JPH0788271B2 - Method of manufacturing oxide thin film - Google Patents

Method of manufacturing oxide thin film

Info

Publication number
JPH0788271B2
JPH0788271B2 JP5971788A JP5971788A JPH0788271B2 JP H0788271 B2 JPH0788271 B2 JP H0788271B2 JP 5971788 A JP5971788 A JP 5971788A JP 5971788 A JP5971788 A JP 5971788A JP H0788271 B2 JPH0788271 B2 JP H0788271B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
magnesium oxide
oriented
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5971788A
Other languages
Japanese (ja)
Other versions
JPH01234398A (en
Inventor
良一 高山
佳宏 冨田
惇 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5971788A priority Critical patent/JPH0788271B2/en
Publication of JPH01234398A publication Critical patent/JPH01234398A/en
Publication of JPH0788271B2 publication Critical patent/JPH0788271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、配向性薄膜あるいはエピタキシャル薄膜作製
時に基板として用いる酸化物薄膜の製造方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for producing an oxide thin film used as a substrate when producing an oriented thin film or an epitaxial thin film.

従来の技術 配向性薄膜あるいはエピタキシャル薄膜を作製するに
は、結晶構造や対称性、原子間距離等において上記薄膜
と基板材料とが類似していることが要求される。特に、
従来の誘電体エピタキシャル膜や配向膜はサファイアや
MgO等の酸化物単結晶を基板にして作製されることが多
い。
2. Description of the Related Art In order to produce an oriented thin film or an epitaxial thin film, it is required that the thin film and the substrate material have similarities in crystal structure, symmetry, interatomic distance and the like. In particular,
Conventional dielectric epitaxial films and alignment films are sapphire and
It is often manufactured using an oxide single crystal such as MgO as a substrate.

例えば、<001>方向に配向したチタン酸鉛薄膜の配向
軸に垂直な面に電極を設けて配向軸方向に発生する焦電
流を利用した薄膜素子は、無配向のものより焦電係数が
大きく、誘電率が低くなり、焦電材料の性能指数である
(焦電係数/誘電率)が大きくなることを、第30回春季
応用物理学会(予稿集7p−Z−2)において報告した。
上記<001>配向チタン酸鉛薄膜は(100)でへき開した
MgO単結晶基板上に成長する。
For example, a thin-film element that uses pyroelectric current generated in the orientation axis direction by providing an electrode on a surface perpendicular to the orientation axis of a lead titanate thin film oriented in the <001> direction has a larger pyroelectric coefficient than the non-oriented one. It was reported at the 30th Japan Society of Applied Physics (Proceedings 7p-Z-2) that the dielectric constant becomes low and the figure of merit (pyroelectric coefficient / dielectric constant) of the pyroelectric material becomes large.
The <001> oriented lead titanate thin film cleaved at (100)
It grows on MgO single crystal substrate.

基板上に形成された薄膜デバイスは、基板そのものの特
性、薄膜と基板との相互作用により、特性が大きく左右
される。したがって、焦電型赤外線センサや圧電振動子
は、基板の主要部を除去した構成が提案されている。ま
た、半導体基板上に中間層を成長させた後、エピタキシ
ャル薄膜を形成した集積化デバイスも提案されている。
The characteristics of a thin film device formed on a substrate are greatly affected by the characteristics of the substrate itself and the interaction between the thin film and the substrate. Therefore, the pyroelectric infrared sensor and the piezoelectric vibrator have been proposed to have a structure in which the main part of the substrate is removed. Also, an integrated device in which an epitaxial thin film is formed after growing an intermediate layer on a semiconductor substrate has been proposed.

