JPH0787981A - アドレナリン受容体遺伝子 - Google Patents

アドレナリン受容体遺伝子

Info

Publication number
JPH0787981A
JPH0787981A JP6178201A JP17820194A JPH0787981A JP H0787981 A JPH0787981 A JP H0787981A JP 6178201 A JP6178201 A JP 6178201A JP 17820194 A JP17820194 A JP 17820194A JP H0787981 A JPH0787981 A JP H0787981A
Authority
JP
Japan
Prior art keywords
leu
ser
val
ile
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6178201A
Other languages
English (en)
Inventor
Junichi Yano
純一 矢野
Teruo Tanaka
輝夫 田中
Gozo Tsujimoto
豪三 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shinyaku Co Ltd
Original Assignee
Nippon Shinyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co Ltd filed Critical Nippon Shinyaku Co Ltd
Priority to JP6178201A priority Critical patent/JPH0787981A/ja
Publication of JPH0787981A publication Critical patent/JPH0787981A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(57)【要約】 【構成】 ヒトα1Cアドレナリン受容体をコードするD
NA、及び該DNAによりコードされるポリペプチドで
ある。 【効果】 組換えDNA技術により十分な量の精製され
たヒトα1Cアドレナリン受容体を得る事ができ、ヒトα
1Cアドレナリン受容体の機能解明に向けての研究が容易
になる。また本受容体に選択的なアゴニスト、アンタゴ
ニストの検索を行うときに用いることができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ヒトα1Cアドレナリン
受容体をコードするDNA及びそのDNAにコードされ
ている受容体に関する。
【0002】
【従来の技術】アドレナリン受容体は神経系をはじめ、
循環器、内分泌系において、重要な役割を果たしている
ことが知られている。この受容体は機能や薬剤に対する
感受性の違い、組織内分布などによりサブクラスα1
α2、β1、β2およびβ3に分類されている(Bylund,D.
B.ら FASEB J. 6, 832-839 (1992))。これらのうち、
α1アドレナリン受容体はカテコールアミンと結合する
ことによって、フォスファチジルイノシトール代謝亢
進、細胞内Ca2+濃度の上昇を誘導し、その結果身体各
部位の平滑筋の収縮を引き起こすことが知られている
(Puceat,M.ら TIPS 13,263-265 (1992))。このα
1は、薬理学的及び遺伝子的にさらにα1A、α1B、α1C
に分類される(Cotecchia,S.ら Proc.Natl.Acad.Sci.US
A 85, 7159-7163(1988)、Lomasney,J.W.ら J.Biol.Che
m. 266, 6365-6369 (1991)、 Schwinn,D.A. J.Biol.Che
m.26 5, 8183-8189 (1990))。
【0003】α1アドレナリン受容体のアンタゴニスト
は、血管平滑筋弛緩作用を有するので降圧剤として用い
られる。また、前立腺又は尿道の平滑筋に対する弛緩作
用もあるので泌尿器系の治療剤としても有用である。し
かし現存するα1アドレナリン受容体のアンタゴニスト
のほとんどは、α1A、α1B、α1Cという受容体のサブタ
イプの相違を認識できない。そのため、例えば泌尿器系
の治療薬として用いる際に、血管平滑筋弛緩作用及び前
立腺或いは尿道の平滑筋に対する弛緩作用を同時に発揮
してしまい、過度の血圧低下という副作用をもたらすこ
とが問題となっている。
【0004】一方、前立腺を含む泌尿器に α1アドレナ
リン受容体のサブタイプのうちどのタイプが多く存在す
るかについて研究がなされ、その結果、薬理学的にも遺
伝子的にも、α1Cアドレナリン受容体がヒト前立腺の主
なサブタイプであると報告された(Price,D.T. J.Urolo
gy 149, 324A (1993))。つまり α1Cアドレナリン受容
体に選択的なアンタゴニスト、又はアゴニストを開発す
ることができれば、同受容体が血管平滑筋にあまり存在
しないことから、副作用の少ない泌尿器系治療剤が得ら
れることが示された。
【0005】しかしながら、ヒトα1Cアドレナリン受容
体を組織より単離したという、又はその遺伝子をクロー
ニングしたという報告はなされていない。従って、ヒト
α1Cアドレナリン受容体を大量に高純度で得て、その機
能を詳細に解明することや、本受容体を発現する形質転
換細胞を作り、有用なアンタゴニスト、又はアゴニスト
の開発を行うためのアッセイ系を確立することはできな
かった。
【0006】
【発明が解決しようとする課題】上述のようにヒトα1C
アドレナリン受容体を十分量、高純度で得ること及び当
受容体を発現している形質転換細胞を得ることは非常に
困難であったため、有効なアゴニスト又はアンタゴニス
トの開発は遅れている。従って、ヒトα1Cアドレナリン
受容体に対する有効なアゴニスト又はアンタゴニストを
開発するにあたって、また、尿失禁や排尿困難などの泌
尿器系疾患のメカニズムを解明していくには、ヒトα1C
アドレナリン受容体の遺伝子をクローニングし、ヒトα
1Cアドレナリン受容体を発現する形質転換細胞を作製す
ることが非常に有効な手段となる。本発明の目的は、ヒ
トα1Cアドレナリン受容体をコードする遺伝子を提供す
ることにある。
【0007】
【課題を解決するための手段】本発明者らは上記事情に
鑑み、鋭意研究を重ねた結果、2種のヒトα1Cアドレナ
リン受容体のアミノ酸配列を初めて決定し、これをコー
ドする遺伝子を調製することができた。本発明の一つ
は、ヒトα1Cアドレナリン受容体遺伝子をコードするD
NAである。本発明のDNAは、このヒトα1Cアドレナ
リン受容体遺伝子を含むものであり、全長 2.29kbp の
DNAよりなるP2C4(cDNA)である。その配列
は配列番号3に示した。そのヌクレオチド配列は以下の
特徴を有する。 1)ウシα1Cアドレナリン受容体(Schwinn,D.A.ら J.B
iol.Chem. 265, 8183-8189 (1990))と共通する部分全
体の塩基配列は、86%と高い相同性を示した。また、
翻訳可能領域の塩基配列のウシα1Cアドレナリン受容体
との相同性は90%とさらに高かった。 2)開始コドンの位置はウシα1Cアドレナリン受容体と
一致し、終止コドンもウシα1Cアドレナリン受容体が T
AA であるのに対してP2C4は TAG であって異なった
ものになっているが、その位置はよく一致していた。
【0008】この塩基配列より導かれる本発明の受容体
のアミノ酸配列は配列番号1に示した。そのアミノ酸配
列は以下の特徴を有する。 1)アミノ酸残基数は466で、ウシα1Cアドレナリン
受容体の予想されるアミノ酸残基と同一であった。この
クローンとウシα1Cアドレナリン受容体との間のアミノ
酸配列の相同性は、全体で92%であった。 2)7個の膜貫通領域を有しており、他のアドレナリン
受容体と同じく、G蛋白共役受容体のファミリーである
ことが示唆されていた。 3)その膜貫通領域のウシα1Cアドレナリン受容体との
アミノ酸配列の相同性は97%、7回膜貫通以降のテー
ルの部分の相同性は83%であった。 以上の結果より、このP2C4はヒトα1Cアドレナリン
受容体遺伝子をコードしたものであることが判明した。
【0009】また本発明のDNAは、ヒトα1Cアドレナ
リン受容体遺伝子を含むものであり、全長 1.89kbp の
DNAよりなるP2C7(cDNA)である。その配列
は配列番号4に示した。この塩基配列より導かれる本発
明の受容体のアミノ酸配列は配列番号2に示した。その
ヌクレオチド配列及びアミノ酸配列はP2C4と同様の
特徴を有する。
【0010】本発明のcDNAはヒト前立腺のcDNA
ライブラリーから、たとえばプラークハイブリダイゼー
ション法を利用して得ることができる。この方法によれ
ば、既に塩基配列がわかっている、ヒトα1Aやα1Bアド
レナリン受容体のα1アドレナリン受容体ファミリーに
共通すると思われる相同性の高い配列のプローブ又はウ
シα1アドレナリン受容体遺伝子をプローブとして用
い、cDNAライブラリーからプローブと相補的な塩基
配列を持つDNAを得ることができる。一度に全長が得
られなくても、たとえばN末端寄りの部分、C末端寄り
の部分を、塩基配列の相同性により同一のmRNA由来
のものと確認できれば、適当な制限酵素切断部位でつな
