好
である為、被粉砕物16が衝突部材4の衝突面全体を使
って粉砕される効果が向上し、より好ましい。更に、被
粉砕物が被粉砕物供給口1から加速管3内に安定供給さ
れる為には、被粉砕物供給口1の開口率が、20%以上
であればより好ましい。
In order to make the distribution state of the material 16 to be ground in the accelerating tube 3 more uniform and further improve the grinding efficiency, the material supply port 1 to be ground is accelerated as shown in FIG. 2 (a). Tube 3
It is more preferable to install and suction in the entire circumferential direction of the side wall, because the dispersibility is good, and the effect that the crushed object 16 is crushed using the entire collision surface of the collision member 4 is improved. Further, in order to stably supply the pulverized material from the pulverized material supply port 1 into the acceleration pipe 3, it is more preferable that the pulverized material supply port 1 has an opening ratio of 20% or more.

【0019】又、本発明の微粉砕機は図1に示す様に、
衝突部材4の衝突面が、中央部が突出している錐体形状
の突出面14と、該突出面14の周囲に設けられている
外周衝突面13とからなる。突出面14で粉砕された被
粉砕物16の一次粉砕物は、更に外周衝突面13に衝突
し、二次粉砕される。更に、図6に粉砕室5の部分の拡
大図を示したが、粉砕室5内の形状は、外周衝突面で二
次粉砕された二次粉砕物が更に衝突して三次粉砕される
様に、側壁15を有している 本発明では上記した様に、被粉砕物16の衝突面に中央
部が突出している錐体形状を有する突出面14が設けら
れている為、加速管3の端部にある加速管出口11から
噴出された粉砕原料と圧縮空気との固気混合流は、図6
の矢印に示されている様に、先ず突出面14の表面に衝
突して一次粉砕された後、突出面14の周囲にある外周
衝突面13で二次粉砕され、更に粉砕室5の側壁15で
三次粉砕される。
Further, the fine crusher of the present invention, as shown in FIG.
The collision surface of the collision member 4 is composed of a cone-shaped protruding surface 14 having a central portion protruding, and an outer peripheral collision surface 13 provided around the protruding surface 14. The primary crushed material 16 crushed by the protruding surface 14 further collides with the outer peripheral collision surface 13 and is secondary crushed. Further, FIG. 6 shows an enlarged view of the portion of the crushing chamber 5, but the shape inside the crushing chamber 5 is such that the secondary crushed material secondary crushed on the outer peripheral collision surface is further collided and tertiary crushed. In the present invention, as described above, the collision surface of the object to be crushed 16 is provided with the projection surface 14 having the shape of a cone with the central portion projecting. The solid-gas mixture flow of the pulverized raw material and the compressed air ejected from the accelerating pipe outlet 11 in the section of FIG.
As shown by the arrow, first, the particles are first crushed by colliding with the surface of the projecting surface 14, and then secondary crushed by the outer peripheral collision surface 13 around the projecting surface 14, and further, the side wall 15 of the crushing chamber 5 is crushed. It is crushed tertiary.

【0020】更に、衝突部材4の衝突面の突出面14の
突起部の頂角をα、外周衝突面13の加速管3の中心軸
の直角面に対する傾斜角をβとした時に、下記の関係式
を満足する場合により顕著な粉砕効率の向上が図られ
る。 0°<α<90°、β>0°、30°≦α+2β≦90° 即ち、α≧90°の時は、突出面14の表面で一次粉砕
された粉砕物16の反射流が、加速管3の端部にある加
速管出口11から噴出される固気混合流の流れを乱すこ
ととなり好ましくない。又、β=0°の時、即ち、図9
に示した様に外周衝突面13が固気混合流に対して直角
の場合には、外周衝突面13での反射流が固気混合流に
向かって流れる為、同様に固気混合流の乱れを生じるこ
ととなり好ましくない。又、外周衝突面13上での被粉
砕物の粉塵濃度が高くなる為、熱可塑性樹脂の粉体又は
熱可塑性樹脂を主成分とする粉体を被粉砕物とした場合
に、外周衝突面13上で融着物及び凝集物を生じ易くな
り、装置の安定した運転が困難となり好ましくない。
Further, when the apex angle of the protrusion of the projecting surface 14 of the collision surface of the collision member 4 is α and the inclination angle of the outer peripheral collision surface 13 with respect to the plane perpendicular to the central axis of the acceleration tube 3 is β, the following relation When the formula is satisfied, the crushing efficiency is remarkably improved. 0 ° <α <90 °, β> 0 °, 30 ° ≦ α + 2β ≦ 90 ° That is, when α ≧ 90 °, the reflected flow of the pulverized material 16 that has been primary pulverized on the surface of the protruding surface 14 is the acceleration tube. It is not preferable because it disturbs the flow of the solid-gas mixture flow ejected from the acceleration pipe outlet 11 at the end of 3. Also, when β = 0 °, that is, in FIG.
When the outer peripheral collision surface 13 is at a right angle to the solid-gas mixture flow as shown in Fig. 6, the reflected flow on the outer peripheral collision surface 13 flows toward the solid-gas mixture flow, and thus the turbulence of the solid-gas mixture flow is also generated. It is not preferable because it causes. Further, since the dust concentration of the crushed object on the outer peripheral collision surface 13 becomes high, when the powder of the thermoplastic resin or the powder mainly containing the thermoplastic resin is used as the crushed object, the outer peripheral collision surface 13 It is not preferable because a fused substance and an aggregated substance are likely to be generated on the above and stable operation of the apparatus is difficult.