発明が解決しようとする課題 上記酸化物単結晶基板は、単結晶ブロックから薄片とし
てを切り出され、その表面を研磨して各種デバイスの基
板として用いられる。通常、基板は薄い方が好ましい場
合が多いが、基板の厚さを薄くするには限界がある。さ
らに、へき開により他の結晶面、例えばMgO単結晶の場
合、(110)、(111)面野基板を作製することは困難で
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The oxide single crystal substrate is used as a substrate for various devices by cutting a single crystal block into thin pieces and polishing the surface. In general, a thin substrate is preferable in many cases, but there is a limit to reducing the thickness of the substrate. Furthermore, it is difficult to produce (110) and (111) plane field substrates by cleavage for other crystal planes such as MgO single crystal.

また、半導体基板を用いた集積化デバイスを作製する場
合、酸化物単結晶基板を利用して半導体基板上に選択的
に微小部分をエピタキシャル成長することは困難であ
る。
Further, when manufacturing an integrated device using a semiconductor substrate, it is difficult to selectively epitaxially grow a minute portion on the semiconductor substrate by using an oxide single crystal substrate.

課題を解決するための手段 半導体基板あるいはガラス基板上に、酸化マグネシウム
をスパッタリング法により作製するさいに、スパッタリ
ングガスとして不活性ガスと酸素の混合ガスを用い、前
記混合ガスが酸素を50%以上含む雰囲気で膜形成を行
い、<111>方向あるいは<100>方向に配向した酸化マ
グネシウムを作製する。
Means for Solving the Problems When a magnesium oxide is produced by a sputtering method on a semiconductor substrate or a glass substrate, a mixed gas of an inert gas and oxygen is used as a sputtering gas, and the mixed gas contains 50% or more of oxygen. Film formation is performed in an atmosphere to produce magnesium oxide oriented in the <111> direction or the <100> direction.

作用 上記のような製造法により、酸化マグネシウムを(11
1)および(100)に選択的に再現性よく作製することが
できる。また、半導体基板やガラス基板に容易に作製で
きるので、集積化デバイスも実現できる。
Action Magnesium oxide (11
1) and (100) can be selectively produced with good reproducibility. Further, since it can be easily manufactured on a semiconductor substrate or a glass substrate, an integrated device can be realized.

実施例 Si(100)基板上に酸化マグネシウムを高周波マグネト
ロンスパッタリング法により作製した。基板の温度を40
0〜700℃と変化した。雰囲気ガスとしては、アルゴンガ
ス中に酸素を混入したものを用い、全圧を4Paとした。
高周波入力電力を1.5-6.5W/cm2とした。所望の膜厚の酸
化マグネシウムの薄膜を得た。得られた薄膜をX線回折
で結晶方位の決定を行った。
Example Magnesium oxide was produced on a Si (100) substrate by a high frequency magnetron sputtering method. Substrate temperature 40
It changed from 0 to 700 ℃. As the atmosphere gas, argon gas mixed with oxygen was used, and the total pressure was 4 Pa.
The RF input power 1.5 - was 6.5 W / cm @ 2. A thin film of magnesium oxide having a desired film thickness was obtained. The crystal orientation of the obtained thin film was determined by X-ray diffraction.

第1図にX線回折強度とアルゴン・酸素ガス混合比との
関係を示している。酸素ガスが50%以上になると、(20
0)および(111)強度が大きくなり、(220)のピーク
はほとんど検出できない。ここで、酸化マグネシウムは
面心立方格子であるので、(100)、(110)反射は検出
されないが、(200)および(220)反射が検出されたの
で、その薄膜が基板面に垂直の方向に(100)および(1
10)に配向していることがわかる。ただし、基板温度は
600℃のときである。
FIG. 1 shows the relationship between the X-ray diffraction intensity and the argon / oxygen gas mixture ratio. When the oxygen gas exceeds 50%, (20
The (0) and (111) intensities increased, and the (220) peak was almost undetectable. Here, since magnesium oxide is a face-centered cubic lattice, (100) and (110) reflections are not detected, but since (200) and (220) reflections are detected, the thin film is oriented in the direction perpendicular to the substrate surface. At (100) and (1
It can be seen that it is oriented in 10). However, the substrate temperature is
It is at 600 ° C.