ぎ換えて、全長を得てもよい。このようにしてヒトα1C
アドレナリン受容体を形成するために必要なすべての遺
伝情報を有する本発明のcDNAが得られる。
【0011】こうして得られたcDNAは、適当なベク
ター、例えばプラスミドまたはファージに挿入し、これ
を宿主となるバクテリア、例えば大腸菌HB101株や
サッカロマイセス・セルビシエ等に導入し形質転換する
ことにより、大量に生産させることができる。こうして
得られた形質転換体も本発明に含まれる。また、本発明
のcDNAは、適当なベクター、例えばプラスミドまた
はウィルスに挿入し、これを宿主となる動物細胞、例え
ばCOS細胞やCHO細胞等に導入し形質転換すること
により、細胞膜に大量に発現させることができる。宿主
は酵母を用いてもよい。このようにして得たヒトα1C
ドレナリン受容体を発現させた本発明の細胞は、例えば
当受容体のアゴニスト又はアンタゴニストのスクリーニ
ングの研究に用いることができる。
【0012】
【実施例】以下に実施例を挙げ、本発明を更に詳しく説
明するが、これらの実施例は本発明を制限するものでは
ない。なお、下記実施例において、各操作は特に明示が
ない限り、サムブルック等のマニュアル(Sambrook,J.
ら Molecular Cloning: A Laboratory Manual, 2nd E
d.,Vol.1-3, Cold Spring Harbor Laboratory, Cold Sp
ring Harbor,NY (1989))に記載されている方法により
行った。また、制限酵素は市販のものを用い、その具体
的使用方法は市販品の指示書に従った。
【0013】(A)ヒトα1Cアドレナリン受容体遺伝子
のcDNAライブラリーからのスクリーニング ヒト前立腺のcDNAライブラリー(λgt11、1×106 p
fu クローンテック社)からまずヒト脳α1Aアドレナリ
ン受容体の遺伝子中のヒトα1アドレナリン受容体ファ
ミリーに相同性の高い部分である PstI-XhoI 断片(480
bp)(Bruno,J.F ら Biochem.Biophys.Res.Commun. 17
9, 1485-1490 (1991))及びウシα1Cアドレナリン受容
体(Schwinn,D.A.ら J.Biol.Chem. 265, 8183-8189 (19
90))のPCR産物(残基番号 810-1524:715bp)をプ
ローブにしてスクリーニングした。プローブの標識はジ
ゴキシゲニンDNA−ラベリングキット(ベーリンガー
マンハイム社)を用いて行なった。
【0014】ヒト前立腺cDNAライブラリー 4×105
pfu を大腸菌 Y1090 株に吸収させて寒天プレート上に
まき、37℃で9時間培養した。その寒天上にナイロン
フィルター(Schleicher & Schuell 社)を置き1−2
分間放置してファージをフィルターに吸着させた後、ア
ルカリ液(0.5N NaOH, 1.5M NaCl)に5分間浸し、変性
処理を行った。中和液(0.5M Tris-HCl pH7.5, 1.5M Na
Cl)で5分間中和した後、さらに 2 × SSC で5分間洗
浄した。その後、80℃、2時間のベーキング又はUV
ストラタリンカー2400(Stratagene 社)で処理し
DNAをフィルターに固定した。ハイブリダイズおよび
発色の条件はDNAラベリングキット(ベーリンガーマ
ンハイム社)に従った。ポジティブプラークをパスツー
ルピペットの頭部を使用して掻き取り、1 mlのSMバッ
ファー(50mM Tris-HCl pH7.5, 0.1M NaCl, 8mM MgSO4,
0.01%(W/V)ゼラチン)中で37℃で1時間放置し、ク
ロロホルムを1滴加え、ファージ液とした。このファー
ジ液を、大腸菌Y1090を宿主に培養し、QIAGEN LAMBDA K
IT(QIAGEN社)を使用してラムダファージDNAを精製
した。このDNAの一部を制限酵素EcoRI で切断した
後、1%低温溶解性アガロースゲルを用いた電気泳動で
EcoRI断片を分離した。ゲルから回収したDNA断片は
ELUTIP-d(Schleicher & Schuell 社)で精製した。
【0015】(B)ヒトα1Cアドレナリン受容体遺伝子
のプラスミドベクターへのサブクローニング プラスミドベクター(pUC18及び119)を EcoRI
切断後、大腸菌アルカリフォスファターゼ処理した。
このベクター 0.1μg とファージDNA断片とをライ
ゲーションした後、大腸菌TB1を形質転換し、アンピ
シリンおよびX−Galを含むLBプレート(40 g/ml
の X-gal 及び 100ng/ml の アンヒ゜シリン を含む)上で選択
を行なった。16時間、37℃で培養後、白いコロニー
のみ数個選び、 1.5 ml のLB培地で培養後、アルカリ
抽出法(Sambrook,J.ら Molecular Cloning: A Laborat
ory Manual, 2nd Ed.,Vol.1-3, Cold Spring Harbor La
boratory, Cold Spring Harbor,NY (1989))でプラスミ
ドDNAを抽出した。得られたプラスミドDNAを Eco
RI で切断した後、1%アガロースゲルで電気泳動を行
った。このゲルをアルカリ液(0.5N NaOH、0.5M NaCl)
で0.5−1時間処理し、Vacugene 2016(LKB社)を
使って、ナイロンフィルター(Schleicher & Schuell
社)にアルカリ条件下で30分 −1時間DNAをトラ
ンスファーした。このフィルターを 2 x SSC で洗浄
後、UVストラタリンカー 2400を使って固定し、ハイ
ブリダイゼーションを行なった。ヒト脳α1Aアドレナリ
ン受容体の PstI-XhoI 断片(480bp)及びウシα1Cアド
レナリン受容体のPCR産物(715bp)をプローブにし
て検出した。ハイブリダイズおよび発色の条件はDNA
ラベリングキット(ベーリンガーマンハイム社)に従っ
た。プローブで発色し検出したDNAの位置が、ファー
ジより切り出されたcDNAと同じものであることが確
認されたプラスミドを持つ大腸菌を選び出し、サブクロ
ーニングされたインサートの塩基配列の決定を行った。
【0016】(C)cDNAインサートの全塩基配列の
決定 上記の方法で、pUC18又はpUC119に組み込ま
れたDNAが、ファージより切り出したcDNAと同じ
ものであることが確認された大腸菌を、LB培地で一晩
培養し、DNAの調製に用いた。培養液は、常法に従
い、アルカリ抽出法でDNAを抽出後、塩化セシウム密
度勾配超遠心分離を2回行いDNAを精製した。超遠心
機はベックマン L8-70 を用いて、68,000 rpm で16時
間、更にベックマン TL-100 を用いて 100,000 rpm で
5時間遠心を行なった。精製したDNAの濃度は 260nm
の吸光度より算定した。
【0017】DNAの塩基配列の決定はABI 373
A DNAシーケンサー(アプライドバイオシステム
社)を用いて行った。1-2μg のプラスミドDNAを塩
基配列の決定に用いた。プライマーは New England Bio
Labs 社の M13/pUC Sequencing Primer #1224、M13/pU
C SequencingPrimer #1211、M13/pUC reverse sequenci
ng Primer #1233、M13/pUC reversesequencing Primer
#1201を用いた。塩基配列のデータ解析には GeneWorks
(Intelligenetic社)を、ホモロジー検索にはピアソン
の fast A (Pearson,W.R.ら Proc.Natl.Acad.Sci.USA
85, 2444-2448 (1988))を用いた。
【0018】以上のようにして塩基配列を決定し、ウシ
α1Cアドレナリン受容体の遺伝子とホモロジー検索をし
た結果、非常に相同性の高いクローンP2(1687bp)と
クローンC4(903bp)及びクローンC7(480bp)の3
種のクローンが得られた。クローンP2は翻訳可能領域
1251bp を含んでおり、開始コドンより 436bp上流から
7回目の膜貫通領域までを含んでいたが、C末端の部分
は欠けていた。クローンC4及びクローンC7は、それ
ぞれ、ウシα1Cアドレナリン受容体のC末端領域と高い
相同性を示し、C末端も含んでいた。P2クローンは、
配列番号3に記載してある配列の1−1687番を含ん
でおり、C4は1388−2290番まで、C7は14
11−1890番までをそれぞれコードしていた。つま
り、P2とC4は 300bp、P2とC7は 277bp の共通
領域を持っていた。クローンC7はクローンC4と一箇
所塩基が異なっていた。つまり配列番号3に記載の第1
727番目のGがCに置き換わっており、その結果43
1番目のアミノ酸GluがGlnになっていた。P2と
C4及びP2とC7のそれぞれのクローンの配列の重な
り合う部分の塩基配列は完全に一致したことから、それ
ぞれのクローンの組み合わせは同じmRNA由来のもの
であることが判明した。そこでP2とC4は両者に共通
する領域に存在する PvuII の制限酵素サイト(配列番
号3の1393番目)で、またP2とC7は StuI の制
限酵素サイト(配列番号3の1443番目)で、常法に
従いそれぞれののクローンを組換え、全長を含むヒトα