【0021】又、α及びβがα+2β<30°の時に
は、突出面14の表面での一次粉砕の衝撃力が弱めら
れ、粉砕効率の低下を招く為、好ましくない。又、α及
びβがα+2β>90°の時には、外周衝突面13での
反射流が固気混合流の下流側に流れる為、粉砕室5の側
壁での三次粉砕の衝撃力が弱くなり、粉砕効率の低下を
引き起こすので好ましくない。従って、α及びβが上記
の関係を満たす時に、一次、二次及び三次粉砕が効率よ
く行われる為、粉砕効率を向上させることが出来る。
Further, when α and β are α + 2β <30 °, the impact force of the primary pulverization on the surface of the projecting surface 14 is weakened and the pulverization efficiency is lowered, which is not preferable. Further, when α and β are α + 2β> 90 °, the reflected flow at the outer peripheral collision surface 13 flows to the downstream side of the solid-gas mixture flow, so that the impact force of the tertiary pulverization on the side wall of the pulverization chamber 5 becomes weak, and the pulverization is reduced. It is not preferable because it causes a decrease in efficiency. Therefore, when α and β satisfy the above relationship, the primary, secondary, and tertiary pulverization is efficiently performed, so that the pulverization efficiency can be improved.

【0022】又、加速管出口11と衝突部材4の加速管
3に対向した衝突面端部の距離は、衝突部材4の直径又
は長径の0.2倍〜2倍とするのが好ましく、0.4倍
〜1.0倍であるとより好ましい。0.2倍未満では、
被粉砕物16が熱可塑性樹脂等を含有するものである場
合には、被粉砕物の融着が発生し易く、2倍を超える場
合には粉砕効率が低下する傾向があるので好ましくな
い。又、本発明においては、衝突部材4の側壁と粉砕室
5の内壁15との最短距離を衝突部材4の直径の0.1
倍〜2倍とするのが好ましい。0.1倍未満では高圧気
体の通過時の圧力損失が大きく粉砕効率を低下させるの
みならず、粉砕物の流動がスムーズに進行しない傾向が
あり、一方、2倍を超える場合には、粉砕室の内壁での
被粉砕物の三次衝突の効果が減少し、粉砕効率が低下す
る傾向にある。
The distance between the acceleration tube outlet 11 and the end of the collision surface of the collision member 4 facing the acceleration tube 3 is preferably 0.2 to 2 times the diameter or major axis of the collision member 4, and is 0. It is more preferable that it is 4 times to 1.0 times. Below 0.2 times,
When the pulverized material 16 contains a thermoplastic resin or the like, fusion of the pulverized material is likely to occur, and when it exceeds 2 times, the pulverization efficiency tends to decrease, which is not preferable. Further, in the present invention, the shortest distance between the side wall of the collision member 4 and the inner wall 15 of the crushing chamber 5 is set to 0.1 of the diameter of the collision member 4.
It is preferably double to double. If it is less than 0.1 times, not only will the pressure loss during passage of high-pressure gas be large and the grinding efficiency will be reduced, but the flow of the ground material will not proceed smoothly. The effect of the third collision of the object to be crushed on the inner wall of the is reduced, and the pulverization efficiency tends to decrease.

【0023】(第二の発明)次に、好ましい実施態様を
挙げて、本発明を更に詳細に説明する。図10〜図14
は、本発明の微粉砕機の一実施例を示す概略図断面図で
あり、図11は、図10のA−A’線における加速管ス
ロート部と高圧気体噴出ノズルを示す断面図、図12は
図10のB−B’線における二次気体導入口及び加速管
を示す断面図、図13は図1のC−C’線における粉砕
室と衝突部材を示す断面図、図14は図10のD−D’
線における高圧気体供給口と高圧気体チャンバーを示す
断面図である。本発明の微粉砕機においては、被粉砕物
供給筒105より供給された被粉砕物は、加速管101
の加速管スロート部102の内壁と、中心が加速管10
1の中心軸と同軸上にある高圧気体噴出ノズル103の
外壁とで形成された被粉砕物供給口104へと到達す
る。一方、高圧気体は、高圧気体供給口106より導入
され、高圧気体チャンバー107を経て、1本好ましく
は複数本の高圧気体導入管108を通り、高圧気体噴出
ノズル103より加速管出口109方向に向かって急激
に膨張しながら噴出する。
(Second Invention) Next, the present invention will be described in more detail with reference to preferred embodiments. 10 to 14
FIG. 11 is a schematic cross-sectional view showing an embodiment of the fine pulverizer of the present invention, and FIG. 11 is a cross-sectional view showing the accelerating pipe throat portion and the high-pressure gas ejection nozzle taken along the line AA ′ in FIG. 10 is a cross-sectional view showing the secondary gas inlet and the accelerating pipe along line BB ′ in FIG. 10, FIG. 13 is a cross-sectional view showing the crushing chamber and the collision member along line CC ′ in FIG. 1, and FIG. DD '
It is sectional drawing which shows the high pressure gas supply port and the high pressure gas chamber in a line. In the fine pulverizer of the present invention, the crushed material supplied from the crushed material supply cylinder 105 is the acceleration tube 101.
The inner wall of the accelerating tube throat section 102 and the center of the accelerating tube 10 are
1 reaches the object to be crushed supply port 104 formed by the outer wall of the high-pressure gas jet nozzle 103 coaxial with the central axis of 1. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 106, passes through the high-pressure gas chamber 107, and passes through one or more high-pressure gas introduction pipes 108, and goes from the high-pressure gas ejection nozzle 103 toward the acceleration pipe outlet 109. And explodes while expanding rapidly.

【0024】この時、加速管スロート部102の近傍で
発生するエゼクター効果により、被粉砕物は共存してい
る気体に同伴されながら、被粉砕物供給口104より加
速管出口109の方向に向かって吸引され、加速管スロ
ート部2において高圧気体と均一に混合されながら急加
速し、加速管出口109の方向に進むにつれて速度を増
してゆく。加速管101の内壁近傍で発生する渦流を防
止する為に、図12の如く加速管101の内壁に貫通し
た加速管101の中心と好ましくは45°の角度をもっ
て配置された、好ましくは8箇所の孔からなる二次気体
導入口117より整流用の気体を供給する。この結果、
加速管出口109と対向した衝突部材110の衝突面に
被粉砕物の粉塵濃度の偏りなく均一な混合流の状態で衝
突する。
At this time, due to the ejector effect generated in the vicinity of the accelerating tube throat portion 102, the crushed material is entrained in the coexisting gas, and from the crushed material supply port 104 toward the accelerating tube outlet 109. The gas is sucked and rapidly accelerated while being uniformly mixed with the high-pressure gas in the accelerating tube throat portion 2, and the speed thereof increases as it advances toward the accelerating tube outlet 109. In order to prevent a vortex flow generated near the inner wall of the acceleration tube 101, the center of the acceleration tube 101 penetrating the inner wall of the acceleration tube 101 as shown in FIG. A rectifying gas is supplied from a secondary gas inlet 117 formed of a hole. As a result,
The collision surface of the collision member 110 facing the acceleration pipe outlet 109 collides with the object to be ground in a state of a uniform mixed flow without uneven dust concentration.