第2図は基板温度を変化したときのX線回折パターンを
示している。酸素ガスが50%のときである。X線回折強
度と基板温度との関係を第3図に示す。500℃のときは
(200)の反射強度のみが、700℃になると(111)のみ
が増大する。つまり、600℃をさかいに低温では(100)
が優勢になり、500℃では(100)配向となる。高温側で
は(111)が優勢になり、700℃では(111)配向とな
る。
FIG. 2 shows an X-ray diffraction pattern when the substrate temperature is changed. It is when oxygen gas is 50%. The relationship between the X-ray diffraction intensity and the substrate temperature is shown in FIG. Only the reflection intensity of (200) increases at 500 ° C, and only (111) increases at 700 ° C. In other words, at a low temperature of 600 ℃ (100)
Becomes dominant and becomes (100) orientation at 500 ° C. At the high temperature side, (111) becomes predominant, and at 700 ° C, it becomes (111) orientation.

第4図は(200)反射強度と膜形成速度との関係を示
す。膜形成速度とともに(200)反射強度は増大する。
FIG. 4 shows the relationship between the (200) reflection intensity and the film formation rate. The (200) reflection intensity increases with the film formation rate.

発明の効果 本発明の製造法によれば、酸化マグネシウムを(111)
および(100)に選択的に再現性よく作製することがで
き、高価な酸化マグネシウムを用いることなく、従来作
製困難であった(111)面も容易に作製することができ
る。また、半導体基板やガラス基板に容易に作製できる
ので、集積化デバイスも実現できる。
Effects of the Invention According to the production method of the present invention, magnesium oxide (111)
It is possible to selectively produce the (100) and (100) with good reproducibility, and it is possible to easily produce the (111) plane, which has been difficult to produce conventionally, without using expensive magnesium oxide. Further, since it can be easily manufactured on a semiconductor substrate or a glass substrate, an integrated device can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は、X線回折強度とアルゴン・酸素ガス混合比と
の関係を示す特性図、第2図は本発明の製造方法に基づ
いて基板温度を変化したときのX線回折パターンを示す
図、第3図はX線回折強度と基板温度との関係を示す特
性図、第4図は(200)反射強度と膜形成速度との関係
を示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the X-ray diffraction intensity and the argon / oxygen gas mixture ratio, and FIG. 2 is a diagram showing the X-ray diffraction pattern when the substrate temperature is changed based on the manufacturing method of the present invention. FIG. 3 is a characteristic diagram showing the relationship between the X-ray diffraction intensity and the substrate temperature, and FIG. 4 is a characteristic diagram showing the relationship between the (200) reflection intensity and the film formation rate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に酸化マグネシウムをスパッタリン
グ法により作製する工程において、スパッタリングガス
として不活性ガスと酸素の混合ガスを用い、前記混合ガ
スが酸素を50%以上含む雰囲気で膜形成を行い、<111
>方向あるいは<100>方向に配向した酸化マグネシウ
ムを作製することを特徴とする酸化物薄膜の製造方法。
1. In a step of producing magnesium oxide on a substrate by a sputtering method, a mixed gas of an inert gas and oxygen is used as a sputtering gas, and the film is formed in an atmosphere containing 50% or more of oxygen. <111
A method for producing an oxide thin film, which comprises producing magnesium oxide oriented in the> direction or the <100> direction.
【請求項2】酸化マグネシウムをスパッタリング法によ
り作製する工程を、基板温度を700℃以上にして、<111
>方向に配向した酸化マグネシウムを作製することを特
徴とする請求項1に記載の酸化物薄膜の製造方法。
2. A step of producing magnesium oxide by a sputtering method, the substrate temperature is set to 700 ° C. or higher, and <111
The method for producing an oxide thin film according to claim 1, wherein magnesium oxide oriented in the> direction is produced.
【請求項3】酸化マグネシウムをスパッタリング法によ
り作製する工程を、基板温度を500℃以下にして、<100
>方向に配向した酸化マグネシウムを作製することを特
徴とする請求項1に記載の酸化物薄膜の製造方法。
3. A step of producing magnesium oxide by a sputtering method at a substrate temperature of 500 ° C. or lower at <100.
The method for producing an oxide thin film according to claim 1, wherein magnesium oxide oriented in the> direction is produced.
JP5971788A 1988-03-14 1988-03-14 Method of manufacturing oxide thin film Expired - Fee Related JPH0788271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5971788A JPH0788271B2 (en) 1988-03-14 1988-03-14 Method of manufacturing oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5971788A JPH0788271B2 (en) 1988-03-14 1988-03-14 Method of manufacturing oxide thin film