1Cアドレナリン受容体遺伝子をP2C4及びP2C7を
作製した。
【0019】(D)ヒトα1Cアドレナリン受容体遺伝子
の塩基配列とアミノ酸配列の解析 P2C4の全長は 2.29kbp で(配列番号3)、翻訳可
能領域は 1398bp、5'−非翻訳領域は436bp、3'−非翻
訳領域は 456bp であった。5'−非翻訳領域はウシα1C
アドレナリン受容体より長く、3'−非翻訳領域はウシ
α1Cアドレナリン受容体より短く、ポリAテールは認め
られなかった。ウシα1Cアドレナリン受容体との共通す
る部分全体の塩基配列は、86%と高い相同性を示し
た。また、翻訳可能領域の塩基配列のウシα1Cアドレナ
リン受容体との相同性は90%とさらに高かった。開始
コドンの位置はウシα1Cアドレナリン受容体と一致し、
終止コドンもウシα1Cアドレナリン受容体が TAA であ
るのに対してP2C4は TAGであり異なったものになっ
ているがその位置はよく一致していた。この塩基配列よ
り予想されるアミノ酸残基数は466で、ウシα1Cアド
レナリン受容体の予想されるアミノ酸残基数と同一であ
った。このクローンとウシα1Cアドレナリン受容体との
アミノ酸配列の相同性は、全体で92%であり、膜貫通
領域は97%、7回膜貫通以降のテールの部分は83%
であった。一方、ヒトα1Aアドレナリン受容体とのアミ
ノ酸配列の相同性は、全体で45%、膜貫通領域は67
%であり、ヒトα1Bアドレナリン受容体とのアミノ酸配
列の相同性は、全体で46%、膜貫通領域は76%であ
った。
【0020】また、Kyte-Doolittle のハイドロパシー
解析から(Kyte,J.ら J.Mol.Biol.157, 105-132 (198
2))、P2C4に、G−蛋白共役受容体ファミリーで報
告されている7つの疎水性の高い領域(Trumpp-Kallmey
er,S.ら J.Med.Chem. 35,3448-3462 (1992))が認めら
れた(図1)。以上の結果より、このP2C4はヒトα
1Cアドレナリン受容体遺伝子をコードしたものであるこ
とが判明した。
【0021】P2C7についても同様の解析を行った結
果、P2C4との相同性は99%以上であり、同じ性質
を示したことから、この遺伝子もヒトα1Cアドレナリン
受容体遺伝子をコードしたものであることが判明した
(配列番号4)。これらの結果はヒトα1Cアドレナリン
受容体遺伝子は少なくとも2種存在し、遺伝子多型があ
ることを示している。
【0022】(E)ヒトα1Cアドレナリン受容体P2C
4の動物細胞での一過性形質発現 ヒトα1Cアドレナリン受容体遺伝子、P2C4の EcoRI
-PstI 断片(塩基番号1-2065)を動物細胞の発現ベクター
pME18S(Takebe,Y.ら、Mol.Cell.Biol.8,466-472
(1988))の EcoRI-PstI サイトに、常法に従って組み
込み、得られたDNAをpME18S−P2C4と名付
けた。このpME18S−P2C4をDEAEーデキス
トラン法(Cullen,B.R.ら Nethods Enzymol. 152, 684-
704 (1987))でCOS−7細胞に形質導入し、48−7
2時間後に細胞を収穫した。収穫したCOS−7細胞
は、ブランソンの超音波破砕機(Model SONIFIER 250)
を用いて破砕し、3,000 × g で10分間遠心した。そ
の上清液をさらに 35,000 ×g で20分間遠心し、その
沈澱を結合緩衝液(50 mM Tris-HCl pH7.4, 12.5mMMgCl
2, 10mM EGTA)で懸濁し、発現したヒトα1Cアドレナリ
ン受容体が含まれている膜画分とした。蛋白量の測定は
BCA蛋白アッセイキット(PIERCE社)を用いた。
【0023】発現した受容体がヒトα1Cアドレナリン受
容体であることを確認するため、α1アドレナリン受容
体のアンタゴニストであるHEAT(2-β-(4-hydroxyp
henyl)-ethylaminomethyl)-tetralone)と、各種アゴニ
スト又はアンタゴニストとの競争実験を行った。約 10
μg の蛋白質を含む膜蛋白に約 70pMの 125IーHEAT
( 81.4TBq/mmol、ニューイングランドニュークレア
社)と各種アゴニスト又はアンタゴニストを加え、25
℃で60分間反応させた。1アッセイ当りの溶液量は 2
50μl とした。その後、この混合液を、氷冷した結合緩
衝液で希釈し、速やかにブランデルセルハーベスタ(ブ
ランデル社製Model-30)を用い、ワットマンGF/Cの
グラスフィルターを通し、さらに氷冷した結合緩衝液で
洗浄した。フィルター上に残存した125Iの放射活性を
ガンマーカウンター(アロカ社、ARC-370M)で測定し、
ムンソンらのLIGANDプログラム(Munson,P.J. An
alytical Biochemistry107,220-239 (1980))でKi値
を計算した。
【0024】種々のアゴニスト又はアンタゴニストのH
EATに対する結合阻害のKi値を表1に示した。
【0025】
【表1】 この実験結果は以下の特徴を示している。 1)アゴニストの結合阻害の強さは オキシメタゾリン
>> (-)エピネフィリン >ノルエピネフィリン >> イソプ
ロテレノール の順であった。 2)アゴニストの結合はα1アンタゴニストのプラゾシ
ンで強く阻害されるが、α2アンタゴニストのヨヒンビ
ンの阻害は弱いものであった。 3)アゴニストのオキシメタゾリン並びにメソキサミン
及びアンタゴニストの WB4101(2-(2,6-dimethoxypheno
xyethyl-)aminomethyl-1,4-benzodioxane)並びにフェ
ントールアミンの結合阻害力が、α1Bアドレナリン受容
体における阻害力(Lomasney,J.W.ら J.Biol.Chem. 26
6, 6365-6369 (1991))より、10−100倍程度強
い。これらの特徴は、発現した受容体はα1アドレナリ
ン受容体ファミリーのうち、α1Aもしくはα1Cアドレナ
リン受容体であることを示している。さらにロマズネイ
らの方法に従い(Lomasney,J.W.ら J.Biol.Chem. 266,
6365-6369 (1991))、発現細胞より調製した細胞膜をC
EC(Chlorethylclonidine)処理することにより、H
EATの受容体に対する結合を不可逆的に阻害するか否
かを調べた結果、結合が97%阻害された。α1Aアドレ
ナリン受容体はCECで阻害されない(Lomasney,J.W.
ら J.Biol.Chem. 266, 6365-6369 (1991))ため、発現
した受容体はヒトα1Cアドレナリン受容体であることが
確認された。
【0026】(F)ヒトα1C−アドレナリン受容体遺伝
子の安定形質発現細胞の作製 ヒトα1Cアドレナリン受容体遺伝子が核内染色体DNA
に導入された、安定形質発現細胞を作製した。このこと
により、均一な発現受容体をもった細胞を、継代培養す
ることにより再現性よく大量に調製することができる。
つまり、薬物のスクリーニング系に好都合な形質転換細
胞が得られることになる。
【0027】(F−1)発現ベクターへの導入 発現ベクターpSVK3−neoR(ファルマシア社の発
現ベクターpSVK3のSV40の初期プロモーターの
下流にある NaeI サイトに、pMAM−neo(クロンテ
ック社)のネオマイシン耐性遺伝子の領域を含んだ約
2.7kbp の BamHI断片を順方向に組み込んだベクター)
の EcoRI サイトにヒトα1C−アドレナリン受容体遺伝
子P2C7を組み込んだ。大腸菌HB101に組み換え
たDNAを導入し、50mM のカナマイシンで選択した。
得られたコロニーの内、24コロニーを任意に選び、培
養後、アルカリ法でDNAを抽出した。これらのクロー
ンのDNAは 1.89kbp の EcoRI 断片があること及び E
coRV-XhoI で約 0.5kbp の断片が出現することから、S
V40のプロモーターに対して順方向に入ったクローン
であることを確認した。P2C7が組み込まれたベクタ
ーをpSVK−P2C7と命名した。得られたベクター
をCHO(chinease hamster ovary)細胞に以下の方法
で導入し、安定形質発現細胞を確立した。
【0028】(F−2)リポフェクション法によるP2
C7遺伝子の動物細胞への導入 リポフェクチン(GIBCO BRL社)を使い、そのマニュア
ルに従い遺伝子の導入を行った。直径60mmのディシ
ュ(コーニング社)に 2x105 個のCHO細胞を継代
し、24時間培養した。4.5μg のpSVK−P2C7
を制限酵素 ScaIで切断し、直鎖状にしたDNAを 100
μl の無血清のHamm’sF12培地に溶解し、リポ
フェクチン 50μl に無血清のHamm’sF12培地
を加え 100μl としたものとを混和し、室温で15分間
静置した。その後、無血清のHamm’sF12培地で
2回洗浄した細胞に、この混和液に同培地を混和して 2
mlにした液を加えた。24時間後、10%の仔牛血清入
りのHamm’sF12培地と入れ替え、48時間培養
した。その後 0.6mg/ml の濃度のG418(ジェネティ
シン:GIBCO BRL社)を含む10%の血清入りのHam
m’sF12培地で選択を開始した。G418を含む培
地は2−3日間隔で交換した。10−14日の間にG4
18耐性のクローンの選択を行い、20個のクローンを
直径60mmのディッシュに移した。実施例(E)に記
載されている方法で各々のクローンより細胞膜を調製
し、受容体の発現の有無をレセプターアッセイで確認し
たところ、3つのクローンに発現が認められた。このう
ちの1つのクローンについて更に詳細にレセプターアッ
セイを行なった結果を表2に示す。
【0029】
【表2】 実験例(E)で示した結果と同様の特徴を示し、発現し
た受容体はα1Cアドレナリン受容体であることを示して
いる。
【0030】(F−3)Ca2+の細胞内の上昇作用 レセプターアッセイでは、細胞膜上の受容体の結合阻害
活性のみしか測定できないため、アゴニストとアンタゴ
ニストを区別することができない。そこで、細胞膜の受
容体から細胞内情報伝達系を測定すること、例えば以下
に示す様な細胞内Ca2+を測定することにより、アゴニ
スト作用を見ることが可能となる。これによりスクリー
ニングする薬物がアゴニストであるかアンタゴニストで
あるかを区別することができる。以下にその実施例を示
す。
【0031】細胞内Ca2+濃度の測定は、蛍光色素 Fur
a-2 がCa2+と結合すると蛍光を発するという原理に基
づいて行った。5枚の直径90mmディシュで培養した
pSVK−P2C7が組み込まれた対数増殖期の安定形
質発現細胞を 0.025% トリプシン/ 0.02% EDTAで
剥がし、8.2mlの Ca2+ローディング緩衝液(140mM Na
Cl,4mM KCl,1mM MgCl2,1.25 mMCaCl2,1mM Na2HPO4,5mM
Hepes,11mM グルコース,0.2% BSA,pH 7.4)で懸濁し 4m
l ずつ分注した。この細胞懸濁液に Fura-2-AM(Furaー2
の Acetoxyl methyl体)を 16μl(1mM DMSO溶液:同
仁(株))を添加し、遮光状態で25℃で振盪した。3
0分後 1500rpm で3分間遠心し、細胞を回収した。更
に 4ml のCa2+ローディング緩衝液で洗浄後、同様に
遠心し、再度 5ml のCa2+ローディング緩衝液で細胞
を懸濁し測定に用いた。
【0032】細胞内Ca2+濃度は、細胞内の蛍光強度
を、日本分光社製細胞内イオン測定装置CAF−110
により測定しマックラボシステム(アナログ・ディジタ
ル・インストゥルメント社)で解析することにより算定
した。 0.5ml の Fura-2 ローディング細胞懸濁液を回
転子が入ったセルに分注し、CAF−110にセルを設
置し、25℃で、励起波長 340nm で 380nm の蛍光強度
(F340)を、同時に励起波長 380nm で 500nm の蛍光強
度(F500)を波長を測定し、両者の比 R=F340/F500 を
求めた。1−2分間経ち値が安定した後、5μl の試験
薬剤を加え、蛍光強度が一定になるまで反応させ、その
値を測定した(下記の式で R と表す)。反応終了後、
最終濃度 0.2% TritonX-100 を入れ完全に細胞破壊し蛍
光強度を測定した(その時の R の値を Rmax、F380 の
値を Fmax と表す)。更に最終濃度 3mM となるようE
DTAを加え蛍光強度を測定した(その時の R の値を
Rmin、F380 の値を Fmin と表す)。
【0033】以下の式に従い細胞内Ca2+濃度を算定し
た。 [Ca2+]= Kd × β × (R - Rmin)/(Rmax - R) 但し Kd: Fura-2-AM の解離定数(224nM) β= Fmin/Fmax ヒトα1Cアドレナリン受容体遺伝子P2C7を安定形質
発現したCHO細胞を使い、受容体のアゴニストである
ノルエピネフリンおよびフェニレフリンの細胞内Ca2+
濃度に及ぼす影響を上記の方法で測定した。図2に示し
たようにアゴニストの濃度に依存して細胞内Ca2+濃度
が上昇し、α1受容体に特徴的な挙動を示し、P2C7
遺伝子はヒトα1Cアドレナリン受容体をコードしている
ことが示された。
【0034】
【配列表】
配列番号:1 配列の長さ:466 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser Asn Cys Thr Gln 1 5 10 15 Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu Leu Gly Val Ile 20 25 30 Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn Ile Leu Val Ile 35 40 45 Leu Ser Val Ala Cys His Arg His Leu His Ser Val Thr His Tyr Tyr 50 55 60 Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr Ser Thr Val Leu 65 70 75 80 Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp Ala Phe Gly Arg 85 90 95 Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu Cys Cys Thr Ala 100 105 110 Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg Tyr Ile Gly Val 115 120 125 Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln Arg Arg Gly Leu 130 135 140 Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val Ile Ser Ile Gly 145 150 155 160 Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp Glu Thr Ile Cys 165 170 175 Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser Ala Leu Gly Ser 180 185 190 Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr Cys Arg Val Tyr 195 200 205 Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser Gly Leu Lys Thr 210 215 220 Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile His Arg Lys Asn 225 230 235 240 Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys Thr Lys Thr His 245 250 255 Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys Lys Ala Ala Lys 260 265 270 Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys Trp Leu Pro Phe 275 280 285 Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp Phe Lys Pro Ser 290 295 300 Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr Leu Asn Ser Cys 305 310 315 320 Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu Phe Lys Lys Ala 325 330 335 Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg Lys Gln Ser Ser 340 345 350 Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser Gln Ala Val Glu 355 360 365 Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly Ser Arg Glu Thr 370 375 380 Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu Trp Lys Phe Phe 385 390 395 400 Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val Ser Lys Asp Gln 405 410 415 Ser Ser Cys Thr Thr Ala Arg Val Arg Ser Lys Ser Phe Leu Glu Val 420 425 430 Cys Cys Cys Val Gly Pro Ser Thr Pro Ser Leu Asp Lys Asn His Gln 435 440 445 Val Pro Thr Ile Lys Val His Thr Ile Ser Leu Ser Glu Asn Gly Glu 450 455 460 Glu Val 465
【0035】 配列番号:2 配列の長さ:466 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser Asn Cys Thr Gln 1 5 10 15 Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu Leu Gly Val Ile 20 25 30 Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn Ile Leu Val Ile 35 40 45 Leu Ser Val Ala Cys His Arg His Leu His Ser Val Thr His Tyr Tyr 50 55 60 Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr Ser Thr Val Leu 65 70 75 80 Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp Ala Phe Gly Arg 85 90 95 Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu Cys Cys Thr Ala 100 105 110 Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg Tyr Ile Gly Val 115 120 125 Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln Arg Arg Gly Leu 130 135 140 Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val Ile Ser Ile Gly 145 150 155 160 Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp Glu Thr Ile Cys 165 170 175 Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser Ala Leu Gly Ser 180 185 190 Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr Cys Arg Val Tyr 195 200 205 Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser Gly Leu Lys Thr 210 215 220 Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile His Arg Lys Asn 225 230 235 240 Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys Thr Lys Thr His 245 250 255 Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys Lys Ala Ala Lys 260 265 270 Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys Trp Leu Pro Phe 275 280 285 Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp Phe Lys Pro Ser 290 295 300 Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr Leu Asn Ser Cys 305 310 315 320 Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu Phe Lys Lys Ala 325 330 335 Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg Lys Gln Ser Ser 340 345 350 Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser Gln Ala Val Glu 355 360 365 Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly Ser Arg Glu Thr 370 375 380 Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu Trp Lys Phe Phe 385 390 395 400 Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val Ser Lys Asp Gln 405 410 415 Ser Ser Cys Thr Thr Ala Arg Val Arg Ser Lys Ser Phe Leu Gln Val 420 425 430 Cys Cys Cys Val Gly Pro Ser Thr Pro Ser Leu Asp Lys Asn His Gln 435 440 445 Val Pro Thr Ile Lys Val His Thr Ile Ser Leu Ser Glu Asn Gly Glu 450 455 460 Glu Val 465
【0036】 配列番号:3 配列の長さ:2290 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列の特徴 特徴を表す記号:CDS 存在位置:437..1834 特徴を決定した方法:P 配列 GAATTCCGAA TCATGTGCAG AATGCTGAAT CTTCCCCCAG CCAGGACGAA TAAGACAGCG 60 CGGAAAAGCA GATTCTCGTA ATTCTGGAAT TGCATGTTGC AAGGAGTCTC CTGGATCTTC 120 GCACCCAGCT TCGGGTAGGG AGGGAGTCCG GGTCCCGGGC TAGGCCAGCC CGGCAGGTGG 180 AGAGGGTCCC CGGCAGCCCC GCGCGCCCCT GGCCATGTCT TTAATGCCCT GCCCCTTCAT 240 GTGGCCTTCT GAGGGTTCCC AGGGCTGGCC AGGGTTGTTT CCCACCCGCG CGCGCGCTCT 300 CACCCCCAGC CAAACCCACC TGGCAGGGCT CCCTCCAGCC GAGACCTTTT GATTCCCGGC 360 TCCCGCGCTC CCGCCTCCGC GCCAGCCCGG GAGGTGGCCC TGGACAGCCG GACCTCGCCC 420 GGCCCCGGCT GGGACC ATG GTG TTT CTC TCG GGA AAT GCT TCC GAC AGC TCC 472 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser 1 5 10 AAC TGC ACC CAA CCG CCG GCA CCG GTG AAC ATT TCC AAG GCC ATT CTG 520 Asn Cys Thr Gln Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu 15 20 25 CTC GGG GTG ATC TTG GGG GGC CTC ATT CTT TTC GGG GTG CTG GGT AAC 568 Leu Gly Val Ile Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn 30 35 40 ATC CTA GTG ATC CTC TCC GTA GCC TGT CAC CGA CAC CTG CAC TCA GTC 616 Ile Leu Val Ile Leu Ser Val Ala Cys His Arg His Leu His Ser Val 45 50 55 60 ACG CAC TAC TAC ATC GTC AAC CTG GCG GTG GCC GAC CTC CTG CTC ACC 664 Thr His Tyr Tyr Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr 65 70 75 TCC ACG GTG CTG CCC TTC TCC GCC ATC TTC GAG GTC CTA GGC TAC TGG 712 Ser Thr Val Leu Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp 80 85 90 GCC TTC GGC AGG GTC TTC TGC AAC ATC TGG GCG GCA GTG GAT GTG CTG 760 Ala Phe Gly Arg Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu 95 100 105 TGC TGC ACC GCG TCC ATC ATG GGC CTC TGC ATC ATC TCC ATC GAC CGC 808 Cys Cys Thr Ala Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg 110 115 120 TAC ATC GGC GTG AGC TAC CCG CTG CGC TAC CCA ACC ATC GTC ACC CAG 856 Tyr Ile Gly Val Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln 125 130 135 140 AGG AGG GGT CTC ATG GCT CTG CTC TGC GTC TGG GCA CTC TCC CTG GTC 904 Arg Arg Gly Leu Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val 145 150 155 ATA TCC ATT GGA CCC CTG TTC GGC TGG AGG CAG CCG GCC CCC GAG GAC 952 Ile Ser Ile Gly Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp 160 165 170 GAG ACC ATC TGC CAG ATC AAC GAG GAG CCG GGC TAC GTG CTC TTC TCA 1000 Glu Thr Ile Cys Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser 175 180 185 GCG CTG GGC TCC TTC TAC CTG CCT CTG GCC ATC ATC CTG GTC ATG TAC 1048 Ala Leu Gly Ser Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr 190 195 200 TGC CGC GTC TAC GTG GTG GCC AAG AGG GAG AGC CGG GGC CTC AAG TCT 1096 Cys Arg Val Tyr Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser 205 210 215 220 GGC CTC AAG ACC GAC AAG TCG GAC TCG GAG CAA GTG ACG CTC CGC ATC 1144 Gly Leu Lys Thr Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile 225 230 235 CAT CGG AAA AAC GCC CCG GCA GGA GGC AGC GGG ATG GCC AGC GCC AAG 1192 His Arg Lys Asn Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys 240 245 250 ACC AAG AGC CAC TTC TCA GTG AGG CTC CTC AAG TTC TCC CGG GAG AAG 1240 Thr Lys Thr His Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys 255 260 265 AAA GCG GCC AAA ACG CTG GGC ATC GTG GTC GGC TGC TTC GTC CTC TGC 1288 Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys 270 275 280 TGG CTG CCT TTT TTC TTA GTC ATG CCC ATT GGG TCT TTC TTC CCT GAT 1336 Trp Leu Pro Phe Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp 285 290 295 300 TTC AAG CCC TCT GAA ACA GTT TTT AAA ATA GTA TTT TGG CTC GGA TAT 1384 Phe Lys Pro Ser Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr 305 310 315 CTA AAC AGC TGC ATC AAC CCC ATC ATA TAC CCA TGC TCC AGC CAA GAG 1432 Leu Asn Ser Cys Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu 320 325 330 TTC AAA AAG GCC TTT CAG AAT GTC TTG AGA ATC CAG TGT CTC CGC AGA 1480 Phe Lys Lys Ala Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg 335 340 345 AAG CAG TCT TCC AAA CAT GCC CTG GGC TAC ACC CTG CAC CCG CCC AGC 1528 Lys Gln Ser Ser Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser 350 355 360 CAG GCC GTG GAA GGG CAA CAC AAG GAC ATG GTG CGC ATC CCC GTG GGA 1576 Gln Ala Val Glu Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly 365 370 375 380 TCA AGA GAG ACC TTC TAC AGG ATC TCC AAG ACG GAT GGC GTT TGT GAA 1624 Ser Arg Glu Thr Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu 385 390 395 TGG AAA TTT TTC TCT TCC ATG CCC CGT GGA TCT GCC AGG ATT ACA GTG 1672 Trp Lys Phe Phe Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val 400 405 410 TCC AAA GAC CAA TCC TCC TGT ACC ACA GCC CGG GTG AGA AGT AAA AGC 1720 Ser Lys Asp Gln Ser Ser Cys Thr Thr Ala Arg Val Arg Ser Lys Ser 415 420 425 TTT TTG GAG GTC TGC TGC TGT GTA GGG CCC TCA ACC CCC AGC CTT GAC 1768 Phe Leu Glu Val Cys Cys Cys Val Gly Pro Ser Thr Pro Ser Leu Asp 430 435 440 AAG AAC CAT CAA GTT CCA ACC ATT AAG GTC CAC ACC ATC TCC CTC AGT 1816 Lys Asn His Gln Val Pro Thr Ile Lys Val His Thr Ile Ser Leu Ser 445 450 455 460 GAG AAC GGG GAG GAA GTC TAGGACAGGA AAGATGCAGA GGAAAGGGGA 1864 Glu Asn Gly Glu Glu Val 465 ATAATCTTAG GTACCCACCC CACTTCCTTC TCGGAAGGCC AGCTCTTCTT GGAGGACAAG 1924 ACAGGACCAA TCAAAGAGGG GACCTGCTGG GAATGGGGTG GGTGGTAGAC CCAACTCATC 1984 AGGCAGCGGG TAGGGCACAG GGAAGAGGGA GGGTGTCTCA CAACCAACCA GTTCAGAATG 2044 ATACGGAACA GCATTTCCCT GCAGCTAATG CTTTCTTGGT CACTCTGTGC CCACTTCAAC 2104 GAAAACCACC ATGGGAAACA GAATTTCATG CACAATCCAA AAGACTATAA ATATAGGATT 2164 ATGATTTCAT CATGAATATT TTGAGCACAC ACTCTAAGTT TGGAGCTATT TCTTGATGGA 2224 AGTGAGGGGA TTTTATTTTC AGGCTCAACC TACTGACAGC CACATTTGAC ATTTATGCCG 2284 GAATTC 2290
【0037】 配列番号:4 配列の長さ:1890 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列の特徴 特徴を表す記号:CDS 存在位置:437..1834 特徴を決定した方法:P 配列 GAATTCCGAA TCATGTGCAG AATGCTGAAT CTTCCCCCAG CCAGGACGAA TAAGACAGCG 60 CGGAAAAGCA GATTCTCGTA ATTCTGGAAT TGCATGTTGC AAGGAGTCTC CTGGATCTTC 120 GCACCCAGCT TCGGGTAGGG AGGGAGTCCG GGTCCCGGGC TAGGCCAGCC CGGCAGGTGG 180 AGAGGGTCCC CGGCAGCCCC GCGCGCCCCT GGCCATGTCT TTAATGCCCT GCCCCTTCAT 240 GTGGCCTTCT GAGGGTTCCC AGGGCTGGCC AGGGTTGTTT CCCACCCGCG CGCGCGCTCT 300 CACCCCCAGC CAAACCCACC TGGCAGGGCT CCCTCCAGCC GAGACCTTTT GATTCCCGGC 360 TCCCGCGCTC CCGCCTCCGC GCCAGCCCGG GAGGTGGCCC TGGACAGCCG GACCTCGCCC 420 GGCCCCGGCT GGGACC ATG GTG TTT CTC TCG GGA AAT GCT TCC GAC AGC TCC 472 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser 1 5 10 AAC TGC ACC CAA CCG CCG GCA CCG GTG AAC ATT TCC AAG GCC ATT CTG 520 Asn Cys Thr Gln Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu 15 20 25 CTC GGG GTG ATC TTG GGG GGC CTC ATT CTT TTC GGG GTG CTG GGT AAC 568 Leu Gly Val Ile Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn 30 35 40 ATC CTA GTG ATC CTC TCC GTA GCC TGT CAC CGA CAC CTG CAC TCA GTC 616 Ile Leu Val Ile Leu Ser Val Ala Cys His Arg His Leu His Ser Val 45 50 55 60 ACG CAC TAC TAC ATC GTC AAC CTG GCG GTG GCC GAC CTC CTG CTC ACC 664 Thr His Tyr Tyr Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr 65 70 75 TCC ACG GTG CTG CCC TTC TCC GCC ATC TTC GAG GTC CTA GGC TAC TGG 712 Ser Thr Val Leu Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp 80 85 90 GCC TTC GGC AGG GTC TTC TGC AAC ATC TGG GCG GCA GTG GAT GTG CTG 760 Ala Phe Gly Arg Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu 95 100 105 TGC TGC ACC GCG TCC ATC ATG GGC CTC TGC ATC ATC TCC ATC GAC CGC 808 Cys Cys Thr Ala Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg 110 115 120 TAC ATC GGC GTG AGC TAC CCG CTG CGC TAC CCA ACC ATC GTC ACC CAG 856 Tyr Ile Gly Val Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln 125 130 135 140 AGG AGG GGT CTC ATG GCT CTG CTC TGC GTC TGG GCA CTC TCC CTG GTC 904 Arg Arg Gly Leu Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val 145 150 155 ATA TCC ATT GGA CCC CTG TTC GGC TGG AGG CAG CCG GCC CCC GAG GAC 952 Ile Ser Ile Gly Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp 160 165 170 GAG ACC ATC TGC CAG ATC AAC GAG GAG CCG GGC TAC GTG CTC TTC TCA 1000 Glu Thr Ile Cys Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser 175 180 185 GCG CTG GGC TCC TTC TAC CTG CCT CTG GCC ATC ATC CTG GTC ATG TAC 1048 Ala Leu Gly Ser Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr 190 195 200 TGC CGC GTC TAC GTG GTG GCC AAG AGG GAG AGC CGG GGC CTC AAG TCT 1096 Cys Arg Val Tyr Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser 205 210 215 220 GGC CTC AAG ACC GAC AAG TCG GAC TCG GAG CAA GTG ACG CTC CGC ATC 1144 Gly Leu Lys Thr Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile 225 230 235 CAT CGG AAA AAC GCC CCG GCA GGA GGC AGC GGG ATG GCC AGC GCC AAG 1192 His Arg Lys Asn Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys 240 245 250 ACC AAG AGC CAC TTC TCA GTG AGG CTC CTC AAG TTC TCC CGG GAG AAG 1240 Thr Lys Thr His Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys 255 260 265 AAA GCG GCC AAA ACG CTG GGC ATC GTG GTC GGC TGC TTC GTC CTC TGC 1288 Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys 270 275 280 TGG CTG CCT TTT TTC TTA GTC ATG CCC ATT GGG TCT TTC TTC CCT GAT 1336 Trp Leu Pro Phe Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp 285 290 295 300 TTC AAG CCC TCT GAA ACA GTT TTT AAA ATA GTA TTT TGG CTC GGA TAT 1384 Phe Lys Pro Ser Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr 305 310 315 CTA AAC AGC TGC ATC AAC CCC ATC ATA TAC CCA TGC TCC AGC CAA GAG 1432 Leu Asn Ser Cys Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu 320 325 330 TTC AAA AAG GCC TTT CAG AAT GTC TTG AGA ATC CAG TGT CTC CGC AGA 1480 Phe Lys Lys Ala Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg 335 340 345 AAG CAG TCT TCC AAA CAT GCC CTG GGC TAC ACC CTG CAC CCG CCC AGC 1528 Lys Gln Ser Ser Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser 350 355 360 CAG GCC GTG GAA GGG CAA CAC AAG GAC ATG GTG CGC ATC CCC GTG GGA 1576 Gln Ala Val Glu Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly 365 370 375 380 TCA AGA GAG ACC TTC TAC AGG ATC TCC AAG ACG GAT GGC GTT TGT GAA 1624 Ser Arg Glu Thr Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu 385 390 395 TGG AAA TTT TTC TCT TCC ATG CCC CGT GGA TCT GCC AGG ATT ACA GTG 1672 Trp Lys Phe Phe Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val 400 405 410 TCC AAA GAC CAA TCC TCC TGT ACC ACA GCC CGG GTG AGA AGT AAA AGC 1720 Ser Lys Asp Gln Ser Ser Cys Thr Thr Ala Arg Val Arg Ser Lys Ser 415 420 425 TTT TTG CAG GTC TGC TGC TGT GTA GGG CCC TCA ACC CCC AGC CTT GAC 1768 Phe Leu Gln Val Cys Cys Cys Val Gly Pro Ser Thr Pro Ser Leu Asp 430 435 440 AAG AAC CAT CAA GTT CCA ACC ATT AAG GTC CAC ACC ATC TCC CTC AGT 1816 Lys Asn His Gln Val Pro Thr Ile Lys Val His Thr Ile Ser Leu Ser 445 450 455 460 GAG AAC GGG GAG GAA GTC TAGGACAGGA AAGATGCAGA GGAAAGGGGA 1864 Glu Asn Gly Glu Glu Val 465 ATAATCTTAG GTACCCACCC CACTTC 1890
【図面の簡単な説明】
【図1】ヒト及びウシα1Cアドレナリン受容体のアミノ
酸配列のヒドロパシープロットを示す。各々、横軸はア
ミノ酸残基数を、縦軸は疎水度を表す。図中のローマ数
字は、膜貫通ドメインを表す。
【図2】P2C7遺伝子を発現したCHO細胞の細胞内
Ca2+濃度に及ぼすアゴニストの影響を示す。縦軸は細
胞内Ca2+濃度、横軸はアゴニスト濃度を表す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 5/10 // C12P 21/02 C 9282−4B (C12N 1/21 C12R 1:19) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91)

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 ヒトα1Cアドレナリン受容体をコードす
    るDNA。
  2. 【請求項2】 ヒトα1Cアドレナリン受容体が配列番号
    1のアミノ酸配列によって示されるものである請求項1
    記載のDNA。
  3. 【請求項3】 配列番号1のアミノ酸配列によって示さ
    れるヒトα1Cアドレナリン受容体。
  4. 【請求項4】 ヒトα1Cアドレナリン受容体が配列番号
    2のアミノ酸配列によって示されるものである請求項1
    記載のDNA。
  5. 【請求項5】 配列番号2のアミノ酸配列によって示さ
    れるヒトα1Cアドレナリン受容体。
  6. 【請求項6】 請求項1記載のヒトα1Cアドレナリン受
    容体をコードする遺伝子を含むDNAで形質転換した微
    生物。
  7. 【請求項7】 請求項1記載のヒトα1Cアドレナリン受
    容体をコードする遺伝子を含むDNAで形質転換した動
    物細胞。
JP6178201A 1993-07-29 1994-07-29 アドレナリン受容体遺伝子 Pending JPH0787981A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6178201A JPH0787981A (ja) 1993-07-29 1994-07-29 アドレナリン受容体遺伝子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-208447 1993-07-29
JP20844793 1993-07-29
JP6178201A JPH0787981A (ja) 1993-07-29 1994-07-29 アドレナリン受容体遺伝子

Publications (1)

Publication Number Publication Date
JPH0787981A true JPH0787981A (ja) 1995-04-04

Family

ID=26498453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6178201A Pending JPH0787981A (ja) 1993-07-29 1994-07-29 アドレナリン受容体遺伝子

Country Status (1)

Country Link
JP (1) JPH0787981A (ja)

Similar Documents

Publication Publication Date Title
Shibata et al. α1a‐Adrenoceptor polymorphism: pharmacological characterization and association with benign prostatic hypertrophy
EP1243648A1 (en) Novel guanosine triphosphate-binding protein-coupled receptors, genes thereof and production and uses thereof
US5912122A (en) Nucleic acids encoding and method for detecting nucleic acid encoding human metabotropic glutamate receptor subtype mGluR6
US20010016336A1 (en) G-protein coupled receptor HFIAO41
JP2010047588A (ja) 新規膜貫通蛋白質をコードする遺伝子
US20010053536A1 (en) cDNA clone HDPBI30 that encodes a novel human 7-transmembrane receptor
JP2001525178A (ja) ヒト11cbスプライス変異体に対するアゴニストおよびアンタゴニストの探索方法
JP2003508026A (ja) ヒトg−タンパク質共役型受容体
JP2002536989A (ja) ガラニン受容体と類似したgタンパク質共役受容体
JPH11235184A (ja) ヒト7回膜貫通受容体をコードするcDNAクローンHNEAA8 1
JP2005229804A (ja) 新規なメラニンコンセントレーティングホルモン受容体
AU778107B2 (en) Cloning and expression of a novel 5-HT4 receptor
JP2002199892A (ja) エプスタイン・バーウイルスにより誘導されるgタンパク質共役受容体の新規なスプライシング変異体
JPH0787981A (ja) アドレナリン受容体遺伝子
WO2001004299A1 (fr) Facteur regulant l'agglutination de la proteine beta-amyloide
JPH11127868A (ja) 7tm受容体 hlwar77
CA2555208A1 (en) Nucleic acid molecules encoding novel murine low-voltage activated calcium channel proteins, designated-alpha 1h, encoded proteins and methods of use thereof
JP2002508169A (ja) ガラニン受容体galr3およびそれをコードするヌクレオチド
US6576742B1 (en) DNA sequence encoding a human imidazoline receptor and method for cloning the same
JP2002223780A (ja) マウスFrizzled−6遺伝子に類似したヒト7TM受容体
US6682908B1 (en) Mouse growth hormone secretagogue receptor
EP0875568A1 (en) Novel human neurotensin receptor type 2 and splice variants thereof
AU2002318780B2 (en) Human Metabotropic Glutamate Receptor Subtype mGluR6
USRE42190E1 (en) Method of identifying a compound for inhibiting or stimulating human G protein-coupled receptors
US20050074808A1 (en) G protein-coupled receptor expressed in brain