【0025】一方、衝突部材110の衝突面は、錐体形
状の突出中心部を有する突出面120と、該突出面12
0の周囲に設けられている外周衝突面116とからな
る。突出面120で粉砕された被粉砕物の一次粉砕物
は、更に外周衝突面116に衝突して二次粉砕される。
又、粉砕室112は、外周衝突面116で二次粉砕され
た二次粉砕物を衝突により三次粉砕することが出来る様
に、側壁114を有している。この様に、被粉砕物の衝
突面に中央部に突起部を有する錐体形状の突出面を設け
ることにより、加速管101から噴出された粉砕原料と
圧縮空気の固気混合流は、突出面120に先ず衝突して
一次粉砕された後、外周衝突面116に衝突して二次粉
砕され、更に、粉砕室側壁114に衝突して三次粉砕さ
れる。この結果、被粉砕物である粉体原料は有効に微粉
砕される。
On the other hand, the collision surface of the collision member 110 is a projection surface 120 having a cone-shaped projection center portion, and the projection surface 12
0 and an outer peripheral collision surface 116 provided around 0. The primary crushed material crushed by the protruding surface 120 further collides with the outer peripheral collision surface 116 and is secondary crushed.
Further, the crushing chamber 112 has a side wall 114 so that the secondary crushed material that has been secondary crushed by the outer peripheral collision surface 116 can be tertiary crushed by collision. In this way, by providing the cone-shaped projecting surface having the projecting portion at the central portion on the collision surface of the object to be crushed, the solid-gas mixture flow of the crushing raw material and the compressed air jetted from the acceleration pipe 101 is projected on the projecting surface. After first colliding with 120 for primary pulverization, it collides with outer peripheral collision surface 116 for secondary pulverization, and further collides with crushing chamber side wall 114 for tertiary pulverization. As a result, the powder raw material, which is the object to be ground, is effectively finely ground.

【0026】更に本発明においては、衝突部材110の
突出面20の突起部の頂角をα、外周衝突面116の加
速管101の中心軸の直角面に対する傾斜角βとした時
に、下記の関係式を満足する場合により顕著な粉砕効率
の向上が図られる。 0°<α<90°、β>0°、30°≦α+2β≦90° 即ち、α≧90°の時は、突出面120の表面で一次粉
砕された粉砕物118の反射流が、加速管101の端部
にある加速管出口109から噴出される固気混合流の流
れを乱すこととなり好ましくない。又、β=0°の時、
即ち、図20に示した様に外周衝突面116が固気混合
流に対して直角の場合には、外周衝突面116での反射
流が固気混合流に向かって流れる為、同様に固気混合流
の乱れを生じることとなり好ましくない。又、外周衝突
面116上での被粉砕物の粉塵濃度が高くなる為、熱可
塑性樹脂の粉体又は熱可塑性樹脂を主成分とする粉体を
被粉砕物とした場合に、外周衝突面116上で融着物及
び凝集物を生じ易くなり、装置の安定した運転が困難と
なり好ましくない。
Further, in the present invention, when the apex angle of the projection of the projecting surface 20 of the collision member 110 is α and the inclination angle β of the outer peripheral collision surface 116 with respect to the plane perpendicular to the central axis of the acceleration tube 101, the following relationship is established. When the formula is satisfied, the crushing efficiency is remarkably improved. 0 ° <α <90 °, β> 0 °, 30 ° ≦ α + 2β ≦ 90 ° That is, when α ≧ 90 °, the reflected flow of the pulverized material 118 that has been primary pulverized on the surface of the protruding surface 120 is the acceleration tube. This is not preferable because it disturbs the flow of the solid-gas mixture flow ejected from the acceleration pipe outlet 109 at the end of 101. Also, when β = 0 °,
That is, as shown in FIG. 20, when the outer peripheral collision surface 116 is at a right angle to the solid-gas mixture flow, the reflected flow at the outer peripheral collision surface 116 flows toward the solid-gas mixture flow, and thus the solid-gas mixture flow is also the same. This is not preferable because it causes turbulence in the mixed flow. Further, since the dust concentration of the object to be crushed on the outer peripheral collision surface 116 becomes high, when the powder of the thermoplastic resin or the powder mainly containing the thermoplastic resin is used as the object to be pulverized, the outer peripheral collision surface 116 It is not preferable because a fused substance and an aggregated substance are likely to be generated on the above and stable operation of the apparatus is difficult.

【0027】又、α及びβがα+2β<30°の時に
は、突出面120の表面での一次粉砕の衝撃力が弱めら
れ、粉砕効率の低下を招く為、好ましくない。又、α及
びβがα+2β>90°の時には、外周衝突面116で
の反射流が固気混合流の下流側に流れる為、粉砕室11
2の側壁での三次粉砕の衝撃力が弱くなり、粉砕効率の
低下を引き起こすので好ましくない。従って、α及びβ
が上記の関係を満たす時に、一次、二次及び三次粉砕が
効率よく行われる為、粉砕効率を向上させることが出来
る。
When α and β are α + 2β <30 °, the impact force of the primary pulverization on the surface of the projecting surface 120 is weakened and the pulverization efficiency is lowered, which is not preferable. Further, when α and β are α + 2β> 90 °, the reflection flow at the outer peripheral collision surface 116 flows to the downstream side of the solid-gas mixture flow, so that the crushing chamber 11
The impact force of the tertiary pulverization on the side wall of No. 2 is weakened, and the pulverization efficiency is lowered, which is not preferable. Therefore, α and β
When the above relation is satisfied, the primary, secondary and tertiary pulverization is efficiently performed, so that the pulverization efficiency can be improved.

【0028】本発明の微粉砕機においては、加速管10
1の出口の内径が衝突部材110の直径よりも小さい内
径を有する様に構成されていることが好ましい。又、衝
突部材110の突出中心部の先端と加速管101の中心
軸とは、均一に被粉砕物を粉砕することが出来る為、実
質的に一致させることが好ましい。
In the fine pulverizer of the present invention, the acceleration tube 10
It is preferable that the inner diameter of the first outlet is smaller than the diameter of the collision member 110. Further, it is preferable that the tip of the protruding central portion of the collision member 110 and the central axis of the acceleration tube 101 substantially coincide with each other because the object to be ground can be ground uniformly.

【0029】又、本発明の微粉砕機における加速管10
1は、鉛直線を基準にして直軸方向の傾きが0°〜45
°の範囲内であれば、被粉砕物が被粉砕物供給口104
で閉塞することなく処理することが出来る為好ましい。
被粉砕物が流動性に劣るものである場合には、被粉砕物
供給筒105の下方にあるコーン状部分に少量ではある
が滞留する傾向がある為、加速管1の傾きを0°〜20
°の範囲内とすれば、被粉砕物供給筒105の下方にあ
るコーン状部分での被粉砕物の滞留もなく被粉砕物の流
れがスムーズになり好ましい。
Further, the acceleration tube 10 in the fine crusher of the present invention.
1, the inclination of the vertical axis is 0 ° to 45 with respect to the vertical line.
If it is within the range of °, the crushed object is the crushed object supply port 104.
It is preferable because it can be treated without being blocked.
If the material to be ground has poor fluidity, it tends to stay in the cone-shaped portion below the material-supplying cylinder 105 for a small amount, but the inclination of the acceleration tube 1 is 0 ° to 20 °.
Within the range of 0 °, it is preferable that the crushed object flow smoothly without causing the crushed object to stay in the cone-shaped portion below the crushed object supply cylinder 105.

【0030】図10のA−A’断面を示した図11に示
されている様に、被粉砕物供給口104を通過する被粉
砕物供給口104の半径方向の被粉砕物の分布状態は、
加速管101の傾きが大きい程、分布に偏りが見られ、
傾きが小さい程分布はより均一化される。又、加速管1
01を透明なアクリル樹脂で形成し、加速管101の内
部の観察を行ったところ、加速管101の長軸方向の傾
きは、鉛直線を基準にして0°〜5°の範囲内が最も好
ましいことが確認された。
As shown in FIG. 11 which is a sectional view taken along the line AA ′ of FIG. 10, the distribution state of the crushed object in the radial direction of the crushed object supply port 104 passing through the crushed object supply port 104 is ,
The larger the inclination of the acceleration tube 101, the more biased the distribution is,
The smaller the slope, the more uniform the distribution. Also, acceleration tube 1
When 01 was formed of a transparent acrylic resin and the inside of the acceleration tube 101 was observed, the inclination of the acceleration tube 101 in the major axis direction is most preferably within the range of 0 ° to 5 ° with respect to the vertical line. It was confirmed.

【0031】又、上記の内部観察用のアクリル樹脂製の
加速管を用い、該加速管の中途に図10及び図12に示
した二次気体導入口117を設け、樹脂粉体(体積平均
径100μm以下の被粉砕物)を流しながら二次気体導
入口117より0.5〜5Kg/cm2の加圧エアーを
供給したところ、加速管101の内壁近傍で発生してい
た渦流は全く見られず、被粉砕物を同伴した気流は、加
速管出口103方向に向かって、直線的に流れる様に整
流されることが確認された。
Further, the above accelerometer made of acrylic resin for internal observation is used, and the secondary gas introduction port 117 shown in FIGS. 10 and 12 is provided in the middle of the accelerometer, and the resin powder (volume average diameter) is used. When a pressurized air of 0.5 to 5 kg / cm 2 was supplied from the secondary gas inlet 117 while flowing a pulverized material of 100 μm or less), the vortex generated near the inner wall of the accelerating tube 101 was completely observed. Instead, it was confirmed that the air flow accompanied by the pulverized material was rectified so as to linearly flow toward the acceleration pipe outlet 103.

【0032】又、図1に示した加速管101の中心軸の
延長線と直角に交わる加速管出口109と、これに対面
する衝突部材110の突出面120の最外周端部115
との距離19(以下衝突板距離という)は、衝突部材1
10の直径の0.2倍〜2倍の範囲とするのが粉砕効率
的に好ましく、より好ましくは0.4倍〜1.0倍の範
囲内とする。衝突板距離119が衝突部材110の直径
の0.2倍未満では、衝突面近傍の被粉砕物の粉塵濃度
が異常に高くなる場合があり、又、2倍を超える場合は
衝撃力の低下を招き、粉砕効率が低下する傾向があり好
ましくない。又、衝突部材110の最外周の側壁と粉砕
室112の内壁114との最短距離は、衝突部材110
の直径の0.1倍〜2倍の範囲内とするのが好ましい。
即ち、0.1倍未満では高圧気体の通過時の圧力損失が
大きく、粉砕効率を低下させるのみならず、粉砕物の流
動がスムーズに進行しない傾向があり、又、2倍を超え
る場合は、粉砕室112の側壁114での被粉砕物の三
次衝突の効果が減少し、若干ではあるが粉砕効率が低下
する傾向があり好ましくない。又、粉砕室112の形状
は円筒若しくは楕円筒状とするのが好ましいが、これら
の形状に特に限定されるものではなく、上記の数値を満
足するものであればいずれの形状でもよい。
Further, the acceleration pipe outlet 109 intersecting at right angles with the extension line of the central axis of the acceleration pipe 101 shown in FIG. 1, and the outermost peripheral end portion 115 of the projecting surface 120 of the collision member 110 facing this.
The distance 19 (hereinafter referred to as the collision plate distance) between the collision member 1 and
The range of 0.2 to 2 times the diameter of 10 is preferable in terms of pulverization efficiency, and more preferably 0.4 to 1.0 times. If the collision plate distance 119 is less than 0.2 times the diameter of the collision member 110, the dust concentration of the material to be crushed in the vicinity of the collision surface may be abnormally high, and if it exceeds twice, the impact force may decrease. This is not preferable because it tends to lower the pulverization efficiency. Also, the shortest distance between the outermost side wall of the collision member 110 and the inner wall 114 of the crushing chamber 112 is determined by the collision member 110.
It is preferable that the diameter is within a range of 0.1 times to 2 times the diameter.
That is, if it is less than 0.1 times, the pressure loss during passage of high-pressure gas is large, and not only the crushing efficiency is lowered, but also the flow of the crushed product tends not to proceed smoothly, and if it exceeds 2 times, This is not preferable because the effect of the third collision of the object to be crushed on the side wall 114 of the crushing chamber 112 decreases, and the crushing efficiency tends to decrease slightly. The shape of the crushing chamber 112 is preferably a cylinder or an elliptic cylinder, but the shape is not particularly limited to these shapes, and any shape may be used as long as the above numerical values are satisfied.

【0033】図15は、本発明の別の実施例を示す概略
的断面図である。図16は、図15のE−E’線におけ
る断面図、図17は図15のF−F’線における断面
図、及び図18はG−G’線における断面図を夫々示
す。図15に従って本実施例を説明すると、被粉砕物1
34は、鉛直方向を基準にして加速管122の長軸方向
の傾きが0°〜45°となる様に設定されている加速管
122の上方に設けられている被粉砕物供給口121よ
り、加速管スロート部123を通過して加速管122内
に供給される。加速管122には、圧縮空気の様な圧縮
気体が加速管スロート部123の内壁と被粉砕物供給口
121の外壁との間から導入されている為、加速管12
2に供給された被粉砕物134は瞬時に加速されて高速
度を有する様になり、加速管出口124の方向に進むに
つれて速度を増してゆく。
FIG. 15 is a schematic sectional view showing another embodiment of the present invention. 16 is a sectional view taken along the line EE ′ of FIG. 15, FIG. 17 is a sectional view taken along the line FF ′ of FIG. 15, and FIG. 18 is a sectional view taken along the line GG ′. This example will be described with reference to FIG.
Reference numeral 34 denotes a crushed object supply port 121 provided above the accelerating pipe 122 which is set such that the inclination of the accelerating pipe 122 in the long axis direction is 0 ° to 45 ° with respect to the vertical direction. It is supplied into the acceleration tube 122 through the acceleration tube throat section 123. Compressed gas such as compressed air is introduced into the accelerating pipe 122 from between the inner wall of the accelerating pipe throat portion 123 and the outer wall of the pulverized material supply port 121.
The object to be crushed 134 supplied to No. 2 is instantly accelerated to have a high speed, and the speed thereof increases as it advances toward the accelerating pipe outlet 124.

【0034】この際、加速管122の内壁近傍で発生す
る渦流を防止し、被粉砕物134と圧縮気体の固気混合
流を整流する為に、例えば、図18に示した様な加速管
122の内壁面に沿ってドーナツ上に貫通した二次気体
導入口135より整流用の気体を供給すると、被粉砕物
134を含む固気混合流は整流され、高速度で加速管出
口124から粉砕室125に噴出され、衝突部材126
の衝突面127にて一次粉砕及び二次粉砕される。衝突
部材126の突起部を有する衝突面127の形状は、図
10に示した微粉砕機と同様に、衝突部材126の突出
面の突起部の頂角αと、外周衝突面127の加速管中心
軸との直角面に対する傾斜角βが、下記の関係を満足す
る時に、衝突面127での一次粉砕及び二次粉砕、更に
は、粉砕室の側壁128での三次粉砕が効率よく行わ
れ、粉砕効率を向上させることが出来る。 0°<α<90°、β>0°、30°≦α+2β≦90°
At this time, in order to prevent the vortex flow generated near the inner wall of the acceleration tube 122 and to rectify the solid-gas mixture flow of the object to be crushed 134 and the compressed gas, for example, the acceleration tube 122 as shown in FIG. When the gas for rectification is supplied from the secondary gas inlet 135 penetrating on the donut along the inner wall surface of the, the solid-gas mixture flow including the object to be crushed 134 is rectified, and the accelerating tube outlet 124 crushes the crushing chamber at a high speed. The collision member 126 is ejected to 125
The primary crushing and the secondary crushing are performed on the collision surface 127 of the. The shape of the collision surface 127 having the projection of the collision member 126 is similar to that of the fine crusher shown in FIG. 10, and the apex angle α of the projection of the projection surface of the collision member 126 and the acceleration tube center of the outer peripheral collision surface 127. When the inclination angle β with respect to the plane perpendicular to the axis satisfies the following relationship, primary crushing and secondary crushing on the collision surface 127, and further tertiary crushing on the side wall 128 of the crushing chamber are efficiently performed, and crushing is performed. The efficiency can be improved. 0 ° <α <90 °, β> 0 °, 30 ° ≦ α + 2β ≦ 90 °

【0035】又、加速管122の長軸方向の傾きは、鉛
直線に対し0〜45°の範囲内であれば好ましい。しか
し、被粉砕物が流動性に劣るものである場合には、被粉
砕物供給筒130の下方にあるコーン状部分に少量では
あるが滞留する傾向がある為、加速管122の傾きを0
〜20°の範囲とするとこの様な被粉砕物の滞留は見ら
れずより好ましい。又、図15に示した様に、被粉砕物
供給口121を通過する該被粉砕物供給口121の半径
方向の被粉砕物の分布状態は、加速管122の傾きが大
きい程その分布に偏りが見られ、傾きが小さい程その分
布は均一化される傾向がある為、加速管122の傾き
は、0°〜5°とするのが最も好ましい。その他、加速
管出口124と衝突部材126との衝突板距離及び、衝
突部材126の最外周の側壁と粉砕室の側壁128との
最短距離は、図10の例の場合と同様の結果であった。
The inclination of the acceleration tube 122 in the long axis direction is preferably within the range of 0 to 45 ° with respect to the vertical line. However, when the pulverized material has poor fluidity, it tends to stay in the cone-shaped portion below the pulverized material supply cylinder 130, though a small amount, so that the inclination of the acceleration tube 122 is set to 0.
Within the range of -20 °, it is more preferable that such a crushed material is not retained. Further, as shown in FIG. 15, the distribution state of the crushed object in the radial direction of the crushed object supply port 121 passing through the crushed object supply port 121 is biased to the distribution as the inclination of the acceleration tube 122 is larger. Is observed, and the smaller the inclination, the more uniform the distribution. Therefore, the inclination of the accelerating tube 122 is most preferably 0 ° to 5 °. In addition, the collision plate distance between the acceleration tube outlet 124 and the collision member 126 and the shortest distance between the outermost peripheral side wall of the collision member 126 and the side wall 128 of the crushing chamber were the same results as in the case of the example of FIG. .

【0036】[0036]

【発明の効果】【The invention's effect】

(第一の発明)以上説明した様に、本発明の微粉砕機に
よれば、従来の衝突式気流粉砕機と異なり、加速管の外
周囲から被粉砕物を分散よく投入させることが出来、且
つ加速管内に二次空気が導入され、更に粉砕室に特定の
形状を有する衝突部材を有する為、被粉砕物の吸引性及
び分散性に優れ、被粉砕物が加速管から均一に噴出され
て衝突部材の全衝突面に衝突し粉砕され、更に一次粉
砕、二次粉砕及び三次粉砕と順次粉砕される為、粉砕効
率を顕著に向上させることが出来る。又、本発明の微粉
砕機によれば、衝突部材、加速管及び粉砕室における被
粉砕物の融着及び摩耗も、従来の衝突式気流粉砕機と比
べ、被粉砕物の強分散による粉麈濃度の低下により大幅
に低減され、長時間の安定稼動が可能となる。
(First invention) As described above, according to the fine crusher of the present invention, unlike the conventional collision type air flow crusher, it is possible to disperse the object to be crushed from the outer periphery of the accelerating tube with good dispersion, In addition, secondary air is introduced into the accelerating tube, and since the crushing chamber has a collision member having a specific shape, the crushed object has excellent suction and dispersibility, and the crushed object is uniformly ejected from the accelerating tube. Since all the collision surfaces of the collision member collide and are pulverized, and further primary pulverization, secondary pulverization and tertiary pulverization are performed in sequence, the pulverization efficiency can be remarkably improved. Further, according to the fine crusher of the present invention, the fusion and wear of the crushed object in the collision member, the acceleration tube and the crushing chamber are also different from those of the conventional collision type airflow crusher due to the strong dispersion of the crushed object. It is significantly reduced due to the decrease in concentration, which enables stable operation for a long time.

【0037】(第二の発明)以上説明した様に、本発明
の微粉砕機によれば、加速管内で被粉砕物を効率よく均
一に加速・分散することが出来、加速管から噴出された
固気混合流は、衝突部材に設けられた錐体形状の突起を
有する突出面で一時粉砕され、該突出面の周囲に設けら
れた外周衝突面で二次粉砕された後、更に、粉砕室の側
壁で三次粉砕される為、従来の衝突式気流粉砕機に比べ
粉砕効率が大幅に向上する。又、衝突後の反射流が加速
管に向けて流れない為、固気混合流の乱れや、衝突面上
での被粉砕物の融着及び凝集等の発生を有効に防止する
ことが出来、更には、衝突面が従来より広範囲に渡る
為、衝突面の局部的な摩耗を防止することが出来る。
(Second Invention) As described above, according to the fine pulverizer of the present invention, the object to be pulverized can be efficiently and uniformly accelerated / dispersed in the accelerating pipe, and is ejected from the accelerating pipe. The solid-gas mixture flow is temporarily crushed by the protruding surface having the cone-shaped projection provided on the collision member, and is secondarily crushed by the outer peripheral collision surface provided around the projection surface, and then further crushed in the crushing chamber. Since it is subjected to tertiary crushing on the side wall of the, the crushing efficiency is greatly improved compared to the conventional collision type air flow crusher. Further, since the reflected flow after the collision does not flow toward the accelerating tube, it is possible to effectively prevent the turbulence of the solid-gas mixture flow, the fusion and aggregation of the pulverized material on the collision surface, Furthermore, since the collision surface covers a wider area than in the conventional case, it is possible to prevent local abrasion of the collision surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝突式気流粉砕機の一例を示す概略断
面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a collision type airflow crusher of the present invention.

【図2】図1のA−A’断面図であり、(a)は被粉砕
物供給口が加速管の全円周方向からなる例を示し、
(b)は被粉砕物供給口がn=4個からなる例を示す。
FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1, in which (a) shows an example in which the pulverized material supply port is in the entire circumferential direction of the acceleration pipe,
(B) shows an example in which there are n = 4 crushed material supply ports.

【図3】図1のB−B’線の断面を示す図である。FIG. 3 is a diagram showing a cross section taken along line B-B ′ of FIG. 1.

【図4】図1のC−C’線の断面を示す図である。FIG. 4 is a view showing a cross section taken along line C-C ′ of FIG.

【図5】図1のD−D’線の断面を示す図である。5 is a diagram showing a cross section taken along the line D-D ′ of FIG. 1. FIG.

【図6】図1における粉砕室の衝突部材周辺の断面図で
ある。
6 is a cross-sectional view around a collision member of the crushing chamber in FIG.

【図7】従来例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing a conventional example.

【図8】従来例を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a conventional example.

【図9】従来例を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing a conventional example.

【図10】本発明の衝突式気流粉砕機の一例を示す概略
断面図である。
FIG. 10 is a schematic cross-sectional view showing an example of the collision type airflow crusher of the present invention.

【図11】図1のA−A’線の断面を示す図である。FIG. 11 is a view showing a cross section taken along line A-A ′ of FIG. 1.

【図12】図1のB−B’線の断面を示す図である。FIG. 12 is a view showing a cross section taken along line B-B ′ of FIG. 1.

【図13】図1のC−C’線の断面を示す図である。FIG. 13 is a view showing a cross section taken along line C-C ′ of FIG. 1.

【図14】図1のD−D’線の断面を示す図である。FIG. 14 is a view showing a cross section taken along line D-D ′ of FIG. 1.

【図15】本発明の微粉砕機の別の例を概略断面図であ
る。
FIG. 15 is a schematic cross-sectional view of another example of the fine pulverizer of the present invention.

【図16】図10のE−E’線の断面を示す図である。16 is a diagram showing a cross section taken along line E-E ′ of FIG.

【図17】図10のF−F’線の断面を示す図である。FIG. 17 is a diagram showing a cross section taken along line F-F ′ of FIG. 10.

【図18】図10のG−G’線の断面を示す図である。FIG. 18 is a diagram showing a cross section taken along line G-G ′ of FIG. 10.

【図19】衝突式気流粉砕機の従来例を示す概略断面図
である。
FIG. 19 is a schematic cross-sectional view showing a conventional example of a collision type airflow crusher.

【図20】衝突式気流粉砕機の別の従来例を示す概略断
面図である。
FIG. 20 is a schematic cross-sectional view showing another conventional example of the collision type airflow crusher.

【図21】衝突式気流粉砕機の別の従来例に用いられた
衝突面形状の例を示す概略図である。
FIG. 21 is a schematic view showing an example of a collision surface shape used in another conventional example of a collision type airflow crusher.

【符号の説明】[Explanation of symbols]

(第一の発明) 1、25、35、45;被粉砕物供給口 2;高圧気体貯槽 3、22、32、42;加速管 4、24、34、44;衝突部材 5、26、36、46;粉砕室 6、27、37、47;粉砕室出口 7;高圧気体入口 8;高圧気体連絡通路 9、21、31、41;高圧気体供給ノズル 11、23、33、43;加速管出口 12;二次空気導入口 13、38;外周衝突面 14、39;錐体形状の突起を有する突出面 15;粉砕室側壁 16;被粉砕物 29、49;衝突面 (第二の発明) 102、123:加速管スロート部 103、141、151:高圧気体供給ノズル 104、121、145、155:被粉砕物供給口 105、130:被粉砕物供給筒 106、133:高圧気体供給口 107、131:高圧気体チャンバー 108:高圧気体導入管 109、124、143、153:加速管出口 110、126、144、154:衝突部材 111、132:衝突部材支持体 112、125、146、156:粉砕室 113、129、147、157:粉砕物排出口 114、128:粉砕室側壁 115:衝突面最外周端部 116:外周衝突面 117、135、158:二次空気導入口 118、134、160:被粉砕物 119:衝突板距離 120:錐体形状の突起を有する突出面 127、149、159:衝突面 (First invention) 1, 25, 35, 45; pulverized material supply port 2; high-pressure gas storage tank 3, 22, 32, 42; accelerating tube 4, 24, 34, 44; collision member 5, 26, 36, 46; Grinding chamber 6, 27, 37, 47; Grinding chamber outlet 7; High pressure gas inlet 8; High pressure gas communication passage 9, 21, 31, 41; High pressure gas supply nozzle 11, 23, 33, 43; Acceleration pipe outlet 12 A secondary air inlet 13, 38; an outer peripheral collision surface 14, 39; a protruding surface having a cone-shaped projection 15; a crushing chamber side wall 16; an object to be crushed 29, 49; a collision surface (second invention) 102, 123: Accelerator throat part 103, 141, 151: High pressure gas supply nozzle 104, 121, 145, 155: Milled material supply port 105, 130: Milled material supply cylinder 106, 133: High pressure gas supply port 107, 131: High pressure gas chamber 108: High-pressure gas introduction pipe 109, 124, 143, 153: Acceleration pipe outlet 110, 126, 144, 154: Collision member 111, 132: Collision member support 112, 125, 146, 156: Grinding chamber 113, 129, 147 157: Crushed material discharge port 114, 128: Crushing chamber side wall 115: Collision surface outermost end 116: Outer peripheral collision surface 117, 135, 158: Secondary air introduction port 118, 134, 160: Crushed object 119: Collision Plate distance 120: Convex surface with protrusions 127, 149, 159: Collision surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高気圧体により被粉砕物を搬送加速する
為の加速管と、該加速管の出口の開口面に対向して設け
られている被粉砕物が衝突する衝突面を有する衝突部材
が具備されている粉砕室とを有する微粉砕機において、
鉛直線を基準にして加速管が設置されており、該加速管
の側壁部に被粉砕物を加速管内に供給する為の被粉砕物
供給口と、該被粉砕物供給口と加速管出口との間に二次
空気導入口とを有し、且つ被粉砕物供給口が設けられて
いる加速管側壁部位における被粉砕物供給口の開口率が
該部位の加速管断面積に対して5%以上を占め、且つ粉
砕室内に具備されている衝突部材の衝突面が、錐体形状
の突起を有する突出面と、該突出面の周囲に設けられて
いる突出面で粉砕された一次粉砕物が更に二次衝突する
為の外周衝突面とからなり、且つ粉砕室の側壁が、該外
周衝突面で二次粉砕された二次粉砕物が衝突し三次粉砕
する為の側壁を有していることを特徴とする微粉砕機。
1. A collision member having an acceleration pipe for accelerating the object to be crushed by a high-pressure body and a collision surface, which is provided facing the opening surface of the outlet of the accelerating pipe, against which the object to be crushed collides. In a fine crusher having a crushing chamber provided,
An accelerating pipe is installed on the basis of a vertical line, and a crushed object supply port for supplying a crushed object into the accelerating tube on a side wall portion of the accelerating tube, the crushed object supply port and the accelerating tube outlet. And a secondary air introduction port between them, and the opening ratio of the pulverized material supply port in the side wall of the accelerating tube where the pulverized material supply port is provided is 5% with respect to the cross-sectional area of the accelerating tube of the site. The collision surface of the collision member that occupies the above and is provided in the crushing chamber includes a projecting surface having a cone-shaped projection and a primary crushed product crushed by the projecting surface provided around the projecting surface. Further, it has an outer peripheral collision surface for secondary collision, and the side wall of the crushing chamber has a side wall for secondary crushed material secondary crushed on the outer peripheral collision surface for third crushing. A fine crusher.
【請求項2】 高気圧体により被粉砕物を搬送加速する
為の加速管と、該加速管の出口の開口面に対向して設け
られている被粉砕物が衝突する衝突面を有する衝突部材
が具備されている粉砕室とを有する微粉砕機において、
被粉砕物供給筒に隣接されている加速管の後端部に被粉
砕物を加速管内に供給する為の被粉砕物供給口を有し、
且つ粉砕室内に具備されている衝突部材の衝突面が、錐
体形状の突起を有する突出面と、該突出面の周囲に設け
られている突出面で粉砕された一次粉砕物が更に二次衝
突する為の外周衝突面とからなり、且つ粉砕室が、該外
周衝突面で二次粉砕された二次粉砕物が衝突し三次粉砕
する為の側壁を有していることを特徴とする微粉砕機。
2. A collision member having an accelerating tube for accelerating the object to be crushed by a high-pressure body and a collision surface, which is provided facing the opening surface of the outlet of the accelerating tube, and against which the object to crush collides. In a fine crusher having a crushing chamber provided,
At the rear end of the accelerating tube adjacent to the crushed object supply cylinder, there is a crushed object supply port for supplying the crushed object into the accelerating tube,
In addition, the collision surface of the collision member provided in the crushing chamber has a projecting surface having a cone-shaped projection and a secondary crushed primary crushed product crushed by the projecting surface provided around the projecting surface. Fine crushing, characterized in that the crushing chamber has a side wall for crushing the secondary crushed secondary crushed secondary crushed material in the crushing chamber. Machine.
【請求項3】 突出面の突起部の頂角をαとし、加速管
の中心軸の直角面に対する外周衝突面の傾斜角をβとす
ると、α及びβが下記式の関係を満足する請求項1又は
請求項2に記載の微粉砕機。 0°<α<90°、β>0° 30°≦α+2β≦90°
3. When α is the apex angle of the protrusion of the projecting surface and β is the inclination angle of the outer peripheral collision surface with respect to the plane perpendicular to the central axis of the acceleration tube, α and β satisfy the following equation. The fine pulverizer according to claim 1 or claim 2. 0 ° <α <90 °, β> 0 ° 30 ° ≦ α + 2β ≦ 90 °
【請求項4】 鉛直線を基準として長軸方向の傾きが0
°〜45°となる様に加速管が設置されている請求項1
又は請求項2に記載の微粉砕機。
4. The inclination in the major axis direction with respect to the vertical line is 0.
The accelerating tube is installed so that the angle is between 45 ° and 45 °.
Alternatively, the fine pulverizer according to claim 2.
【請求項5】 鉛直線を基準として長軸方向の傾きが0
°〜20°となる様に加速管が設置されている請求項1
又は請求項2に記載の微粉砕機。
5. The inclination in the major axis direction with respect to the vertical line is 0.
The accelerating tube is installed so that the angle is between 20 ° and 20 °.
Alternatively, the fine pulverizer according to claim 2.
【請求項6】 鉛直線を基準として長軸方向の傾きが0
°〜5°となる様に加速管が設置されている請求項1又
は請求項2に記載の微粉砕機。
6. The inclination in the major axis direction with respect to the vertical line is 0.
The fine pulverizer according to claim 1 or 2, wherein the accelerating tube is installed so as to have an angle of 5 ° to 5 °.
JP17201993A 1993-06-21 1993-06-21 Fine pulverizer Pending JPH078829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17201993A JPH078829A (en) 1993-06-21 1993-06-21 Fine pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17201993A JPH078829A (en) 1993-06-21 1993-06-21 Fine pulverizer

Publications (1)

Publication Number Publication Date
JPH078829A true JPH078829A (en) 1995-01-13

Family

ID=15934020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17201993A Pending JPH078829A (en) 1993-06-21 1993-06-21 Fine pulverizer

Country Status (1)

Country Link
JP (1) JPH078829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157176A (en) * 2019-03-25 2020-10-01 セイコーエプソン株式会社 Crusher and crushing/classifying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157176A (en) * 2019-03-25 2020-10-01 セイコーエプソン株式会社 Crusher and crushing/classifying apparatus

Similar Documents

Publication Publication Date Title
KR930001984A (en) Impingement airflow pulverizer, fine powder production apparatus and toner production method
JPH05309287A (en) Impingement type pneumatic pulverizing machine and production of electrostatic charge developing toner
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JPS6018454B2 (en) Opposed jet mill
JP3114040B2 (en) Collision type air crusher
JPH078829A (en) Fine pulverizer
JPS58143853A (en) Supersonic jet mill
JPH01215354A (en) Crushing and coating device
JPH0852376A (en) Collision type airflow grinder
JPH0667492B2 (en) Jet airflow crusher
JP3283728B2 (en) Crusher
JP3185065B2 (en) Collision type air crusher
JP2967304B2 (en) Classification crusher
JP3091281B2 (en) Collision type air crusher
JP3091289B2 (en) Collision type air crusher
JP3016402B2 (en) Collision type air crusher
JPH04326953A (en) Impact type pneumatic grinder
JPS6317501B2 (en)
JP3108820B2 (en) Collision type air crusher
JP3101786B2 (en) Collision type air crusher
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP2001025678A (en) Collision type crusher
JPH05138055A (en) Impact type air grinder
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JPH03109951A (en) Collision type air flow grinder and grinding method