Publications (2)

Publication Number Publication Date
JPH01234398A JPH01234398A (en) 1989-09-19
JPH0788271B2 true JPH0788271B2 (en) 1995-09-27

Family

ID=13121232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5971788A Expired - Fee Related JPH0788271B2 (en) 1988-03-14 1988-03-14 Method of manufacturing oxide thin film

Country Status (1)

Country Link
JP (1) JPH0788271B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339554B2 (en) 1995-12-15 2002-10-28 松下電器産業株式会社 Plasma display panel and method of manufacturing the same
US6150030A (en) * 1997-11-20 2000-11-21 Balzers Hochvakuum Ag Substrate coated with an MgO-layer
EP0918043B8 (en) * 1997-11-20 2005-11-23 Applied Films GmbH & Co. KG Substrate coated with at least one MgO-layer
EP0918042A1 (en) * 1997-11-20 1999-05-26 Balzers Hochvakuum AG Substrate coated with at least a MgO-layer
FR2774087B1 (en) * 1998-01-29 2000-02-25 Seva METHOD FOR DEPOSITING A MAGNESIUM OXIDE LAYER ON A SUBSTRATE, SUBSTRATE OBTAINED AND USE OF SAID SUBSTRATE
CN105197967B (en) * 2015-09-17 2016-10-12 南昌大学 A kind of preparation method of the flower-shaped magnesium oxide of carrying transition metal oxide

Also Published As

Publication number Publication date
JPH01234398A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
CN1283895A (en) Film Resonator device and its mfg. method
EP1124269B1 (en) Method for producing resonator devices having piezoelectric films
JP3703773B2 (en) Manufacturing method of crystal unit
US6383288B1 (en) Method of forming diamond film
US6534895B2 (en) Surface acoustic wave device, shear bulk wave transducer, and longitudinal bulk wave transducer
JP2004095843A (en) Electronic device and substrate for the same
US3664867A (en) Composite structure of zinc oxide deposited epitaxially on sapphire
WO2004101842A1 (en) Wurtzrite thin film, laminate containing wurtzrite crystal layer, and method for production thereof
JPS61177900A (en) Piezo-electric element and its manufacture
JP2002348198A (en) Substrate for semiconductor device epitaxial growth and method for producing the same
JPH0788271B2 (en) Method of manufacturing oxide thin film
CN101785126B (en) Deposition of piezoelectric aln for BAW resonators
KR100422333B1 (en) Method for manufacturing a metal film having giant single crystals and the metal film
JPH0658891B2 (en) Thin film single crystal diamond substrate
Hickernell et al. Surface‐elastic‐wave properties of dc‐triode‐sputtered zinc oxide films
JPS6096599A (en) Production of superconductive thin film of oxide
JP2529438B2 (en) Method of manufacturing oxide thin film
JPH0324719A (en) Forming method of single crystal film and crystal products
JPH04188717A (en) Diamond substrate and manufacture thereof
JPS6191917A (en) Manufacture of semiconductor thin film crystal
JPS6219046B2 (en)
JPS59169215A (en) Production of thin film piezoelectric oscillator
KR20230166692A (en) Method of manufactruring piezoelectric thin film and device using the same
JPH0685264A (en) Polycrystalline silicon thin film and transistor employing the thin film
JPH0723534B2 (en) Method for producing oriented metal thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees